ZALCMAN CONJECTURE FOR SOME SUBCLASS OF ANALYTIC FUNCTIONS

DEEPAK BANSAL AND JANUSZ SOKÓL

Abstract

In the present investigation sharp upper bound of Zalcman functional $\left|a_{n}^{2}-a_{2 n-1}\right|$ for functions belonging to classe \mathcal{M} and \mathcal{N} for $n=3$ is investigated.

1. Introduction

Let $\mathcal{H}(\mathbb{U})$ denote the class of functions which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ and \mathcal{A} be the class of functions $f \in \mathcal{H}(\mathbb{U})$, normalized by $f(0)=0 ; f^{\prime}(0)=1$ and having the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{U} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions which are also univalent in \mathbb{U}. A function $f \in \mathcal{S}$ is called starlike (with respect to origin 0), denoted by $f \in \mathcal{S}^{*}$ if $t w \in f(\mathbb{U})$ whenever $w \in f(\mathbb{U})$ and $t \in[0,1]$. A function $f \in \mathcal{S}$ maps the unit disk \mathbb{U} onto a convex domain is called convex function. A function $f \in \mathcal{S}$ is called starlike function of order $\lambda(0 \leq \lambda<1)$, denoted by $\mathcal{S}^{*}(\lambda)$, if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\lambda, \quad z \in \mathbb{U} . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{S}$ is called convex function of order $\lambda(0 \leq \lambda<1)$, denoted by $\mathcal{K}(\lambda)$, if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}(\lambda)$. Nishiwaki and Owa [16] studied a class of function $f \in \mathcal{A}$ satisfying (1.2) with opposite inequality, i. e. denoted by $\mathcal{M}(\lambda), \lambda>1$ is the class of function $f \in \mathcal{A}$ satisfying the inequality

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\lambda, \quad z \in \mathbb{U} \tag{1.3}
\end{equation*}
$$

and let $\mathcal{N}(\lambda), \lambda>1$ is the class of function $f \in \mathcal{A}$ satisfying the inequality

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\lambda \quad z \in \mathbb{U} \tag{1.4}
\end{equation*}
$$

2010 Mathematics Subject Classification. 30C45, 30C50, 15B05.
Key words and phrases. Analytic, Starlike and Convex functions; Fekete-Szegö functional; Hankel determinants.

Submitted .

For convenience, we put $\mathcal{M}(3 / 2)=\mathcal{M}$ and $\mathcal{N}(3 / 2)=\mathcal{N}$. For $1<\lambda \leq 4 / 3$, the classes $\mathcal{M}(\lambda)$ and $\mathcal{N}(\lambda)$ were investigated by Uralegaddi et al. [24]. In an earlier study, Ozaki [?] proved that functions in \mathcal{N} are univalent in \mathbb{U}. Singh and Singh [23, Theorem 6] proved that function in \mathcal{N} are starlike in \mathbb{U}. Saitoh et al. [22] and Nunokawa [17] have improved the result of Singh and Singh [23, Theorem 6].

For $f \in \mathcal{A}$ of the form (1.1), the classical Fekete-Szegö functional $\Phi_{\lambda}(f):=$ $a_{3}-\lambda a_{2}^{2}$ plays an important role in the function theory. A classical problem settled by Fekete and Szegö [4] is to find for each $\lambda \in[0,1]$ the maximum value of the $\left|\Phi_{\lambda}(f)\right|$ over the function $f \in \mathcal{S}$. By applying the Löewner method they proved that

$$
\max _{f \in \mathcal{S}}\left|\Phi_{\lambda}(f)\right|= \begin{cases}1+2 \exp \{-2 \lambda /(1-\lambda)\}, & \lambda \in[0,1] \\ 1, & \lambda=1\end{cases}
$$

The problem of calculating $\max _{f \in \mathcal{F}}\left|\Phi_{\lambda}(f)\right|$ for various compact subfamilies \mathcal{F} of \mathcal{A}, as well as λ being an arbitrary real or complex number, was considered by many authors (see e.g. $[5,6,9]$).

In 1960, Lawrence Zalcman posed a conjecture that the coefficients of \mathcal{S} satisfy the inequality

$$
\begin{equation*}
\left|a_{n}^{2}-a_{2 n-1}\right| \leq(n-1)^{2} \tag{1.5}
\end{equation*}
$$

with equality only for Koebe function $k(z)=z /(1-z)^{2}$ and its rotations. We call $J_{f}(n)=a_{n}^{2}-a_{2 n-1}$ the Zalcman functional for $f \in \mathcal{S}$. This remarkable conjecture was investigated by many mathematicians, and remain open for all $n>6$. The case $n=2$ is the elementary well-known Fekete-Szegö inequality. The Zalcman coefficient inequality (1.5) for $n=3$ was established in [10] and also for the special cases $n=4,5,6$ in [11]. This conjecture was proved for certain special subclasses of \mathcal{S} in [2, 14], (see also [12] and [15]), and an observation demonstrates that the Zalcman coefficient conjecture is asymptotically true.
In the present paper, we investigate the validity of Zalcman conjecture for $n=3$ for the functions belonging to the classes \mathcal{M} and \mathcal{N} defined above. In our study we shall need the Carathéodory functions \mathcal{P} (see, Duren [3]), which is the class of functions $p \in \mathcal{H}(\mathbb{U})$ with $\Re(p(z))>0, z \in \mathbb{U}$ and having the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}, \quad z \in \mathbb{U} \tag{1.6}
\end{equation*}
$$

Lemma 1.1. ([3]) If $p \in \mathcal{P}$ is of the form (1.6). Then for all $n \geq 1$ and $s \geq 1$, we have

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \quad \text { and } \quad\left|p_{n}-p_{s} p_{n-s}\right| \leq 2 \tag{1.7}
\end{equation*}
$$

These inequalities are sharp for all n and for all s, equality being attained for each n and for each s by the function $p(z)=(1+z) /(1-z)$.

The second inequality in Lemma 1.1 is due to Livingston [13].
Lemma 1.2. ([18]) If $f(z) \in \mathcal{M}$ be given by (1.1), then $\left|a_{n}\right| \leq \frac{1}{n-1}, n \geq 2$. The result is sharp for the function $g_{n}(z)=z\left(1-z^{n-1}\right)^{1 /(n-1)}, n \geq 2$.

Lemma 1.3. ([21, Theorem 2.1]) Let the function $f \in \mathcal{M}$ be given by (1.1), then

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq 1 \tag{1.8}
\end{equation*}
$$

The result (2.1) is sharp and equality in (2.1) is attended for the function $e_{1}(z)=$ $z-z^{2}$.

As it is known that, if $f(z) \in \mathcal{N}$ then $z f^{\prime}(z) \in \mathcal{M}$, therefore from Lemma 1.2, we conclude that
Lemma 1.4. ([18, Theorem 1]) If $f \in \mathcal{N}$ be given by (1.1), then

$$
\left|a_{n}\right| \leq \frac{1}{n(n-1)}, \quad n \geq 2
$$

The result is sharp for the function f_{n} such that $f_{n}^{\prime}(z)=\left(1-z^{n-1}\right)^{1 /(n-1)}, n \geq 2$.
Lemma 1.5. ([18, Corollary 2]) If $f \in \mathcal{N}$ be given by (1.1), then $\left|a_{3}-a_{2}^{2}\right| \leq 1 / 4$. Equality is attended for the function f such that $f^{\prime}(z)=\left(1-z^{2} e^{i \theta}\right)^{1 / 2}, \theta \in[0,2 \pi]$.

2. Main Results

Our first main result is contained in the following theorem:
Theorem 2.1. Let the function $f \in \mathcal{M}$ be given by (1.1), then

$$
\begin{equation*}
\left|a_{3}^{2}-a_{5}\right| \leq \frac{3}{8} \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Let $f \in \mathcal{M}$ be given by (1.1), then there exists a function $p \in \mathcal{P}$ of the form (1.6), such that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{2}(3-p(z))
$$

which in terms of power series is equivalent to

$$
2 \sum_{n=1}^{\infty} n a_{n} z^{n}=\left(\sum_{n=1}^{\infty} a_{n} z^{n}\right)\left(2-\sum_{n=1}^{\infty} p_{n} z^{n}\right)
$$

Comparing coefficient of z^{n}

$$
\begin{equation*}
a_{n}=\frac{-1}{2(n-1)}\left[p_{n-1}+a_{2} p_{n-2}+\ldots+a_{n-1} p_{1}\right] \quad(n=2,3, \ldots) \tag{2.2}
\end{equation*}
$$

A simple calculation gives

$$
\begin{equation*}
a_{2}=-\frac{1}{2} p_{1}, \quad a_{3}=\frac{1}{8}\left(p_{1}^{2}-2 p_{2}\right), \quad a_{4}=\frac{1}{48}\left(6 p_{1} p_{2}-8 p_{3}-p_{1}^{3}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{5}=\frac{1}{384}\left(p_{1}^{4}+12 p_{2}^{2}+32 p_{1} p_{3}-48 p_{4}-12 p_{1}^{2} p_{2}\right) \tag{2.4}
\end{equation*}
$$

By using (2.3), (2.4) and Lemma 1.1, one can easily see that

$$
\begin{aligned}
\left|a_{3}^{2}-a_{5}\right| & =\frac{1}{384}\left|5 p_{1}^{4}-12 p_{1}^{2} p_{2}+12 p_{2}^{2}-32 p_{1} p_{3}+48 p_{4}\right| \\
& =\frac{1}{384}\left|5\left(p_{2}-p_{1}^{2}\right)^{2}+7 p_{2}^{2}-2 p_{1}^{2} p_{2}+32\left(p_{4}-p_{1} p_{3}\right)+16 p_{4}\right| \\
& \leq \frac{1}{384}\left(5\left|p_{2}-p_{1}^{2}\right|^{2}+2\left|p_{2}\right|\left|p_{2}-p_{1}^{2}\right|+5\left|p_{2}\right|^{2}+32\left|p_{4}-p_{1} p_{3}\right|+16\left|p_{4}\right|\right) \\
& =\frac{1}{384}(5 \times 4+2 \times 2 \times 2+5 \times 4+32 \times 2+16 \times 2)=\frac{3}{8}
\end{aligned}
$$

To show that (2.1) is sharp consider $f \in \mathcal{M}$ such that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{2}(3-q(z))=\frac{1}{2}\left(3-\frac{1+z^{2}}{1-z^{2}}\right)
$$

then $q \in \mathcal{P}$ and

$$
q(z)=1+2 z^{2}+2 z^{4}+2 z^{6}+\ldots=1+2 \sum_{n=1}^{\infty} q_{n} z^{n} \quad z \in \mathbb{U}
$$

Then, we have $q_{1}=q_{3}=0$ and $q_{2}=q_{4}=2$, hence

$$
\begin{aligned}
\left|a_{3}^{2}-a_{5}\right| & =\frac{1}{384}\left|5 q_{1}^{4}-12 q_{1}^{2} q_{2}+12 q_{2}^{2}-32 q_{1} p_{3}+48 q_{4}\right| \\
& =\frac{1}{384}\left|12 q_{2}^{2}+48 q_{4}\right|=\frac{3}{8}
\end{aligned}
$$

Theorem 2.2. Let the function $f \in \mathcal{N}$ be given by (1.1), then

$$
\begin{equation*}
\left|a_{3}^{2}-a_{5}\right| \leq \frac{1}{15} \tag{2.5}
\end{equation*}
$$

Proof. Let the function $f \in \mathcal{N}$ be given by (1.1), then by definitions it is clear that $f(z) \in \mathcal{N}$ if and only if $z f^{\prime}(z) \in \mathcal{M}$, thus replacing a_{n} by $n a_{n}$ in (2.2), we get

$$
\begin{equation*}
a_{2}=-\frac{1}{4} p_{1}, \quad a_{3}=\frac{1}{24}\left(p_{1}^{2}-2 p_{2}\right), \quad a_{4}=\frac{1}{192}\left(6 p_{1} p_{2}-8 p_{3}-p_{1}^{3}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{5}=\frac{1}{1920}\left(p_{1}^{4}+12 p_{2}^{2}+32 p_{1} p_{3}-48 p_{4}-12 p_{1}^{2} p_{2}\right) \tag{2.7}
\end{equation*}
$$

By using (2.6), (2.7) and Lemma 1.3, one can easily see that

$$
\begin{align*}
\left|a_{3}^{2}-a_{5}\right| & =\frac{1}{5760}\left|7 p_{1}^{4}-4 p_{1}^{2} p_{2}+4 p_{2}^{2}-96 p_{1} p_{3}+144 p_{4}\right| \tag{2.8}\\
& =\frac{1}{5760}\left|4\left(p_{1}^{2}-p_{2}\right)^{2}+3 p_{1}^{4}+4 p_{1}^{2} p_{2}+96\left(p_{4}-p_{1} p_{3}\right)+48 p_{4}\right| \\
& \leq \frac{1}{5760}\left(4\left|p_{1}^{2}-p_{2}\right|^{2}+3\left|p_{1}\right|^{4}+4\left|p_{1}^{2} p_{2}\right|+96\left|p_{4}-p_{1} p_{3}\right|+48\left|p_{4}\right|\right) \\
& =\frac{1}{5760}(4 \times 4+3 \times 16+4 \times 8+96 \times 2+48 \times 2)=\frac{12}{180}
\end{align*}
$$

We have $\frac{12}{180}=\frac{384}{5760}$. The function $g(z)$ such that

$$
\frac{z\left(z g^{\prime}(z)\right)^{\prime}(z)}{z g^{\prime}(z)}=\frac{1}{2}(3-q(z))=\frac{1}{2}\left(3-\frac{1+z^{2}}{1-z^{2}}\right)
$$

is in the class \mathcal{N} and when $g(z)=z+a_{2} z^{2}+\cdots$, we have

$$
\begin{aligned}
\left|a_{3}^{2}-a_{5}\right| & =\frac{1}{5760}\left|7 p_{1}^{4}-4 p_{1}^{2} p_{2}+4 p_{2}^{2}-96 p_{1} p_{3}+144 p_{4}\right| \\
& =\frac{304}{5760}
\end{aligned}
$$

This suggest the following conjecture.
Conjecture If $f \in \mathcal{N}$, then

$$
\left|a_{3}^{2}-a_{5}\right| \leq \frac{304}{5760}=\frac{19}{360}
$$

References

[1] H. R. Abdet Gawad, D. K. Thomas, The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114(1992) 345-349.
[2] J. E. Brown and A. Tsao , On the Zalcman conjecture for starlikeness and typically real functions, Math. Z. 191 (1986), 467-474.
[3] P. L. Duren, Univalent Functions, Springer Verlag, New Yark Inc. 1983.
[4] M. Fekete, G. Szegö, Eine Benberkung uber ungerada Schlichte funktionen, J. Lond. Math. Soc. 8(1933) 85-89.
[5] F. R. Keogh, E. P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20(1969) 8-12.
[6] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101(1987) 85-95.
[7] C. R. Leverenz, Hermitian forms in function theory, Trans. Amer. Math. Soc. 286(2)(1984) 675-688.
[8] R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(1982) 225-230.
[9] R. R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117(1993) 947-950.
[10] S. L. Krushkal, Univalent functions and holomorphic motions, J. Analyse Math. 66 (1995), 253-275.
[11] S. L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J. 17 (2010), 663-681.
[12] S. L. Krushkal, Hyperbolic metrics, homogeneous holomorphic functionals and Zalcmans conjecture, http://arxiv.org/pdf/1109.4646v2
[13] A. E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
[14] W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc. 104 (1988), 741-744.
[15] W. Ma , Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Ana. Appl. 234 (1999), 328-339.
[16] J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285-290.
[17] M. Nunokawa, A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A. 65(1989) 163-164.
[18] M. Obradovic̀, S. Ponnusamy, K. J. Wirths, Coefficient characterizations and sections for some univalent functions, Sib. Math. J. 54(2013) 679-696.
[19] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[20] Y. A. Muhanna, L. Li.and S. Ponnusamy, Extremal problem on the class of convex functions of order $-1 / 2$, Archiv der Mathematik. 103(201???), 461-471.
[21] J. K. Prajapat, Deepak Bansal and Sudhananda Maharana, Bounds for the third order Hankel determinant for certain classes of analytic functions (Communicated).
[22] H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege $57(1988)$ 137-141.
[23] R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness, Collect. Math. 47(1982) 309-314.
[24] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25(1994) 225-230.

Deepak Bansal
Department of Mathematics, Govt. College of Enggineering and Technology, Bikaner334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com
Janusz Sokó́
Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy
12, 35-959 Rzeszów, Poland
E-mail address: jsokol@prz.edu.pl

