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Abstract. In this paper, we focus on the local stability of the fractional-
order Brusselator chemical reaction system (FOBS) with incommensurate or-
der for the first time, which is a famous model of chemical reactions. Then,

we apply the piecewise constant arguments(PWCA) for obtaining numerical
solution of FOBS. This method is an approximation for the right-hand side
of the fractional-order system (FOS). It is different from the usual discretiza-
tion process for FOS. And fortunately, once again it can be confirmed that

some amazing phenomena are quite similar to limit cycle. Through graph
comparison and statistical analysis, these show that the numerical solutions
are consistent with existing results. These also show that the PWCA is an
effective method for solving FOS. Finally, some discussions of limit cycles are

given.

1. Introduction

Fractional calculus has a longer history than integer calculus. However, the ap-
plication of fractional derivatives and integrals has been infrequent until the last
century. Insofar as it concerns the application of fractional derivative operator,
there have many areas such as viscoelastic damping, anomalous diffusion process,
signal processing, electrochemistry, fluid flow, chemistry and so on[1, 2, 3, 4]. In
many previous studies, the existence or no-existence of periodic solution and limit
cycle of fractional-order equation(system) are important research directions[5, 6, 7,
8, 9, 10, 11]. These references shown that FOS cannot generate exactly periodic
signals and limit cycle. But, the fractional derivative of a periodic signal is peri-
odic if it is defined on the whole real line. The limit cycle observed in numerical
simulations of FOS cannot be an exact periodic solution. It is just a kindred limit
cycle, not really limit cycle.

In other relevant references, many numerical observations show that some FOS
exhibits limit cycle. However, it can only be observed after long-term refined sim-
ulations. That means an asymptotic periodicity can be observed as t increases to
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infinity, i.e., lim
t→∞

[f(t+ T )− f(t)] = 0 with an asymptotic period T > 0[12, 13]. In

process of numerical simulation, the obtained results of discretization of FOS are
approximation. Thus, the observed limit cycle is a phenomenon of approximation.
It is just very similar to limit cycle.

The Brusselator system is a famous model of chemical reaction with oscillations.
It is different from most chemical reaction, where, a state of homogeneity and
equilibrium is quickly reached. The reaction is a remarkable chemical reaction that
maintains a prolonged state of non-equilibrium leading to macroscopic temporal
oscillations. The partial differential equation form of Brusselator chemical reaction
system is as following[14, 15, 16, 17, 18, 19, 20].

∂u
∂t = a− (µ+ 1)u+ u2v + k1

∂2u
∂x2 ,

∂v
∂t = µu− u2v + k2

∂2v
∂x2 ,

(1)

where a, µ, k1, k2 are constants. When we consider the case of the absence of diffu-
sion, i.e., k1 = k2 = 0 and rewrite u(t), v(t) as x(t), y(t) respectively. The system
(1) reduce to the following ordinary differential equation form[21, 22, 23, 24].

dx(t)
dt = a− (µ+ 1)x(t) + x(t)2y(t),

dy(t)
dt = µx(t)− x(t)2y(t),

(2)

This system has a unique limit cycle when µ > a2+1 and it has a stable limit cycle
for (a− 1)2 < µ < a2 + 1[25].

In recent years, the corresponding fractional-order Brusselator chemical reaction
system is mathematically described as follows.

Dα1x(t) = a− (µ+ 1)x(t) + x(t)2y(t),
Dα2y(t) = µx(t)− x(t)2y(t),

(3)

where 0 < α1, α2 ≤ 1, x(t), y(t) are activator and inhibitor variables, a and
µ are external parameters(the relationship between them determines the system
dynamics)[25, 26, 27, 28, 29, 30, 31]. If (α1, α2) = (1, 1), then the system (3) is
the classical Brusselator system. If 0 < α1 = α2 = α < 1, the system (3) is
commensurate order. Otherwise, it is incommensurate order (α1 ̸= α2).

In this paper, we mainly study two problems. One is the local stability of FOBS
with incommensurate order. This is complementary of the previous study. On
the other hand, PWCA is firstly applied to solve FOBS. The obtained numerical
results (including kindred (false) phenomenon of limit cycle) are in agreement with
previous findings in the literatures.

The rest of the paper is organized as follows. In Section 2, the basic concepts
of fractional derivative are presented. In Section 3, local stable and numerical
solutions of FOBS are investigated based on theory of stability and PWCA. In the
last Section, possible reasons for generating kindred (false) limit cycles are discussed
and conclusions are drawn.

2. Preliminaries and notations

There are several definitions of fractional derivative. The Grunwald-Letnikov,
Riemann-Liouville and Caputo definitions are used for the general fractional differ-
integral equation. Here and throughout, the Caputo-type definition is used[2, 3, 4].

Definition 1. A real function f(t), t > 0 is said to be in space Cα, α ∈ R if there
exists a real number p(> α), such that f(t) = tpf1(t) where f1(t) ∈ C[0,∞].
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Definition 2. A real function f(t), t > 0 is said to be in space Cm
α ,m ∈ N

∪
{0} if

f (m)(t) ∈ Cα.

Definition 3. The function Γ : (0,∞) → R, defined by Γ(x) =
∫∞
0

tx−1e−tdt, is
called Euler’s Gamma function.

Definition 4. The Riemann-Liouville integral operator of order β > 0 is defined
as

Jβz(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1z(τ)dτ, (4)

where Γ(·) is the Euler’s Gamma function.

Definition 5. The Caputo fractional derivative of y(t), y(t) ∈ Cm
−1,m ∈ N

∪
{0},

is defined as

Dαy(t) = Jm−αy(m)(t), α > 0, (5)

where m = ⌈α⌉, i.e., m is the first integer which is no less than α, y(m) is the
ordinary mth derivative of y, J is the Riemann-Liouville integral operator.

Note that for m − 1 < α ≤ m (m ∈ N), JαDα
∗ y(t) = y(t) −

m−1∑
k=0

dky
dtk

(0) t
k

k! , and

for α → m, the Caputo fractional derivative of (5) becomes a conventional mth
derivative. In this paper, the α is limited in (0, 1]. Since it is integral form, the
Caputo derivative has a relationship with all of the function history information
and a chemical reaction model described by FOS will possess memory.

Definition 6. Limit cycle is a closed trajectory in phase space of a dynamical
system having the property that at least one other trajectory spirals into it either as
time approaches infinity or as time approaches minus-infinity.

Isolated periodic solutions of the systems are called limit cycles[5].

Definition 7. [32] A non-constant solution x(t) of any system is said to be a
periodic solution if there exists T > 0 such that x(t) = x(t+ T ) for all t ∈ R.

3. Fractional-order Brusselator system

3.1. Stability analysis. The system (3) has a unique equilibrium point E =
(a, µ

a ). For the commensurate case, there have the following local stable results.
“There exists a marginal value α0 such that the equilibrium E is locally asymptot-
ically stable if α < α0 and it is unstable if α > α0” (See the equations (4)-(6) in
[25]). For further analysis, it is necessary to have the following lemma.

Lemma 1. [33] Suppose that α′
is are rational numbers between 0 and 1, for i =

1, 2, · · · , n. Let γ = 1/m where m is the least common multiple of the denomina-
tors mi of α′

is, where αi = ki/mi, ki,mi ∈ N, i = 1, 2, · · · , n. Then the system
Dαx(t) = Ax(t), x(0) = x0 is asymptotically stable if all roots λ of the equation
det(diag(λmα1 , λmα2 , · · · , λmαn)−A) = 0 satisfy |arg(λ)| > γπ/2.

Based on the Lemma 1 and extended condition µ ≥ 0, we have the following
result.

Theorem 1. For the incommensurate case, when µ = 0, α′
is are rational numbers

and lie in (0, 1), then the equilibrium E of the system (3) is locally asymptotically
stable.
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Fig. 1. Locally asymptotically stable of the equilibrium point E =
(a, 0) in the system (3).

Proof. Since α′
is are rational numbers, we assume that α1 = k1

m1
, α2 = k2

m2
,γ = 1

m ,
m is the least common multiple of the m1 and m2, and m = n1m1,m = n2m2. The
Jacobian matrix of the system (3) at the equilibrium point is

J |E =

[
−(µ+ 1) + 2xy x2

µ− 2xy −x2

]
(x,y)=(a,µa )

=

[
µ− 1 a2

−µ −a2

]
.

Thus,

det(diag(λmα1 , λmα2)− J |E) = 0, (6)

i.e., (λmα1 − µ+ 1)(λmα2 + a2) + a2µ = 0. That is

(λn1k1 − µ+ 1)(λn2k2 + a2) + a2µ = 0, (7)

i.e., λn1k1λn2k2 + a2λn1k1 + (1 − µ)λn2k2 + a2 = 0. Just with the condition µ = 0,
then this equation has solution in C2. i.e.,

(λn1k1 + 1)(λn2k2 + a2) = 0, (8)

Suppose that λ = r(cos θ+i sin θ), put it to the equation (8), then, rn1k1(cos(n1k1θ)+
i sin(n1k1θ)) = −1 = cosπ + i sinπ. i.e., θ = π

n1k1
> π

n1m1
> π

2m = γπ
2 or

rn2k2(cos(n2k2θ)+ i sin(n2k2θ)) = −a2 = a2(cosπ+ i sinπ), so, θ = π
n2k2

> π
n2m2

>
π
2m = γπ

2 . Generally, the condition |arg(λ)| > γπ
2 is satisfied. The equilibrium E is

locally asymptotically stable. �

3.2. Simulations of locally asymptotically stable. Based on the Theorem 1,
the system (3) with µ = 0 is reduced to

Dα1x(t) = a− x(t) + x(t)2y(t),
Dα2y(t) = −x(t)2y(t).

(9)

For the incommensurate case, the equilibrium point is E = (a, 0). When we fix
a = 3 and (q1, q2) = (0.4, 0.9), the convergence process is shown in Fig.1(a). Fix
a = 1.8 and (q1, q2) = (0.3, 0.7), the convergence processes are shown in Fig.1(b).
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These simulations are based on the predictor-corrector (P-C) approach[34]. Nu-
merical simulations are consistent with theoretical results. All these show that the
equilibrium point E = (a, 0) is locally asymptotically stable.

Remark 1. The equilibrium point E = (a, 0) is only locally asymptotically stable,
not globally asymptotically stable. But, the convergence radius of the equilibrium
point is not known. In the process of numerical simulations, it is not known how
far the distance between the initial point (x0, y0) and the equilibrium point is ap-
propriate. How close is close enough? Only the proper distance can guarantee that
the orbits will be attracted to the equilibrium point. Otherwise, the orbits may be
divergent.

3.3. A numerical solution. In this subsection, we apply the discretization pro-
cess represented in reference[35, 36, 37, 38, 39] for the FOBS (3). Assume that
(x(0), y(0)) = (x0, y0) is the initial condition, then a numerical solution of FOBS
(3) with PWCA method is given as following.

Dα1x(t) = a− (µ+ 1)x([t/s]s) + x([t/s]s)2y([t/s]s),
Dα2y(t) = µx([t/s]s)− x([t/s]s)2y([t/s]s).

(10)

First, let t ∈ [0, s), i.e., t/s ∈ [0, 1). Thus, we obtain

Dα1x(t) = a− (µ+ 1)x(0) + x(0)2y(0),
Dα2y(t) = µx(0)− x(0)2y(0),

(11)

and the solution of (11) is reduced to

x1(t) = x0 + Jα1(a− (µ+ 1)x(0) + x(0)2y(0)),

= x0 +
tα1

α1Γ(α1)
(a− (µ+ 1)x(0) + x(0)2y(0)),

y1(t) = y0 + Jα2(µx(0)− x(0)2y(0)),

= y0 +
tα2

α2Γ(α2)
(µx(0)− x(0)2y(0)).

(12)

Second, let t ∈ [s, 2s), i.e., t/s ∈ [1, 2). Hence, we get

Dα1x(t) = a− (µ+ 1)x1 + x2
1y1,

Dα2y(t) = µx1 − x2
1y1,

(13)

which has the following solution

x2(t) = x1(s) + Jα1
s (a− (µ+ 1)x1(s) + x1(s)

2y1(s)),

= x1(s) +
(t−s)α1

α1Γ(α1)
(a− (µ+ 1)x1(s) + x1(s)

2y1(s)),

y2(t) = y1(s) + Jα2
s (µx1(s)− x1(s)

2y1(s)),

= y1(s) +
(t−s)α2

α2Γ(α2)
(µx1(s)− x1(s)

2y1(s)),

(14)

where Jαi
s = 1

Γ(α)

∫ t

s
(t − τ)αi−1dτ , 0 < αi ≤ 1 and i = 1, 2. Thus, after repeating

the discretization process n times, we obtain the discretized FOBS as following

xn+1(t) = xn(ns) +
(t−ns)α1

α1Γ(α1)
(a− (µ+ 1)xn(ns) + xn(ns)

2yn(ns)),

yn+1(t) = yn(ns) +
(t−ns)α2

α2Γ(α2)
(µxn(ns)− xn(ns)

2yn(ns)),
(15)

where t ∈ [ns, (n+ 1)s). For t → (n+ 1)s, the system (15) is reduced to

xn+1 = xn + sα1

α1Γ(α1)
(a− (µ+ 1)xn + x2

nyn),

yn+1 = yn + sα2

α2Γ(α2)
(µxn − x2

nyn).
(16)

It should be notice that if αi → 1 (i = 1, 2) in (16), we obtain the corresponding
Euler discretization of FOBS with commensurate order. It is different from P-C
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(c) α1 = α2 = 1.
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Fig. 2. Numerical solution comparison between PWCA , P-C,
VIM and PLSM respectively in the system (3), where a = 0, µ = 1,
initial value (x0, y0) = (1, 1) (example 1 in [31] and subsection 3.1
in [30]).

algorithm. The obtained result is a two-dimension discrete system. Given the
initial condition (x0, y0) and s, then through the discrete system (16), we can get
another numerical solution of the FOBS (3).

Now, we give an example to show this method is effective through comparing
the existing methods.

Example 1. Consider the fractional-order Brusselator system (3) with a = 0, µ = 1
as following:

Dα1x(t) = −2x(t) + x(t)2y(t),
Dα2y(t) = x(t)− x(t)2y(t),

(17)

with the initial conditions (x0, y0) = (1, 1).
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Using the polynomial least squares method (PLSM), the 3-order approximate
solutions of (17) are as following[30]. For the case (α1, α2) = (0.98, 0.98),

xPLSM (t) = 0.0243682t3 + 0.311138t2 − 1.08655t+ 1,
yPLSM (t) = −0.184414t3 + 0.333424t2 + 0.0349127t+ 1,

(18)

and for the case (α1, α2) = (1, 1),

xPLSM (t) = 0.0750974t3 + 0.201028t2 − 1.02827t+ 1,
yPLSM (t) = −0.180088t3 + 0.334087t2 + 0.0271107t+ 1.

(19)

According to the variational iteration method (VIM)[31], the 2-order approximate
solutions of (17) are

xV IM (t) = 1− tα1
Γ(α1+1) +

t3α1Γ(2α1+1)
Γ(1+α1)2Γ(1+3α1)

,

yV IM (t) = 1 + tα1+α2

Γ(α1+α2+1) −
t2α1+α2Γ(2α1+1)

Γ(α1+1)2Γ(1+2α1+α2)
.

(20)

The comparison between PWCA, P-C, VIM and PLSM are shown in Fig.2. These
numerical results show that the introduced approach (PWCA) is a promising tool
for solving fractional-order differential equations.

Statistical analysis–correlation coefficient (CC)
In addition to comparison results of the Fig.2, we also introduce correlation

coefficient method as following to test the effect of the above numerical methods.

r =

n∑
i=1

(µi − µ)(νi − ν)

nσµσν
, i = 1, 2, · · · , n, (21)

where, σµ and σν are the standard deviation of time series µi and νi respectively.
µ and ν are the average value of time series µi and νi. The expression (21) can be
simplified as following.

r =

n
n∑

i=1

µiνi −
n∑

i=1

µi

n∑
i=1

νi√
n

n∑
i=1

µ2
i − (

n∑
i=1

µi)2

√
n

n∑
i=1

ν2i − (
n∑

i=1

νi)2

, (22)

where −1 ≤ r ≤ 1. The correlation coefficient r measures the relativity of two time
series µi and νi(i = 1, 2, · · · , n). If these two time series are highly correlated, the
correlation coefficient |r| is close to 1. That is, the larger |r|, the more relevant of
the two time series.

Denote the time series of P-C method by νi(i = 1, 2, · · · , n). Other time series
are denoted by µi(i = 1, 2, · · · , n) respectively. Then, the results of correlation
coefficient are as following Table 1.

P-C method is a mature and reliable algorithm for fractional-order differential
equation(FODE). Thus, it is used as the object of comparison. From the Table 1,
we can find that the PWCA for FODE is the most effective comparing to the other
two methods(VIM, PLSM). Furthermore, this method (CC) is more intuitive and
direct than the graphical comparison.

Remark 2. PWCA is different from the usual methods (P-C, VIM, PLSM), which
are based on corresponding integral equation of FODE. But, the PWCA deals with
FODE at its right part directly. When α1 = α2 = 1, PWCA method is consistent
with P-C method, i.e., Euler-discretization method.
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µi νi αk data r effect αk data r effect

VIM

P-C 0.98

x(t) -0.1178 weaker

1

x(t) -0.0743 weaker
y(t) -0.4555 weaker y(t) -0.4395 common

PLSM P-C
x(t) 0.9829 better

1
x(t) 0.9649 better

y(t) 0.4590 common y(t) 0.5307 common

PWCA
x(t) 0.9987 best x(t) 1.0000 best
y(t) 0.9979 best y(t) 1.0000 best

Table 1. Comparison of numerical results (i = 1, 2, · · · , n. k = 1, 2.)
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Fig. 3. Numerical solution using PWCA for the system (3) with
a = 1, (x0, y0) = (0.2, 0.03), µ = 4 and 3.98 respectively.

4. Discussions of limit cycles

Similar to references [25, 26], we also can get some phenomena of limit cycles
based on PWCA method. We only simulate two special cases as shown in Fig.3.
Other cases are similar. From the Fig.3, we can find that the “limit cycles” are still
retained. However, it was even strictly proved that the nonexistence of limit cycles
in fractional-order differential equation[5, 6, 7, 8, 9, 10, 11]. Here, the numerical
simulations and the theory is contradictory. However, numerical simulation is just
an approximation of the exact solution by a two-dimension discrete system (16).
What is the way to produce these false limit cycle? These similar phenomena of
limit cycles have been observed in many literatures[12, 13, 25, 26, 27, 28, 30, 31]
through various numerical simulations. We guess the phenomena of limit cycle
may be generated by Neimark-Sacker bifurcation in corresponding discrete system
of fractional-order system. Neimark-Sacker bifurcation always forms a invariant
curve, which is similar to limit cycle. Another possibility is that these “limit cycles”
may be eventually periodic orbits ( Let F : J → J. For x ∈ J , F 0(x) denotes x
and Fn+1(x) denotes F (Fn(x)) for n = 0, 1, · · · . we say q is eventually periodic
if for some positive integer m, p = Fm(q) is periodic [40]). These “limit cycles”
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actually are obtained by throwing away some points. Of course, perhaps there are
other reasons for these phenomena of limit cycle. These doubts are interesting and
deserve further consideration and discussion.

Here, we mainly have done following things. Firstly, stability of FOBS is studied.
Secondly, a numerical solution of FOBS is obtained using PWCAmethod. It is com-
pared with P-C, VIM and PLSM methods. By comparison (Figures and Statistical
analysis), we find that the PWCA method is effective and optimal. Finally, possi-
ble reasons for the phenomenon of “limit cycles” are analyzed. Some key matlab
codes of Fig.2(a)-2(b) are listed in http://ylgdiy.bokee.com/504158376.html.
All these analysis will improve understanding of the fractional-order Brusselator
chemical reaction system.
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