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ON MEROMORPHIC FUNCTIONS WITH A FIXED POINT

INVOLVING SRIVASTAVA-ATTIYA OPERATOR

H . E . DARWISH , A. Y. LASHIN AND B .F .HASSAN

Abstract. Making use of the familiar differential subordination structure in

this paper,we investigate a new class of meromorphic functions with a fixed
point w involving Srivastava-Attiya operator. Some results connected to sharp
coefficient bounds, distortion theorem and other important properties are ob-
tained.

1. Introduction

Let w be a fixed point in the unit disk ∆ = {z ∈ C : |z| < 1}. Denote by H the
class of functions which are regular and

A(w) = {f ∈ H : f(w) = f ′(w)− 1 = 0} .
Also denote by

Nw = {f ∈ A(w) : f is univalent in ∆ }
the subclass A(w) consist of the functions of the form

f(z) = (z − w) +
∞∑

n=2

an(z − w)n, (1)

that are analytic in the open unit disk. Note that N0 = N be a subclass of A(w)
consisting of univalent functions in ∆. By N∗

w (β)and Cw (β), respectively, we mean
the classes of analytic functions that satisfy the analytic conditions.

Re

(
(z − w)f ′(z)

f(z)

)
> β, Re

(
1 +

(z − w)f
′′
(z)

f ′(z)

)
> β

and z ∈ ∆ for some β (0 ≤ β < 1), introduced and studied by Kanas and Ronning
[11].The class N∗

w(0) is defined by geometric property that the image of any circular
arc centered at w is starlike with respect tof(w) and the corresponding class Cw(0)
is defined by the property that the image of any circular arc centered at w is convex.
We observe that the definitions are somewhat similar to the ones introduced by
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Goodman in [9] and [8] for uniformly starlike and convex functions, except that
in this case the point w is fixed. In particular, C0(0) = C and N∗

0 (0) = N∗

respectively, are the well-known standard class of convex and starlike functions
(see [22]).

Let
∑

denoted the subclass of meromorphic functionsf of the form

f(z) =
1

z
+

∞∑
n=1

anz
n , (2)

defined on the punctured unit disk ∆∗ := {z ∈ C : |z| < 1}.
Denote by

∑
w be the subclass of A(w) consist of the functions of the form

f(z) =
1

z − w
+

∞∑
n=1

an(z − w)n (an ≥ 0; z ̸= w). (3)

A functions f(z) of the form (3) is in the class of meromorphic starlike of order
β(0 ≤ β < 1) denoted by

∑
w(β), if

−Re

(
(z − w) f ′(z)

f(z)

)
> β (z − w ∈ ∆ := ∆∗ ∪ {0}). (4)

and is in the class of meromorphic convex of order β (0 ≤ β < 1) denoted by∑C
w(β), if

−Re

(
1 +

(z − w) f
′′
(z)

f ′(z)

)
> β (z − w ∈ ∆ := ∆∗ ∪ {0}) (5)

We recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by [24]

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s

(a ∈ D \
{
Z−
0

}
; s ∈ C, R(s) > 1 and |z| = 1)

where, as usual Z−
0 := Z/ {N} (Z := {0,±1,±2,±3, ...}; N := {1, 2, 3, ...}). Sev-

eral interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [5], Lin
and Srivastava [13], Lin et al. [14], and see the references stated therein.

For the class of analytic functions denote by A consisting of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (z ∈ ∆).

Srivastava and Attiya [23] introduced and investigated the linear operator:

Js,b : A → A

defined in terms of the Hadamard product (or convolution) by

Js,bf(z) = Gs,b ∗ f(z) (6)

where, for convenience,

Gs,b(z) := (1 + b)s[Φ(z, s, a)− b−s] (7)
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(z ∈ ∆; b ∈ C\
{
Z−
0

}
; s ∈ C; f ∈ A). For f ∈ A it is easy to observe from (6)

and (7) that

Js,bf(z) = z +
∞∑

n=2

(
1 + b

n+ b

)
anz

n, (z ∈ ∆). (8)

It is well known that the Srivastava-Attiya operator Js,b contains, among its special
cases, the integral operators introduced and investigated earlier by (for example)
Alexander [1], Libera [12], Bernardi [4], and Jung et al. [10].

Motivated essentially by the above mentioned Srivastava-Attiya operator, Mu-
rugusundaramoorthy and Janani [20] introduced a new linear operator

Js
b :
∑
w

→
∑
w

in terms of Hadamard product given by

Js
b f(z) = ϑs

b,p ∗ f(z) (9)

(z − w ∈ ∆ := ∆∗ ∪ {0} ; b ∈ C\
{
Z−
0

}
; s ∈ C; f ∈w )

where, for convenience

ϑs
b,p(z) := (1 + b)s[Φ(z, s, b)− b−s] (10)

and

Φ(z, s, b) =
1

bs
+

(z − w)−1

(1 + b)s
+

(z − w)

(2 + b)s
+ .... .

For f ∈ w, it is easy to observe from the above equations (9) and (10) that

Js
b f(z) =

1

z − w
+

∞∑
n=1

Cs
b (n)an(z − w)n, (z − w ∈ ∆ := ∆∗ ∪ {0}) (11)

where

Cs
b (n) =

∣∣∣∣( (1 + b)

n+ 1 + b

)s∣∣∣∣ (12)

and (throughout this paper unless otherwise mentioned) the parameters s, b are
constrained as b ∈ C\

{
Z−
0

}
; s ∈ C. Motivated by earlier works on meromorphic

functions by function theorists(see [2, 3, 6, 15, 16, 17, 18, 19, 21, 25]).
Now we defined the class Ψw(A,B) consisting the functions f(z) ∈w such that

− (z − w) [Js
b f(z)]

′′

[Js
b f(z)]

′ ≺ H(z) (13)

where H(z) = 2 1+A(z−w)
1+B(z−w) , A = B + (C − B)(1 − λ),−1 ≤ B < C ≤ 1, 0 ≤ λ < 1

and ”≺” denotes the subordination symbol [7, 26] .
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2. Main Results

In this section we find sharp coefficient estimates and integral representation for
the class Ψw (A,B) .

Let f (z) ∈w, then f (z) ∈ Ψw (A,B) if and only if

∞∑
n=1

Cs
b (n)n [(1 +B)(n+ 1) + 2 (C −B) (1− λ)] an < 2 (C −B) (1− λ) . (14)

The result is sharp for the function h (z) given by

h (z) =
1

z − w
+

2 (C −B) (1− λ)

Cs
b (n)n [(1 +B)(n+ 1) + 2 (C −B) (1− λ)]

(z − w)
n

, n = 1, 2, ...

(15)

Proof. Let f (z) ∈ Ψw (A,B) , then the inequality (11) or the inequality∣∣∣∣∣ (z − w) [Js
b f(z)]

′′
+ 2 [Js

b f(z)]
′

B (z − w) [Js
b f(z)]

′′
+ 2 [B + (C −B) (1− λ)] [Js

b f(z)]
′

∣∣∣∣∣ < 1 (16)

holds true, therefore by using (3)∣∣∣∣∑∞
n=1 C

s
b (n)n(n+ 1)an (z − w)

n

2 (C −B) (1− λ)− ξ

∣∣∣∣ < 1

where
ξ =

∑∞
n=1 C

s
b (n)n [B(n− 1) + 2 [B + (C −B) (1− λ)]] an (z − w)

n
.

Since Re (z) ≤ |z| for all z, therefore

Re

{∑∞
n=1 C

s
b (n)n(n+ 1)an (z − w)

n

2 (C −B) (1− λ)− ξ

}
< 1.

where
ξ =

∑∞
n=1 C

s
b (n)n [B(n− 1) + 2 [B + (C −B) (1− λ)]] an (z − w)

n
.

By letting (z − w) → 1 through real values, we have

∞∑
n=1

Cs
b (n)n [(1 +B)(n+ 1) + 2 (C −B) (1− λ)] an < 2 (C −B) (1− λ) .

Conversely, let (14) holds true, if we let (z − w) ∈ ∂∆∗where ∂∆∗denotes the
boundary of ∆∗,then we have∣∣∣∣∣ (z − w) [Js

b f(z)]
′′
+ 2 [Js

b f(z)]
′

B (z − w) [Js
b f(z)]

′′
+ 2 [B + (C −B) (1− λ)] [Js

b f(z)]
′

∣∣∣∣∣
≤

∑∞
n=1 C

s
b (n)n(n+ 1)an (z − w)

n

2 (C −B) (1− λ)−
∑∞

n=1 C
s
b (n)n [B(n− 1) + 2 [B + (C −B) (1− λ)]] an

< 1.

Thus by the Maximum modulus theorem, we conclude f (z) ∈ Ψw (A,B) . �

If f (z) ∈ Ψw (A,B) , then

Js
b f(z) =

∫ z

0

[
exp

∫ z

0

2 [AM(t)− 1]

(t− w) [1−M(t)B]
dt

]
ds

where A = B + (C −B) (1− λ) and |M(z)| < 1.
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Proof. Since f (z) ∈ Ψw (A,B) , so (11) or equivalently (16) holds true. Hence

(z − w) [Js
b f(z)]

′′
+ 2 [Js

b f(z)]
′

B (z − w) [Js
b f(z)]

′′
+ 2A [Js

b f(z)]
′ = M(z)

where |M(z)| < 1, z ∈ ∆∗ and A = B + (C −B) (1− λ) .
This yields

[Js
b f(z)]

′′

[Js
b f(z)]

′ =
2 [AM(z)− 1]

(z − w) [1−M(z)B]
,

after integration we obtain the required result. �
Theorem 2show that if f (z) ∈ Ψw (A,B) , then

|an| <
2 (C −B) (1− λ)

Cs
b (n)n [(1 +B)(n+ 1) + 2 (C −B) (1− λ)]

, n = 1, 2, 3, ... (17)

3. Distortion Bounds and Extreme points

In this section we investigate about distortion and extreme point of the classΨw (A,B) .
Let f (z) ∈ Ψw (A,B) , then

1

r
− (C −B) (1− λ)

(1 +B) + (C −B) (1− λ)
r < |Js

b f(z)| <
1

r
+

(C −B) (1− λ)

(1 +B) + (C −B) (1− λ)
r

where 0 < |z − w| = r < 1.

Proof. By Theorem 2 and (17) we have

|Js
b f(z)| =

1

z − w
+

∞∑
n=1

Cs
b (n)an (z − w)

n

≤ 1

r
+

∞∑
n=1

Cs
b (n) |an| rn (18)

<
1

r
+

(C −B) (1− λ)

(1 +B) + (C −B) (1− λ)
r (19)

similarly we obtain

|Js
b f(z)| ≥

1

r
− (C −B) (1− λ)

(1 +B) + (C −B) (1− λ)
r.

�
The function f (z) of the from (3) belongs to Ψw (A,B) if and only if it can be

expressed by

f (z) =

∞∑
n=0

λnfn (z) , λn ≥ 0, n = 1, 2, ... (20)

where f0 (z) =
1

z−w ,

fn (z) =
1

z − w
+

2 (C −B) (1− λ)

Cs
b (n)n [(1 +B)(n+ 1) + 2 (C −B) (1− λ)]

(z − w)
n
, n = 1, 2, ...

and
∞∑

n=0

λn = 1.
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Proof. Let

f (z) =
∞∑

n=0

λnfn (z) = λ0f0 (z)+

∞∑
n=1

λn

[
1

z − w
+

2 (C −B) (1− λ)

Cs
b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

(z − w)
n

]

=
1

z − w
+

∞∑
n=1

2 (C −B) (1− λ)

Cs
b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

λn (z − w)
n
.

Now by using Theorem 2 we conclude that f (z) ∈ Ψw (A,B) . Conversely, if f (z)
given by (3) belongs to Ψw (A,B) . By letting λ0 = 1−

∑∞
n=1 λn where

λn =
Cs

b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

2 (C −B) (1− λ)
an , n = 1, 2, ...

we conclude the required result. �

4. Radii of Starlikeness and convexity

In the last section we introduce the radii of starlikeness for functions in the class
Ψw (A,B) .

If f (z) ∈ Ψw (A,B) , then f is starlike of order δ (0 ≤ δ < 1) in disk |z − w| < r1,
and it is convex of order δ in disk |z − w| < r2 where

r1 = inf
n≥1

{
(1− δ)Cs

b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

2 (n+ 2− δ) (C −B) (1− λ)

} 1
n+1

(21)

and

r2 = inf
n≥1

{
(1− δ)Cs

b (n) [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

2 (n+ 2− δ) (C −B) (1− λ)

} 1
n+1

.

Proof. For starlikeness it is enough to show that∣∣∣∣ (z − w) f ′(z)

f(z)
+ 1

∣∣∣∣ ≤ 1− δ,

but ∣∣∣∣ (z − w) f ′(z)

f(z)
+ 1

∣∣∣∣ =

∣∣∣∣∣
∑∞

n=1 (n+ 1) an (z − w)
n

1
z−w +

∑∞
n=1 an (z − w)

n

∣∣∣∣∣ (22)

≤
∑∞

n=1 (n+ 1) an |z − w|n+1

1−
∑∞

n=1 an |z − w|n+1 .

∞∑
n=1

(n+ 2− δ)

1− δ
an |(z − w)|n+1 ≤ 1

by using (14) we obtain

∞∑
n=1

(n+ 2− δ)

1− δ
an |(z − w)|n+1 ≤

∞∑
n=1

Cs
b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

2 (C −B) (1− λ)
an ≤ 1.
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So it enough to suppose

|(z − w)|n+1
=

(1− δ)Cs
b (n)n [(1 +B)(n+ 1) + 2(C −B) (1− λ)]

2 (n+ 2− δ) (C −B) (1− λ)
. (23)

For convexity by using the fact that ”f(z) is convex if and only if zf ′(z) is starlike”
and by an easy calculation we conclude the required result. �
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