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ON A FRACTIONAL ORDER STUDY OF MIDDLE EAST

RESPIRATORY SYNDROME CORONA VIRUS (MERS-COV)

E. M. AHMED, H. A. EL-SAKA

Abstract. MERS-CoV is a dangerous epidemic that exists in Saudi-Arabia

and some other countries. Its fatality rate is approximately 35% which is quite

high. So the possibility of its transmission between different areas is important.

Here we study this possibility using fractional order (FO) model.

1. Introduction

MERS-CoV is a dangerous epidemic that exists in Saudi-Arabia and some other

countries. Its fatality rate is approximately 35% which is quite high. Mathematical

models for infectious diseases may be helpful in controlling them. Here we present

a FO model for MERS-CoV in two regions.

Fractional order (FO) models [14-18] are quite useful in epidemic models to

predict the spread of diseases, how to prevent epidemics and so much more. FO

models naturally include both memory and nonlocality effects. These effects are

quite relevant to epidemic spread.

In sec. 2 FO formalism is presented. In sec. 3 the model [22] will be generalized

to FO. The possibility of transmission of the epidemic from an infected to an un-

infected region will be studied as a function of the human movement rate between

the two regions.

2. Fractional order calculus

Definition 1 The fractional integral of order  ∈ + of the function ()   0

is defined by

() =

Z 

0

(− )−1

Γ()
()  (1)

and the fractional derivative of order  ∈ (− 1 ) of ()   0 is defined by


∗ () = −() ∗ =




 (2)

The following properties are some of the main ones of the fractional derivatives and

integrals (see [6]-[8], [10], [12], [20], [21]).
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Let   ∈ + and  ∈ (0 1) Then
(i)  : 

1 → 1 and if () ∈ 1 then   () = + ()

(ii) lim→ 

 () =  () uniformly on [ ],  = 1 2 3 · · · 

where 1 () =
R 

() 

(iii) lim→0  () = () weakly.

(iv) If () is absolutely continuous on [ ] then lim→1
∗ () =

()




(v) If () =  6= 0  is a constant, then 
∗  = 0

The following lemma can be easily proved (see [10]).

Lemma 1 Let  ∈ (0 1) if  ∈ [0  ] then ()|=0 = 0.

2.1. Equilibrium points and their asymptotic stability

Let  ∈ (0 1] and consider the system ([1]-[3], [11], [13])


∗ 1() = 1(1 2 3 4)


∗ 2() = 2(1 2 3 4)


∗ 3() = 3(1 2 3 4)


∗ 4() = 4(1 2 3 4) (3)

with the initial values

1(0) = 1 and 2(0) = 2 and 3(0) = 3 and 4(0) = 4 (4)

To evaluate the equilibrium points, let


∗ () = 0⇒ (


1  


2  


3  


4 ) = 0  = 1 2 3 4

from which we can get the equilibrium points 

1  


2  


3  


4 .

To evaluate the asymptotic stability, let

() = 

 + ()

so the the equilibrium point (

1  


2  


3  


4 ) is locally asymptotically stable if the

eigenvalues of the Jacobian matrix ⎡⎢⎢⎢⎣
1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

⎤⎥⎥⎥⎦
evaluated at the equilibrium point satisfiesis ([2], [3], [13], [19])

(|arg(1)|  2 |arg(2)|  2 |arg(3)|  2 |arg(4)|  2)

The stability region of the fractional-order system with order  is illustrated in

Fig. 1 (in which   refer to the real and imaginary parts of the eigenvalues,

respectively, and  =
√−1). From Fig. 1, it is easy to show that the stability

region of the fractional-order case is greater than the stability region of the integer-

order case.
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Fig. 1: Stability region of the fractional-order system.

3. The fractional order Middle East Respiratory Syndrome Corona
Virus (MERS-CoV) model

We divide the population () into two areas, namely area  and . In each area,

we have two sub-populations, according to their disease status; population who are

susceptible to infection ( and ) and population who have the disease ( and

) [22].

The fractional order Middle East Respiratory Syndrome Corona Virus (MERS-

CoV) model is given by


∗ () =



 + 
− (+ + 1) + 2 +

2

 + 



∗ () =



 + 
− (+ + 2) + 1 +

1

 + 



∗ () = 1 − 

 + 
− (+ 1) + 2 +   − 2

 + 



∗() = 2 − 

 + 
− (+ 2) + 1 +   − 1

 + 
 (5)

where 0   ≤ 1 The variable domain of the model is
Ω = {(   ) ∈ 4 :     ≥ 0}

and all the parameters 1 2     1 2 and  are positive [22].
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Parameter Description

1 Number of newly recruited to the susceptible  population

2 Number of newly recruited to the susceptible  population

 Natural death rate for susceptible individuals

 MERS-CoV death rate of human population

 Recovery rate from MERS-CoV

 Transmission rate within an area

1 Movement rate of human population from area  leave to area 

2 Movement rate of human population from area  leave to area 

 Transmission rate in different area

Table 1. Parameters used in FO model (5) and their description.

To evaluate the equilibrium points, let


∗  = 0


∗  = 0


∗ = 0


∗ = 0

then

(       ) = (0 0
22 + 1(+ 2)

(1 + 2 + )

11 + 2(+ 1)

(1 + 2 + )
) (∗ 

∗
  

∗
 

∗
)

are the equilibrium points.

For a disease-free equilibrium point

(       ) = (0 0
22 + 1(+ 2)

(1 + 2 + )

11 + 2(+ 1)

(1 + 2 + )
)

we find that its eigenvalues are

1 = −  0

2 = −(+ 1 + 2)  0

34 = (2 − 2− 2− 1 − 2 ±√)2

 = 21 + 2(1 + 4 + 2
2)12 + 22  0

Hence a disease-free equilibrium point is locally asymptotically stable if 34  0, if

  + +
1 + 2 −√

2
 (6)

A sufficient condition for the local asymptotic stability of a unique endemic

equilibrium point (∗ 
∗
  

∗
 

∗
) is

|arg(1)|  2 |arg(2)|  2 |arg(3)|  2 |arg(4)|  2 (7)

3.1. Numerical methods and results

An Adams-type predictor-corrector method has been introduced and investi-

gated further in ([1]-[3], [4], [5], [9]). In this paper we use an Adams-type predictor-

corrector method for the numerical solution of fractional integral equations.
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The key to the derivation of the method is to replace the original problem (5)

by an equivalent fractional integral equations

() = (0) + 
∙


 + 
− (+ + 1) + 2 +

2

 + 

¸


() = (0) + 
∙


 + 
− (+ + 2) + 1 +

1

 + 

¸
 (8)

() = (0) + 
∙
1 − 

 + 
− (+ 1) + 2 +   − 2

 + 

¸


() = (0) + 
∙
2 − 

 + 
− (+ 2) + 1 +   − 1

 + 

¸


and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.

The approximate solutions displayed in Figs. 2-7 for 1 = 4326 2 = 13461

 = 001  = 005  = 01  = 01  = 10 2 = 0  0   ≤ 1 and different

1(0001 001 01 06). we take (0) = 100 (0) = 0 (0) = 500 (0) = 500

and found that a disease-free equilibrium point is locally asymptotically stable. Yet

there are transient regions where there is transmission for the disease may occur

despite eventually going to a disease-free equilibrium point.

Attractive example to our study has been given in [23].

Fig. 2.  = 10
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Fig. 3.  = 10

Fig. 4.  = 095
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Fig. 5.  = 095

Fig. 6.  = 09
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Fig. 7.  = 09
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