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A SURVEY ON EXISTENCE RESULTS OF SOME

DIFFERENTIAL AND INTEGRAL EQUATIONS IN ABSTRACT

SPACES

H. H. G. HASHEM AND Y. KHOUNI

Abstract. The study for weak solutions of the Cauchy differential equation

in reflexive Banach spaces was initiated by, among others, Szep [47], Chow and
Schur [10]. However, if E is nonreflexive Banach space the situation is quite
different.
Here, a review of Cauchy problems in nonreflexive Banach spaces will be given

in this survey paper.

1. Introduction

In recent years the study of ordinary differential equations in a Banach space
has been developed extensively. However almost all of the work was done using the
strong topology see for example, Deimling [21], Szulfa [48].

The study of first order ordinary differential equations in Banach spaces (reflexive
or not) equipped with the weak topology was initiated in the 1950s. Let E be a
Banach space and let f(., .) : [a, b]×E → E be continuous. It is well known that if
E is finite dimensional, then for each (t0, x0) ∈ [a, b)×E, there exists a continuous
differentiable function x(.) which is a solution of the Cauchy problem

x′(t) = f(t, x(t)), x(t0) = x0 (1)

on some open interval which contains t0. In 1950, Dieudonné [24] showed that
when E = c0 (the space of all real-valued sequences x = (xn) with xn →
0, ||x||c0 = supn|xn|) the Cauchy problem (1) has no solutions for some continuous
function f(., .). Szep [47] first established the existence of weak solutions of (1),
i.e. weakly differential functions x for which satisfies (1) with its weak derivative if
f(., .) : [a, b]× E → E is weakly continuous and E is a reflexive Banach space.

Definition 1. [6] By a solution of (1) they meant a strongly continuous, once
weakly differentiable function x : [t0, t0 + a] → E satisfying (1) in [t0, t0 + a],
with x′ denoting the weak derivative.
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In 1971 Chow and Schur [10] found that, existence result may be obtained where
E is separable and reflexive and f(., .) is a weakly continuous function with bounded
range. Kato in [33] showed that if f(., .) : [a, b] × BE [x0, r] → E is weakly con-
tinuous, then all that is needed to assure the existence of solutions to (1) is the
relatively weak compactness of f([a, b]×BE [x0, r]). Pianigiani [41] showed that in
every nonreflexive retractive Banach space there exists a weakly continuous func-
tion f(., .) such that (1) does not have a weak solution, and Perri [40] showed that
this property is true in every nonreflexive Banach space.
The notion of the measure of noncompactness was introduced by Kuratowski [34]
in 1930. Ambrosetti [1] used the Kuratowski noncompactness measure and Darbo’s
fixed point theorem to prove an existence result for (1) in infinite dimensional Ba-
nach spaces.
The measure of weak noncompactness was introduced by De Blasi [20], and it was
used by Cramer et al. [12] to obtain an existence result for weak solutions of (1) in
nonreflexive Banach spaces. Using the measure of weak noncompactness, Cichoń
[14], Cichoń and Kubiaczyk [16], Dutkiewicz and Szulfa [27], O’Regan [39], [38]
improved and generalized (for more general notions of solutions) previous results
in the literature. For a review of this topic we refer the reader to Cichoń [15],
Deimling [21], Hashem [32] and Teixeira [51].
Ordinary differential equations in reflexive Banach spaces in the weak topology was
examined by Szep [47], Kato [33], Salem et al.[49] and [44]. Also, to study the
elliptic functional equations in nonreflexive Banach spaces see Browder [5].

Here, A similar review of Cauchy problems in nonreflexive Banach spaces will be
given in this survey paper.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this survey paper.
First, De Blasi [20] defined the weak measure of noncompactness by that play in
important role in the existence of weak solution of ordinary differential equations,
and it is defined by

β(X) = inf{t > 0; ∃Y ∈ Pwk(E) such that X ⊂ Y + tB1}
for any bounded subset X ⊂ E, where Pwk(E) denoted the family of all weakly
compact subsets of E.

Lemma 1. [7]Let A, B be bounded subsets of E and {xn}, {yn} be bounded se-
quences in E. Then

(1) A ⊆ B then β(A) ≤ β(B),
(2) β(A) = βAw where Aw denotes the weak closure of A,
(3) β(A) = 0 if and only if Aw is weakly compact,
(4) β(A

∪
B) = max{β(A), β(B)}

(5) β(A) = β(Co(A)),
(6) β(A+B) ≤ β(A) + β(B),
(7) β({xn})− β({yn}) ≤ β({xn − yn}),
(8) β(x+A) = β(A) where x ∈ E,
(9) β(tA) = tβ(A), t ≥ 0,
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(10) β(A) ≤ ∂(A) (the diameter of A).

Theorem 1. [26](Eberlein Šmulian) Let A be a subset of a Banach space E. Then
the following statements are equivalent

(i) A is weakly sequentially compact,
(ii) Every infinite subset of A has a weak limit point in E,
(iii) The closure of A in the weak topology is weakly compact.

Definition 2. [2] A nondecreasing function g(t, u) : I×R+ → R+ is called Kamke
function if it satisfies the following conditions

(i) g(t, u) is a Carathéodry function, i.e. measurable with respect to t and
continuous with respect to u.

(ii) there exist an integrable function M(t) such that g(t, u) ≤ M(t).
(iii) for all t ∈ I; g(t, 0) = 0.
(iv) u(t) = 0 is the only absolutely continuous function which satisfies u′ ≤

g(t, u(t)) a.e. on I and such that u(0) = 0.
The condition (iv) can be replaced by the following condition.
(iv′)u(t) = 0 is the unique solution of the integral equation u(t) ≤∫ t

0
g(t, u(s))ds on I with u(0) = 0.

Definition 3. (Pettis [43]). Let F : [a, b] → E and A ⊂ [a, b]. The function
f : A → E is a pseudo-derivative of F on A if for each ϕ in E∗ the real-valued
function ϕF is differentiable almost everywhere on A and (ϕF )′ = ϕf almost
everywhere on A.

Clearly, if F is weakly differentiable, then it is also pseudo-differentiable, but the
converse implication is not true.

Definition 4. (Pettis [43]). The function f : I → E is Pettis integrable ((P)
integrable for short) if

(i) ∀ϕ∈E∗ϕf is Lebesgue integrable on I,
(ii) ∀A measurableA ⊂ I ∃g ∈ E ∀ϕ∈E∗ϕg = (L)

∫
A

ϕf(s) ds.

Definition 5. [44] Let x : I → E. The (left-sided) fractional Pettis integral (shortly
LS-FPI) of x of order α > 0 is defined by

Iα+x(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s) ds, t > 0.

In the above definition the sign ”
∫
” denotes the Pettis integral, also we define the

right-sided fractional Pettis-integral (shortly RS-FPI)by

Iα−x(t) =

∫ 1

t

(s− t)α−1

Γ(α)
x(s) ds, t < 1.

We will call a function fractionally Pettis integrable provided this integral exists as
an element of E (for arbitrary t < 1).
Here restrict ourselves to the case of left-sided fractional Pettis-integrals (shortly
denote it by Iα ). We will consider fractional Pettis integrability for 0 < α < 1.

Salem and Cichoń [44] observed that such an integral Iα+x(t) =
∫ t

0
(t−s)α−1

Γ(α) x(s) ds is

a convolution of a function h(τ) = τα−1/Γ(α) for τ > 0, h(τ) = 0 for τ ≤ 0, and
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the function (x̃)(t) = x(t) for t ∈ I, where (x̃)(t) = 0 outside the interval I.
We start with an obvious observation that for ϕ ∈ E∗

ϕ(Iα+x(t)) =

∫ t

0

(t− s)α−1

Γ(α)
ϕx(s) ds. (2)

As a consequence of some properties of a convolution for the Pettis integral ([23],
Proposition 9), for arbitrary α, we have the following (see [44]).

Theorem 2. If x : I → E is Pettis integrable, then
(a) Iα+x is defined almost a.e. on I,
(b) x is fractionally Pettis integrable on I,
(c) If x is Pettis integrable and strongly measurable, then

Iα+x : I → E is bounded, weakly continuous and

sup
∥ϕ∥≤1

∫ 1

0
ϕIα+x(t) dt ≤ sup

∥ϕ∥≤1

∫ 1

0
ϕx(t) dt. ∥ h ∥1.

By Eω we will denote the space E equipped with its weak topology.

Lemma 2. [44] For any α > 0 the operator Iα± takes C[I, Eω] into C[I, Eω] and is
well defined.

For the properties of the fractional Pettis-integral in Banach spaces (see [49],
[44] and [3]). Now, we give the definition of the weak derivative of fractional order.

Definition 6. Let x : I → E be a weakly differentiable function and x′ is weakly
continuous, then the weak derivative of x of order β ∈ (0, 1] by

Dβx(t) = I1−β
+ Dx(t),

where D the weakly differential operator.

Recall that a function h : E → E is said to be weakly sequentially continuous
if h takes each weakly convergent sequence in E to weakly convergent sequence in E.
In reflexive Banach space, both Pettis-integrable and weakly continuous functions
are weakly measurable (see [25], [28], [29] and [31]). Moreover, in a reflexive Banach
space a weakly measurable function x(.) from I to E is Pettis integrable on I if
and only if ϕ(x(.)) is Lebesgue-integrable on I, for every ϕ ∈ E∗ (see [25], [28] and
[31]).

3. Existence results of Cauchy problems in abstract spaces

Now we state some existence theorems of the weak solutions of differential equa-
tions in nonreflexive Banach spaces.

Let E be nonreflexive Banach space with norm ∥ . ∥ with its dual E∗, and we
will denote by Eω = (E,ω) = (E, σ(E,E∗)) the space E with its weak topology.
Let L1(I) be the space of Lebesgue integrable functions on the interval I = [0, 1].
Denote by C[I, Eω] the Banach space of weakly continuous functions from I to Eω en-
dowed with the topology of weak uniform convergence.

In 1978, E. Cramer, V. Lakshmikantham and A. R. Mitchell [12], discussed the
abstract Cauchy problem (1) where E is nonreflexive Banach space,
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(H1):f : [t0, t0 + a]×E → E is weakly weakly continuous on R0 and ∥f(t, x)∥ ≤ M
on R0 where R0 = {(t, x); t0 ≤ t ≤ t0 + a, ∥x − x0∥ ≤ b} and they proved an
existence theorem under the following condition (weak compactness condition)

β(f(I ×A)) ≤ g(β(A))

where I = [t0, t0 + α], A ⊂ E and bounded and g ∈ C(ℜ+,ℜ+), and assume that
u(t) = 0 is the unique solution of u′ = g(u), u(t0) = 0 on [t0, t0 + α] where
α = min(a, b

M ).
The proof is based on the following:

Lemma 3. Let the assumption (H1) be satisfied and let {ϵn} be given such that
ϵn > and ϵn → 0 as n → ∞ be given. Then there exists a sequence of approximate
solutions {xn(t)} satisfying

(i) xn(t0) = x0;
(ii) is strongly equicontinuous and uniformly bounded on [t0, t0 + α]
(iii) x′

n(t) = f(t, xn(t− ϵn)), t ∈ [t0, t0 + α], where α = min(a, b
M ).

Lemma 4. Let the assumption (H1) be satisfied. Suppose that {xn(t)} are con-
structed as in Lemma 31 and converge weakly to x(t) on [t0, t0 + α]. Then x(t) is
a solution of the Cauchy problem.

Theorem 3. Let F be a weakly equicontinuous family of functions from [t0, t0+α] ⊂
ℜ to E. Let {xn} be sequence in F such that for each t ∈ [t0, t0 + α], {xn(t)} is
weakly pre-compact. Then there exists a subsequence {xnk} which converges weakly
uniformly on [t0, t0 + α] to a weakly continuous function x(t).

The proof of this theorem was given in three steps, first a sequence of approxi-
mate solutions was constructed , second it was shown that the sequence converges
(in the weak sense), third, it was proved that the limit function is a solution. E.
Cramer, V. Lakshmikantham and A. R. Mitchell [12] applied Theorem 3 and The-
orem 1.

And A.R. Mitchell and C.K.L. Smith [37] established the existence theorem of
the abstract Cauchy problem (1) under the following assumptions:

(i) f is weakly-weakly continuous on R0,
(ii) ∥f(t, x)∥ ≤ M , for every (t, x) ∈ R0,
(iii) there exists k ≥ 0 such that for any H ⊂ SL(x0),

β(f(I ×H)) ≤ kβ(H),

ak > 1 and Ma ≤ L.

Then the abstract Cauchy problem (1) has a weakly solution,

where R0 = I×SL(x0) such that SL(x0) = {x ∈ E, ∥x−x0∥ ≤ L}, E is Banach
space.
The proof of this theorem is based into the following fixed point theorem.

Theorem 4. Let C ⊂ E be nonvoid, closed, convex and bounded if F : C → C is
weakly continuous and what it means β− condensing, then F has a fixed point.

To apply this theorem, C is defined by

C = LipM (I, E) = {x(.) ∈ C(I, E), x(.) is M − Lipschitz }
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(this set is nonvoid, closed, bounded and convex) and the operator T is defined by

(Tx)(t) = x0 +

∫ t

t0

f(s, x(x))ds

Also, the operator T satisfied the conditions of Theorem 4.

In 1980, Moses A. Boudourides [6] proved a local existence of solution by as-
suming f to be a weakly continuous and what it means β-Lipschitzian where β
is a measure of weak noncompactness in the weak topology. Of course E is still a
nonreflexive Banach space.

Definition 7. [6] By a solution of (1) they meant a strongly continuous, once
weakly differentiable function x : [t0, t0 + a] → E satisfying (1) in [t0, t0 + a],
with x′ denoting the weak derivative.

Theorem 5. [6] Let f : I ×D → E be weakly continuous, (strongly) bounded with
M = sup{∥f(t, x)∥; (t, x) ∈ I ×D} and β-Lipschitzian ( that is, there exists k ≥ 0
such that

β(f(I ×B)) ≤ kβ(B), B ⊂ D.

Then the Cauchy problem (1) has a weak solution on J = [0, h], where
h ≤ min(a, b

M ), hk < 1, I = [0, a] and

D = {x ∈ E; ∥x− x0∥ ≤ b}

By a solution Boudourides [6] meant a strongly continuous, once weakly differ-
entiable, but the proof of this theorem has a mistake. Specifically, when the author
interprets the notion of weak uniform continuity, he claims that the corresponding
inequality holds for all elements of the dual space simultaneously ( see [6] page 460),
which is not true.(for more detail see E Cramer) [12].

In 1982, I. Kubiaczyk, S. Szulfa [36] discussed the Cauchy problem (1) which
is equivalent to the integral equation

x(t) = x0 +

∫ t

0

f(s, x(s))ds, t ∈ I = [0, a]

where
∫

denotes the Pettis integral. Kubiaczyk, Szulfa [36] proved, under con-
ditions similar to that imposed by [12], that the set of all weak solutions defined
on [0, 1] is nonempty, compact and connected in Cω([0, 1], E) (the set of all
weakly continuous function from [0, 1] into a Banach space E endowed with the
topology of uniform weak convergence) and Kubiczyk and Szulfa conditions were
given in terms of the Kamke function.

Theorem 6. Let f : I × B → E be weakly weakly continuous and ∥f(t, x)∥ ≤ M
on I × B, moreover assume that Ew the space E, is sequentially weakly complete,
and

β(f(J ×X)) ≤ h(β(X)), ∀X ⊂ B,

the the set S of all weak solutions of the Cauchy problem (1) defined on J is
nonempty, compact and connected in Cw(J,E),
where B = {x ∈ E; ∥x−x0∥ ≤ b}, J = [0, d], d = min(a, b

M ) and h is nonnegative
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and nondecreasing real-valued function on ℜ+ and u(t) = 0 is the unique solution
of the integral equation

z(t) =

∫ t

0

h(z(s))ds, t ∈ J.

In the proof of this theorem the measure of weak noncompactness was used. For
any n ∈ N we choose un ∈ S 1

n
and let H = {un; n ∈ N}, where

Sn = {u : J → E; u(0) = x0, ∥u(t)− u(s)∥ ≤ M |t− s| for t, s ∈ J

and sup
t∈J

∥u(t)− x0 −
∫ t

0

f(s, u(s))ds∥ < n}

and it is showed that β(H(t)) = 0 for each t ∈ J , consequentlyH is relatively weakly
compact, therefore the sequence un has a limit point u, since lim(un −F (un)) = 0

and F is continuous, then u = F (u) i.e. u ∈ S, where F (u)(t) = x0+
∫ t

0
f(s, u(s))ds.

In 1986. Papageorgiou [42] discussed the Cauchy problem (1) in nonreflexive
Banach space X and for f : T ×X → X a weakly continuous vector field. Using a
compactness hypothesis involving a measure of weak noncompactness and he prove
an existence result that generalizes earlier theorem by Chow-Shur, Kato [10, 33]
and Cramer-Lakshmikantham-Mitchell [12].

Theorem 7. [42] If f : T ×X → X is a vector field such that

(1) f(., .) is continuous from T ×Xw into Xw (that is f(., .) is weakly-weakly
continuous),

(2) for all (t, x) ∈ T ×X, ∥f(t, x)∥ ≤ N ,
(3) for all A ⊂ X nonempty and bounded we have

lim
r↓0

β(f(Tt,r ×A)) ≤ w(t, β(A)).

The problem (1) admits a solution. Here, by a solution we mean a strongly contin-
uous, once weakly differentiable.

The proof is based into the following.
Firstly he considered the nonlinear integral operator ϕ : LipN → LipN where
LipN = {x(.) ∈ C(T,X); x(.) is N − Lipschitz}, defined by

(ϕx)(t) = x0 +

∫ t

0

f(s, x(s))ds,

and he proved that is weakly-weakly sequentially continuous, also he considered the
Caratheodory approximations

xn(t) =

{
x0 if 0 ≤ t ≤ 1

n ;

x0 +
∫ t− 1

n

0
f(s, xn(s))ds if 1

n ≤ t ≤ b.

and proved that the weak closure of K = {xn(.)}n is weakly compact, and us-
ing the Eberlein-Smulian theorem and he proved that ∥x − ϕx∥∞ = 0 i.e, x(t) =

x0 +
∫ t

0
f(s, x(x))ds.

The result by Cramer-Lakshmikantham-Mitchell is obtained as corollary when
he take w(t, x) = w(x) = g(x) i.e, w is a time independent Kamke function.
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Corollary 1. [12] Let the function f : [0, a]× E → E be a weak continuous and
||f(t, x)|| ≤ M for all t, x. Assume further that, for all bounded set A of E,

ω(f(I ×A)) ≤ g(ω(A)),

where g is Kamke function. Then (1) admits a solution in t ∈ [0, α].

Also we notice that, if E is reflexive, by compactness, every bounded set is
relatively weakly compact, and hence Szep and Chow-Shur results can be deduced.

Corollary 2. [47] Let the function f : [0, a] × E → E be a weakly-weakly con-
tinuous and ||f(t, x)|| ≤ M for all t, x. Then (1) admits a weak solution on
[0, α].

Also, if E is a Banach space and f is a compact function, then Kato result
can be deduced.

Corollary 3. [33]. Let the function f : [0, a] × E → E be a weakly-weakly
continuous and ||f(t, x)||k ≤ M for all t, x. Assume further that f(t, x) is a
compact function. Then (1) admits a weak solution in t ∈ [0, α].

Counterexamples are given in c0 by Dieudonné [24] as well as that given in l2
by Yorke [52] show that, in infinite-dimensional spaces, Peano’s existence theorem
need not necessarily be true. A natural question then is that of asking whether there
could exist infinite dimensional Banach spaces on which Peano’s theorem holds, or
otherwise, whether the truth of Peano’s theorem is a characterization of the finite
dimensionality. Cellina in [13] offered only a partial answer to this question. He
proved that there exist no nonreflexive spaces on which Peano’s theorem holds.

Theorem 8. [13] If E is nonreflexive Banach space. Then there exists a contin-
uous function f : [0, a] × E → E such that the Cauchy problem (1) (x(0) = 0)
admits no solution on any nonempty interval I containing 0.

In 1999. O’Regan [38], give the sufficient conditions of the existence results for
the operator equation

x(t) = Fx(t) on [0, T ] (3)

and the proof is based into the following fixed point theorem.

Theorem 9. Let Q be a nonempty, bounded, convex, closed set in a Banach space
E. Assume F : Q → Q is weakly sequentially continuous and α β−contractive
(here 0 ≤ α < 1). Then F has at least one fixed point in Q.

And he gave two existence theorems for the operator equation (3).

Theorem 10. Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equicontinuous subset of C([0, T ], E), suppose that F : Q → Q is wk-
sequentially continuous and there exists α, 0 ≤ α < 1 with β(F (X)) ≤ αβ(X) for
all subsets X ⊂ Q. Then the operator equation (3) has a solution in Q.

Theorem 11. Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equi-continuous subset of C([0, T ], E), suppose that F : Q → Q is wk-
sequentially continuous and assume

FQ(t) is weakly relatively compact in E for each t ∈ [0, T ]

holds. Then (3) has a solution in Q.
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Also, he discussed the existence of weak solutions of a particular case of (3),
namely

y(t) = Fy(t) = x0 +

∫ t

0

f(s, y(s))ds, for t ∈ [0, T ]

(which equivalent to Cauchy problem y′(t) = f(t, y(t)), y(0) = x0 on [0, T ]).
Under the assumptions

(C1) for each t ∈ [0, T ], ft = f(t, .) is weakly sequentially continuous,
(C2) for each continuous function y : [0, T ] → E, f(., y(.)) is Pettis integralable

for t ∈ [0, T ],
(C3) for any r > 0, there exists hr ∈ L1 with |f(t, y)| ≤ hr(t) for a.e.t ∈ [0, T ]

and all y ∈ E with ∥y∥ ≤ r,
(C4) FQ(t) is weakly relatively compact in E for each t ∈ [0, T ], where Q is

nonempty, bounded, closed, convex and equi-continuous subset of C([0, T ], E).

Remark: To prove the existence theorem of weak solutions of the Cauchy prob-
lem

x′(t) = f(t, x(t)), x(0) = x0 on [0, T ]

which is equivalent to integral equation

x(t) = Fx(t) = x0 +

∫ t

0

f(s, x(s))ds, t ∈ [0, T ]

it sufficient to pose the conditions over f that guaranties that the Pettis integral
is well-define and construction subset of C([0, T ], E) which is nonempty, bounded,
closed, convex and equi-continuous. Moreover, F is ws-sequentially continuous and
FQ(t) is relatively weakly compact in E for each t ∈ [0, T ].

In 2001, J. Banaś , M. Lecko[8] establish sufficient conditions for the solvabil-
ity of infinite systems of ordinary differential equations in some Banach sequence
spaces, They adopt the technique of measures of noncompactness to the theory of
infinite systems of differential equations. Particularly, they present a few existence
results for infinite systems of differential equations formulated with the help of con-
venient and handy conditions..The results presented in the paper create mainly the
concrete realizations of sufficient conditions for the solvability of ordinary differen-
tial equations in Banach spaces formulated with help of the technique of measures
of noncompactness.
The results of this paper extend several ones obtained up to now and create real-
izations of existence results obtained for ordinary differential equations in Banach
spaces with the help of measures of noncompactness.

In 2005, Cichoń[17] proved some existence theorems for the Cauchy problem (1)
on I = [0, α] using different types of integrals and its properties (he recalled some
necessary definitions of integrals and presented some examples of integrable func-
tions under different senses). The requirements on the function f are depended
on types of solutions, and as possible as, close to necessary conditions. Also, he
presented a brief survey of classes of solutions and he gave some comparison results
for them.

We are forced to adjust the definition of solutions to possible assumptions on f.
We propose to take two steps: find an appropriate solution for hypotheses on f
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and then thanks to some (possibly) additional assumptions ensure that founded
solution is from a ”better” class (see the last section of this paper [17]).

For each solution problem (1) is equivalent to integral problem

x(t) = x0 +

∫ t

0

f(s, x(s)) ds, t ∈ I (4)

with the integral depending on the type of solution, we have the following theorem:

Theorem 12. [17] Each solution x of problem (1) is equivalent to the solution y
of the integral equation (4) in the following cases:

(a) x-classical solution: the Riemann integral,
(b) x-weak solution: the weak Riemann integral,
(c ) x-Carathéodory solution: the Bochner (Lebesgue) integral,
(d) x-pseudo-solution: the Pettis integral,
(e) x-K-solution: the HenstockKurzweil integral,
(f) x-pseudo-K-solution: the HenstockKurzweilPettis integral,
(g) x-Denjoy-solution: the Denjoy integral,
(h) x-pseudo-D-solution: the DenjoyPettis integral.

Note that, the definitions of these types of integrals are recalled and some selected
implications and examples for different classes of integrals are presented in [17].
As a consequence of the above theorem the following theorem can be obtained:

Theorem 13. [17] Consider the following classes of solutions for problem (3):

(a) classical solutions,
(b) Carathéodory solutions,
(c) weak solutions,
(d) pseudo-solutions,
(e) Kurzweil solutions,
(f) pseudo-K-solutions,
(g) Denjoy solutions,
(h) pseudo-D-solutions.

Then (a) ⊂ (c) ⊂ (b) ⊂ (d) ⊂ (f) ⊂ (h), (b) ⊂ (e) ⊂ (f) ⊂ (h)and(b) ⊂ (e) ⊂
(g) ⊂ (h). Moreover, all these inclusions are proper.

The following lemma explained how different kind of assumptions is covered by
”superpositional” ones.

Lemma 5. [17] Assume that x is absolutely continuous and f : I × E → E.
Thus f(, x()) is Pettis-integrable if at least one of the following cases holds:

(a) f satisfies Carathéodory conditions,
(b) f is weakly-weakly continuous and E is a weakly sequentially complete

space,
(c) f(., x) is weakly measurable, f(t, .) is weakly-weakly continuous and E

is a WCG-space (weakly compactly generated space),
(d) f is strongly measurable and there exists a Young function φ such that

limx→∞ φ(x)/x = +∞ and x∗f ∈ Lφ(I),
(e) f is strongly measurable and there exists p > 1 such that x∗f ∈ Lp for

each x∗ ∈ E∗,
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(f) f(., x) is strongly measurable f(t, .) is weaklyweakly sequentially contin-
uous and f is bounded,

(g) f(., x(.)) is strongly measurable, E contains no copy of c0 and f is
bounded.

Now, an existence theorem for pseudo-solutions (see [14]Theorem 1):

Theorem 14. (Cichoń [14], see also Knight [35]). Let us denote by J ∈ I the
interval [0, d], where d = min(α, r/M) and ||f(t, x)|| ≤ M for (t, x) ∈ J×Br.
Assume that f : I ×Br → E satisfies

(a) f(t, .) is weakly-weakly sequentially continuous,
(b) for each Lipschitz-continuous function x : I → E with constant M such

that x(0) = x0 a function f(., x(.)) is Pettis-integrable
(c) ω(f(J ×X)) ≤ h(ω(X)), X ⊂ Br,

where h is a non-decreasing Kamke function. Then there exists at least one pseudo-
solution of the Cauchy problem (1) on J.

Cichoń et al. presented two theorems deal with most general classes of ”pseudo”
solutions. One is announced in [19], the second is new and most general, versions
[17]. Some of these are known”super-positional” assumptions are the only differ-
ence.

He presented a result about the existence of pseudo-D-solutions (see [17], Theo-
rem 22).

4. Existence results of some fractional differential in abstract
spaces

In recent years fractional differential equations in Banach spaces were studied.
The general literature on fractional differential equations in finite or infinite di-
mensional Banach spaces is extensive and different topics on the existence and
qualitative properties of solutions are considered. Only a few papers consider frac-
tional differential equations in reflexive Banach spaces equipped with the weak
topology. Salem and El-Sayed [49] were the first authors to discuss the existence
of weak solutions for fractional differential equation( see also [44] Salem & Cichoń
investigated the existence of a class of solutions for some boundary value problems
of fractional order with integral boundary conditions. The considered problems are
very interesting and important from an application point of view. They include
two, three, multipoint, and nonlocal boundary value problems as special cases.
Salem & Cichoń[44] stress on single and multivalued problems for which the non-
linear term is assumed only to be Pettis integrable and depends on the fractional
derivative of an unknown function. Some investigations on fractional Pettis integra-
bility for functions and multifunctions are also presented. An example illustrating
the main result is given).

In 2015. Ravi P. Agarwal, Vasile Lupulescu, Donal O’Regan, Ghaus ur Rahman
[3] develop fractional calculus for functions with values in a nonreflexive Banach
space equipped with the weak topology. Using the Pettis integral, we introduce
the notions of fractional Pettis integrals and pseudo-fractional derivatives. Then
they present a very general theory for fractional calculus and fractional differential
equations in a nonreflexive Banach spaces equipped with the weak topology and
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establish an existence result for the fractional differential equation
Dα

p y(t) = f(t, y(t)),

y(0) = y0,

where Dα
p is a fractional pseudo-derivative of a weakly absolutely continuous and

pseudo-differentiable function y(.) : T → E, the function f(t, .) : T × E → E is
weakly-weakly sequentially continuous for every t ∈ T and f(., y(.)) is Pettis inte-
grable for every weakly absolutely continuous function y(.) : T → E, T is a bounded
interval of real numbers and E is a nonreflexive Banach space and develop fractional
calculus for functions with values in a nonreflexive Banach space equipped with the
weak topology. Using the Pettis integral, Ravi P. Agarwal et al.. [3] introduce
the notions of fractional Pettis integrals and pseudo-fractional derivatives. Then
we present a very general theory for fractional calculus and fractional differential
equations in a nonreflexive Banach spaces equipped with the weak topology.

By x′
p we will denote a pseudo-derivative of x.

Remark [3]

(a) Clearly, if x(.) : T → E is a function a.e. weakly differentiable on T , then
x(.) is pseudo-differentiable on T and x′

p(.) = x′
w(.) a.e. on T.

(b) A pseudo-derivative x′
p(.) of a pseudo-differentiable function x(.) : T → E

need not be strongly measurable [45]. However, in [46] it was shown that
x′
p(.) is weakly measurable on T .

(c) In general, a pseudo-derivative of a pseudo-differentiable function x(.) :
T → E is not unique. Moreover, two pseudo-derivatives of x(.) need not
be a.e. equal [45]. However, if E has a countable determining set, that
is, a countable set W ∗ ⊂ E∗ such that ||x|| = supx∗∈W∗ |⟨x∗, x⟩| for every
x ∈ E, then any two pseudo-derivative of x(.) are a.e. equal [45].

(d) Even if E∗ is separable and x(.) : T → E is a Lipschitz function, we cannot
guarantee that x′

p(.) exists on T ; in fact, x′
p(.) need not exist on any subset

of T of positive Lebesgue measure [46].

Ravi P. Agarwal et al.. [3] gave the existence theorem under the following as-
sumptions:

(h1) f(t, .) is weakly-weakly sequentially continuous for every t ∈ T ,
(h2) f(., y(.)) is Pettis integrable and ∥f(., y(.))∥ is Lebesgue integrable for every

WAC function y(.) : T → E,
(h3) ∥f(t, y)∥ ≤ M for all (t, y) ∈ T ×Br, where Br = {y ∈ E; ∥y − y0∥ ≤ r},
(h4) for all A ⊆ Br, we have

β(f(T ×A)) ≤ g(β(A)),

where g is a Kamke function.

In the proof the Ravi P. Agarwal et al.. [3] defined the set Br of all weakly
absolutely continuous function (WAC, for short) y(.) : T0 → Br,

where T0 = [0, a], a = min(b, ( rΓ(α+1)
M )

1
α and nonlinear operator Q(.) defined by

(Qy)(t) = y0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds, t ∈ T0.
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and we have the same steps that used in the work of N. S. Papageorgiou [42], and
also they presented the case of ordinary differential equations as a corollary.
They gave sufficient conditions of the existence of weak solutions for differential
equation

x′(t) = f(t, x(t)), x(0) = x0, t ∈ I = [0, T ] (CP1)

where f : I × E → E is function which satisfies some conditions and E is Banach
space.

Theorem 15. Assume that f satisfies the following conditions

(1:) For each x ∈ E, f(., x) is weakly measurable on I,
(2:) For a.e. t ∈ I, ft(.) = f(t, .) is continuous with respect to the weak topology

(i.e, f(t, .) is weakly continuous,
(3:) For any bounded set Ω ⊂ B, we assume that f(I ×Ω) is weakly relatively

compact.

Then (CP1) has a solution.

By a solution we mean a strongly continuous, once weakly differentiable. More-
over: The following steps can summarize their proof:

Defining the Operator F : C → C by

Fx(t) = x0 +

∫ t

0

f(s, x(s))ds (IE)

where C = {x(.) ∈ C(I, E), x(.) is M − Lipschitz} and the integral is a Pettis
integral, we now show that if the assumptions (1:)- (3:) are satisfied then, for any
continuous function y : [0, T ] → E, then

g(t) = f(t, y(t))

is weakly measurable see [4](Lemma1. p. 275) and ∥g(t)∥ ≤ M, M > 0 (g is
contained in a weakly compact subset of E) and hence the Pettis integral well
define.
Now, they show that F is weakly sequentially continuous, to see this:
Let {x.} be a sequence such that xn(.) ⇀ x(.), from Dinculeanu[22](p. 380) we
now that

(C(I, E))⋆ = M(I, E⋆) = {bounded, regular, vector measure from I into E⋆

which are of bounded variation}
thus for all m(.) ∈ M(I, E⋆) we have

(m,xn(.)− x(.)) → 0 as n → ∞.

Let m = x⋆δt, where x⋆ ∈ E⋆, t ∈ I and δt is the Dirac measure concentrated on
t. Then we get

(x⋆, xn(t)− x(t)) → 0 as n → ∞,

and so xn(t) ⇀ x(t) as n → ∞ for all t ∈ I.
Then using the weak continuity of f(t, .) and the Lebesgue dominated convergence
theorem for the Pettis integral see [50] we get that∫ t

0

f(s, xn(s))ds ⇀

∫ t

0

f(s, x(s))ds as n → ∞
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for all t ∈ I. Now for every m(.) ∈ M(I, E⋆) we have that

(m,Fxn − Fx) =

∫
I

[

∫ t

0

(f(s, xn)− f(s, x(s)))ds]dm(t),

using the fact that for all t ∈ I,∫ t

0

f(s, xn(s))ds ⇀

∫ t

0

f(s, x(s))ds as n → ∞,

and by approximating m(.), uniformly on C, by linear combinations of Dirac mea-
sure, we finally get that

(m,Fxn − Fx) → 0 as n → ∞.

hence F is weakly sequentially continuous.

Now, Let H ⊂ C be bounded subset of C. Then

β(F (H)) = sup
t∈I

β(F (H(t))) = sup
t∈I

β(

∫ t

0

f(s, x(s))ds, x ∈ H)

≤ sup
t∈I

{β[(t− 0)cof([0, t]×H([0, t]))]}

≤ sup
t∈I

tβ(f(I ×H(I)))

≤ Tkβ(H(I)) for some k > 0

= Tkβ(H),

choose k > 0 such that Tk < 1 (k exists since f(I ×H) is relatively weakly com-
pact), hence F is β−condensing therefore the operator F has a fixed point which
is solution of (IE) and hence is solution of the problem (CP1).
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