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APPROXIMATE CONTROLLABILITY OF NONLINEAR DELAY

EVOLUTION INTEGRODIFFERENTIAL SYSTEMS

A. YASOTHA, T. NANDHA GOPAL

Abstract. In this paper the approximate controllability of nonlinear evolu-

tion delay integrodifferential systems with preassigned responses is studied.
These controllability results are for nonlinear systems that are not associated
with linear systems and no compactness assumption is imposed.

1. Introduction

Controllability of the nonlinear systems in infinite dimensional spaces has been
extensively studied. Several authors [[1], [5], [8]] have studied the concept of ex-
act controllability for systems represented by nonlinear evolutions equations, in
which the authors have effectively used fixed point technique. From the mathe-
matical point of view, the problems of exact and approximate controllability are
to be distinguished. In infinite-dimensional spaces the concept of exact controlla-
bility is usually too strong and, indeed has limited applicability [17]. Approximate
controllable systems are more prevalent and very often approximate controllabil-
ity is completely adequate in applications [[9], [12]]. Therefore, it is necessary to
study the weaker concept of controllability, namely approximate controllability for
nonlinear integrodifferential systems.

Kartsatos and Mabry [16] introduced a new type of controllability concept for
the following system

x′(t) +A(t)x(t) = B(t)u(t),

where

A(t) : D(A) ⊂ X → X, B(t) : D(B) ⊂ X → X, t ∈ [0, a]

are nonlinear operators with constant domainsD(A), D(B) and where 0 ∈ D(A). In
the same work they also discussed the LS-controllability of the functional evolution
system

x′(t) +A(t, xt)x(t) = u′(t) +B(t)u(t).

Kaplan and Kartsatos [14] have studied the K-controllability of nonlinear evo-
lution systems with preassigned responses, where as Kartsatos and Liang in [15]
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used more general preassigned responses than in [14]. Subalakshmi and Balachan-
dran [23] discussed about the approximate controllability properties of nonlinear
stochastic impulsive integrodifferential and neutral functional stochastic impulsive
integrodifferential equations in Hilbert spaces.

Several authors [[2], [3], [7]] have discussed the approximate controllability of
nonlinear evolution systems with preassigned responses. Recently, Muthukumar
and Balasubramaniam [19] studied the approximate controllability of nonlinear
stochastic evolution time-varying delay systems of the form

d(x(t))−A(t)x(t)dt = f(t, x(t), x(α1(t)), · · · , x(αn(t)), u(t))dt

+g(t, x(t), x(α1(t)), · · · , x(αn(t)), u(t))dw(t),

t ∈ J = [t0, b], x(t) = x0, t ≤ t0

with preassigned responses. The necessary conditions for controllability results
of nonlinear systems are not associated with linear systems and no compactness
assumptions are imposed. Rykaczewski [22] studied the problem of approximate
controllability of semilinear differential inclusion by using resolvent of controllability
Grammian operator and fixed point theorem, assuming that semigroup generated
by the linear part of the inclusion is compact and under the assumption that the
corresponding linear system is approximately controllable.

The outline of this paper is as follows: In Section 2, the nonlinear evolution delay
integrodifferential systems are described and further it contains basic notations,
definitions and some preliminary results. In Section 3, sufficient conditions for
the approximate controllability for the nonlinear evolution delay integrodifferential
systems are discussed with preassigned responses. Approximate Controllability for
the Implicit Delay Systems are discussed in Section 4. Finally, we provide an
example to demonstrate the effectiveness of our method.

2. Preliminaries

The approximate controllability problems for linear and nonlinear systems with
preassigned responses is considered in few literature . In order to fill this gap, this
paper studies the approximate controllability of the following nonlinear integrodif-
ferential equation of the form

x′(t)−A(t)x(t)

= f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
, t ≥ t0,(1)

x(t) = x0, t ≤ t0,

and the more general delay evolution integrodifferential systems

L(x(t), x′(t))−A(t)x(t)

= f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
, t ≥ t0,(2)

x(t) = x0, t ≤ t0,

where A(t) is a linear operator on a Hilbert space H for each t, k : ∆ × H → H
and g : ∆ × H2 → H are nonlinear functions, and f is a nonlinear function from
[t0, T ]×H3 to H, the delays δ1, δ2, δ3 are continuous functions on R, while L is an
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operator from H2 to H, and ∆ = {(t, s) : t0 ≤ s ≤ t ≤ T}. Motivation for these
kind of equation can be found in [18].

Let H be a separable Hilbert space with norm ∥ · ∥ and inner product ≺ ·, · ≻,
I = [t0, T ], Iδ = I ∪R(δ), and R(δ) the range of δ = max{δ1(t), δ2(t), δ3(t)}. Let
f : I ×H ×H→H be a nonlinear operators, measurable in the first terms and con-
tinuous in the last two terms; the delays δi : I→R are bounded continuous function;
D = D(A(t)), the domain of A(t), is independent of t and dense in H; x0 ∈ D and
A(t) : D ⊂ H → H is linear. Denote the space of all continuous functions x from I
to H with the usual maximum norm ∥ · ∥c by C(I,H), and the space of all square-
integrable functions with the usual L2 norm ∥ · ∥L and inner product ≺ ·, · ≻L

by L2(I,H). The closure and boundary of any subset Ω are denoted by Ω and
∂Ω, respectively. For system (1) assume that A(t) generates an evolution system
{E(t, s)} [21], and for system (2) assume only that A(·)x ∈ L2(I,H) for each x ∈ H.

Definition 2.1.

: (i) For a given u ∈ L2(I,H), a function xu ∈ C(Iδ,H) is said to be a solution
of (1) (or (2)) on I if it satisfies (1) (or (2)) almost everywhere on I.

: (ii) xu ∈ C(Iδ,H) is said to be a mild solution of (1) on I if

xu(t) = E(t, t0)x(t0) +

∫ t

t0

E(t, s)f
(
s, xu(δ1(s)),

∫ s

t0

g(s, τ, xu(δ2(τ)),∫ τ

t0

k(τ, θ, xu(δ3(θ)))dθ)dτ, u(t)
)
ds, (3)

xu(t) = x0, t ∈ Iδ, t ≤ t0

A mild solution of (2) is defined similarly.

Definition 2.2. The mapping u → S(u) defined by S(u) = {x ∈ C(Iδ, H) : x is a
mild solution of (1) or (2) for some u ∈ L2(I,H)} is said to be the solution mapping
of (1) (or (2)).

Note that S is generally a set-valued mapping and S(u) may be empty for some
u. Several authors [[6], [10], [11], [13], [20]] have assumed S to be a well-defined
continuous single-valued operator.

Definition 2.3.

: (i) The set RT (x0) = {x(T ) : x ∈ S(u) for u ∈ L2(I,H)} is called the
reachable set of (1) from the initial state x0.

: (ii) If RT (x0) = H, then system (1) is called exactly controllable.

: (iii) If RT (x0) = H, then system (1) is called approximately controllable.

Definition 2.4. An operator N : D(N) ⊂ H → H is called strongly monotone (or
monotone) if there exists β > 0 (or β = 0) such that

≺ Nx−Ny, x− y ≻ ≥ ∥x− y∥2, for every x, y ∈ D(N).

The operator N is called hemicontinuous if x ∈ D(N), h ∈ H, t > 0, x + th ∈
D(N), and if t→ 0 ⇒ N(x+ th)

w→ N(x); here
w→ means weak convergence in H.
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Let X be a Banach space and let Ω ⊂ X be a subset. The Hausdorff measure of
noncompactness of Ω is defined by

ψ(Ω) = inf{ϵ > 0 : Ω has a finite ϵ-net}.

Lemma 2.1.[4] Suppose that Ω is a bounded and equicontinuous subset of C(I,H),
then

ψ(Ω) = sup
t∈I

ψ(Ω(t)).

Lemma 2.2.[4] Let X be a Banach space and Ω ⊂ X be an open and bounded
subset with 0 ∈ Ω. Suppose that f : Ω → X is continuous and there exists k ∈ [0, 1)
such that

ψ(f(Ω)) ≤ kψ(Ω) for all bounded subsets Ω ⊂ X.

If x ̸= λFx for λ ∈ (0, 1) and x ∈ ∂Ω, then f admits fixed points in Ω.

Lemma 2.3.[9] Let 2H be the set of all subsets of H. Suppose that the multi-
function h : [a, b] → 2H is measurable and integrably bounded that is, sup{∥y∥ :
y ∈ h(t) ≤ β(t)}, with β ∈ L1([a, b],H). If ψ(·) is the Hausdorff measure of
noncompactness on H, then ψ(h(·)) ∈ L1([a, b],H) and

ψ(

∫
D

h(s)ds) ≤
∫
D

ψ(h(s))ds

for each measurable subset D ⊂ [a, b].

Lemma 2.4.[10] Suppose that N : H → H is hemicontinuous and monotone. If
there exists r > 0 such that

≺ Nx, x ≻ ≥ 0 for all x ∈ ∂Br, with Br = {x ∈ H : ∥x∥ ≤ r},

then Nx = 0 has solutions in Br.

3. Controllability of Integrodifferential Systems

In this section it is assumed that t→ f(t, x, y, u) is almost everywhere continuous
and ψ is the Hausdorff measure of noncompactness on H. Further, the following
conditions are assumed to hold for f and A:

: (C1) ψ(f(t,Λ1,Λ2,Ω)) ≤ h1(t)ψ(Ω), for every t ∈ I, all compact subsets
Λ1,Λ2 ⊂ H, and bounded subsets Ω ⊂ H. Here h1 ∈ L2(I,R) is non-
negative.

: (C2) k : ∆ × H → H is continuous and there exists constants k1, k2 > 0
such that

∥k(t, s, x1)− k(t, s, x2)∥ ≤ k1∥x1 − x2∥ and

k2 = max{∥k(t, s, 0)∥ : (t, s) ∈ ∆}
: (C3) g : ∆×H×H → H is continuous and there exists constants k3, k4 > 0

such that

∥g(t, s, x1, y1)− g(t, s, x2, y2)∥ ≤ k3(∥x1 − x2∥+ ∥y1 − y2∥) and

k4 = max{∥g(t, s, 0,
∫ s

0

k(s, τ, 0)ds)∥ : (t, s) ∈ ∆}
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and there exist continuous functions a, b : ∆ → I such that

∥g(t, s, x(δ2(s)),
∫ s

t0

k(s, τ, x(δ2(τ))dτ))∥ ≤ a(t, s)[∥x(δ2(s))∥+
∫ s

t0

b(s, τ)∥x(δ3(τ))dτ∥]

and α = sup
t0≤t≤T

∫ t

t0

a(t, s)ds

β = sup
t0≤t≤T

∫ t

t0

∫ s

t0

a(t, s)b(s, τ)dτds

: (C4) There exist positive constants ai, i = 1, 2, 3, 4 such that for every
(t, x, y, u) ∈ I ×H3

∥f(t, x, y, u)∥ ≤ a1 + a2∥x∥+ a3∥y∥+ a4∥u∥.
: (C5) For each collection of bounded subset Di ⊂ H, there exists a constant
b1 > 0 and measurable functions b2, b3 ∈ L2(I,R) (each bi may depend on
D) such that

≺ f(t, x, y, u), u ≻ ≥ b1∥u∥2 − b2(t)∥u∥ − b3(t)

for every t ∈ I, u ∈ H,xi ∈ Di, for i = 1, 2, 3.
: (C6) There exists h2 ∈ L2(I,R) such that

∥f(t, x1, y1, u)− f(t, x2, y2, u)∥ ≤ h2(t)
(
∥x1 − x2∥+ ∥y1 − y2∥

)
for every t ∈ I, u, x1, x2, y1, y2 ∈ H.

: (C7) δi ∈ C1(I,R), δi(t) ≤ t, δ′i(t) ≥ ki > 0, for every t ∈ I, i = 1, 2, 3.
: (C8) There exists a uniformly bounded function c(t) such that

≺ −A(t)x, x ≻ ≥ c(t)∥x∥2

for every t ∈ I, x ∈ D.
: (C9) A(·)x ∈ L2(I,H) for every x ∈ D.
: (C10) t → E(t, s) is continuous in the uniform operator topology for each
s ≤ t.

Theorem 3.1. Suppose that the conditions (C1),(C4),(C7) and (C10) are satisfied.
Then, for given functions x ∈ C(Iδ,H), y ∈ C(I,H) and constant n > 0, the integral
equation

u(t) = y(t) +

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds, (4)

admits solutions in C(I,H).

Proof. Since E(t, s) is strongly continuous, it can be assumed that ∥E(t, s)∥ ≤M
for some constant M > 0. Also assume that

M1 =
[ ∫ T

t0

h21(s)ds
] 1

2

.

Let a > 0 be such that
nMM1√

2a
< 1.
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For each u ∈ C(I,H), let

∥u∥a = max
t∈I

∥u(t)∥exp(−at),

(Nu)(t) = y(t) +

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds.

Then ∥ · ∥a is a norm on C(I,H) and is equivalent to ∥ · ∥c. The space C(I,H)
endowed with this new norm is denoted by Ca(I,H). By condition (C4) and the
Lebesgue dominated convergence theorem, it follows that N is continuous from
Ca(I,H) to Ca(I,H).

Denote the Hausdorff measure of noncompactness on Ca(I,H) by ϕ. Then it is
clear that for each Ω ∈ Ca(I,H) and t ∈ I,

ψ(Ω(t)) ≤ ϕ(Ω)exp(at).

Assume that Ω ⊂ Ca(I,H) is a bounded subset. Since

N(Ω)(t) = y(t) + n

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds,

xu(t) = x0, t ∈ Iδi , t ≤ t0,

by the definition of ψ, condition (C1) and Lemma 2.3, it follows that

ψ(N(Ω)(t)) = ψ
(
y(t) + n

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds
)

≤ n

∫ t

t0

ψ
(
E(t, s)f

(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
))
ds

≤ n

∫ t

t0

Mh1(s)ψ(Ω(s))ds

≤ nMM1ϕ(Ω)
(∫ t

t0

exp(2as)ds
) 1

2

≤ nMM1ϕ(Ω)
1√
2a
exp(at),

that is,

ψ
(
N(Ω)(t)

)
≤ n√

2a
MM1ϕ(Ω)exp(at).
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Therefore

ψ
(
exp(−at)N(Ω)(t)

)
= ψ

(
N(Ω)(t)

)
exp(−at)

≤ n√
2a
MM1ϕ(Ω). (5)

From (C4) and (C10) it follows that N(Ω) is bounded and equicontinuous in
C(I,H). Therefore

[N(Ω)]a = {v ∈ C(I,H) : v(t) = u(t)exp(−at), for some u ∈ N(Ω)}

is also bounded and equicontinuous in C(I,H). So, by Lemma 2.1

ψ
(
[N(Ω)]a

)
= sup

t∈I
ψ
(
[N(Ω)]a(t)

)
= sup

t∈I
ψ
(
exp(−at)N(Ω)(t)

)
.

From the definition of ψ and ϕ, it follows that

ψ
(
[N(Ω)]

)
a
= ϕ(N(Ω)).

Since t in (5) is arbitrary,

ϕ(N(Ω)) ≤ n√
2a
MM1ϕ(Ω).

Suppose there exists u ∈ Ca(I,H), λ ∈ [0, 1] such that u = λNu. Then, note
that αi, i = 1, 2, 3 are bounded and so by (C2)-(C4) and (C7)

∥u(t)∥ ≤ ∥y(t)∥+ n

∫ t

t0

∥E(t, s)∥

×∥f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),

∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
∥ds

≤ n∥y(t)∥+ n

∫ t

t0

M
[
a1 + a2∥x(δ1(s))∥

+a3

∫ s

t0

∥g(s, τ, x(δ2(τ)),
∫ s

t0

k(τ, θ, x(δ3(θ)))dθ)∥dτ + a4∥u(s)∥
]
ds

≤ n[∥y∥c +Ma1T +Ma2T∥x∥+Ma3(α+ β)∥x∥] + nMa4

∫ t

t0

∥u(s)∥ds

Here, |Iδ| means the measure of Iδ and ∥x∥αi means the norm in C(Iδ,H).
From Gronwall’s inequality, it follows that

∥u∥a ≤ ∥u∥c
≤ n

[
∥y∥c +Ma1T +Ma2T∥x∥+Ma3(α+ β)∥x∥

]
exp(nMa4T ),

which means that {u ∈ Ca(I,H) : u = λNu, λ ∈ [0, 1]} is bounded. Let

K ≥ sup
{
∥u∥a : u = λNu, λ ∈ [0, 1], u ∈ Ca(I,H)

}
be a given number. Then u ̸= λNu for every λ ∈ [0, 1], u ∈ Ca(I,H) with ∥u∥a =
K. By Lemma 2.2 there exists u ∈ Ca(I,H) satisfying (4). Hence the proof is
completed.
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Remark 3.1. If the condition (C1) is replaced by assuming the compactness
of E(t, s), then Theorem 3.1 is still true. Indeed, in this case the operator K :
C(I,H) → C(I,H) defined by

(Ku)(t) =

∫ t

t0

E(t, s)u(s)ds, u ∈ C(I,H)

is compact. Therefore, the operator N defined in Theorem 3.1 is compact.

Theorem 3.2. If (C1)–(C10) are satisfied, then the system (1) is approximately
controllable.

Proof. Without loss of generality take x0 = 0. Since D = H, it need only be
shown that RT (0) ⊃ D. So, let xT ∈ D and

x(t) =
t− t0
T − t0

xT , t ∈ I,

x(t) = 0, t ∈ Iδ, t ≤ t0.

Then x(T ) = xT and x(t) ∈ D for each t. Consider the approximate equation

x(t)− 1

n
un(t) =

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds, t ∈ I. (6)

By Theorem 3.1, for each integer n equation (6) has a solution un ∈ C(I,H). Since
f is almost everywhere continuous with respect to the first argument, E(t, s) is
strongly continuous and satisfies (C10). By differentiating (6) it follows that

1

T − t0
xT − 1

n
u′n(t) = f

(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

+A(t)
[
x(t)− 1

n
un(t)

]
= f

(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

+
t− t0
T − t0

A(t)xT − 1

n
A(t)un(t).

Let w(t) = t−t0
T−t0

A(t)xT . Then, by (C5) and (C8) it follows that

1

T − t0
xT − 1

n
u′n(t) = f

(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

+ w(t)− 1

n
A(t)un(t).
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Taking inner product with un(t), it follows that

≺ 1

T − t0
xT , un(t) ≻ − ≺ 1

n
u′n(t), un(t) ≻

= ≺ f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
, un(t) ≻

+ ≺ w(t), un(t) ≻ − ≺ 1

n
A(t)un(t), un(t) ≻

≥ b1∥un(t)∥2 − b2(t)∥un(t)∥ − b3(t)+ ≺ w(t), un(t) ≻ +
c(t)

n
∥un(t)∥2, a.e.

Here b1 is a constant and b2, b3 are functions in (C5) related to the bounded subsets,

D1 = {x(δ1(t)) : t ∈ I},

D2 = {
∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ) : t ∈ I}.

By (C8)

c = max
t∈I

|c(t)| <∞.

From the above inequality, we have

b1∥un(t)∥2 ≤ ≺ xT
T − t0

, un(t) ≻ − 1

n
≺ u′n(t), un(t) ≻ +b2∥un(t)∥

+ b3(t) − ≺ w(t), un(t) ≻ −c(t)
n

∥un(t)∥2.

Integrating the above inequality yields∫ T

t0

b1∥un(t)∥2dt ≤
∫ T

t0

≺ xT
T − t0

− w(t), un(t) ≻ dt

− 1

n

∫ T

t0

≺ u′n(t), un(t) ≻ dt+

∫ T

t0

b2(t)∥un(t)∥dt

+

∫ T

t0

b3(t)dt−
∫ T

t0

c(t)

n
∥un(t)∥2dt

and so,

b1∥un∥2L ≤
∥∥∥ xT
T − t0

− w
∥∥∥
L
∥un∥L − 1

2n
∥un(T )∥2

+ ∥b2∥∥un∥L +

∫ T

t0

|b3(t)|dt+
∫ T

t0

|c(t)|
n

∥un(t)∥2dt

≤
[∥xT ∥L
T − t0

+ ∥w∥L + ∥b2∥
]
∥un∥L +

∫ T

t0

|b3(t)|dt+
c

n
∥un∥2L. (7)

This implies that {un} is bounded in L2(I,H). Let N1 = sup ∥un∥L < ∞.
By (C6), the solution map S(u) of (1) is a single-valued continuous operator on
C(I,H). The claim is that {S(un)(s)} is uniformly bounded and equicontinuous.
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In fact, noting that S(un)(t) = 0 for t ≤ t0 and δi(t) ≤ t for every t ∈ I,

∥S(un)(t)∥ ≤
∫ t

t0

∥E(t, s)∥
∥∥∥f(s, S(un)(δ1(s)),∫ s

t0

g(s, τ, S(un)(δ2(τ)),∫ τ

t0

k(τ, θ, S(un)(δ3(θ)))dθ)dτ, un(s)
)∥∥∥ds

≤ M

∫ t

t0

[
a1 + a2∥S(un)(δ1(s))∥

+a3∥
∫ s

t0

g(s, τ, S(un)(δ2(τ)),

∫ τ

t0

k(τ, θ, S(un)(δ3(θ)))dθ)dτ∥

+a4∥un(s)∥
]
ds

≤ M
(
Ta1 +

√
Ta4∥un∥L

)
+M

(
a2 + a3(α+ β)

)∫ t

t0

∥S(un)(s)∥ds.

By Gronwall’s inequality, it follows that

∥S(un)(t)∥ ≤ M
(
Ta1 +

√
Ta4∥un∥L

)
exp

((
a2 + a3(α+ β)

)
MT

)
= N2 <∞.

This shows that {S(un)(t)} is uniformly bounded on I. Therefore, it is uniformly
bounded by N2 on Iδ. Now, let t1, t2 ∈ I with t1 > t2. Then for every n

∥S(un)(t1)− S(un)(t2)∥

≤
∫ t1

t2

∥E(t1, s)∥
∥∥∥f(s, S(un)(δ1(s)),∫ s

t0

g(s, τ, S(un)(δ2(τ)),∫ τ

t0

k(τ, θ, S(un)(δ3(θ)))dθ)dτ, un(s)
)∥∥∥ds

+

∫ t2

t0

∥E(t1, s)− E(t2, s)∥
∥∥∥f(s, S(un)(δ1(s)),∫ s

t0

g(s, τ, S(un)(δ2(τ)),∫ τ

t0

k(τ, θ, S(un)(δ3(θ)))dθ)dτ, un(s)
)∥∥∥ds

≤ M(t1 − t2)
[
a1 + a2N2

]
+Ma3N2[α+ β][t1 − t2] +Ma4N1

√
t1 − t2

+[

∫ t2

t0

∥E(t1, s)− E(t2, s)∥2ds]
1
2

(
a1 + a2N2

)√
T

+a3N2[α+ β][

∫ t2

t0

∥E(t1, s)− E(t2, s)∥2ds]
1
2

√
T

+a4N1[

∫ t2

t0

∥E(t1, s)− E(t2, s)∥2ds]
1
2

√
T
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Because of (C10), the equicontinuity of {S(un)} follows. By (6) and (C6),

∥S(un)(t)− x(t)∥ =
∥∥∥∫ t

t0

E(t, s)
[
f
(
s, S(un)(δ1(s)),

∫ s

t0

g(s, τ, S(un)(δ2(τ)),∫ τ

t0

k(τ, θ, S(un)(δ3(s)))dθ)dτ, un(s)
)

− f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(s)))dθ)dτ, un(s)
)]
ds
∥∥∥

≤ M

∫ t

t0

h2(s)
[1
k
∥S(un)(s)− x(s)∥

+

∫ s

t0

∥g(s, τ, S(un)(δ2(τ)),
∫ τ

t0

k(τ, θ, S(un)(δ3(s)))dθ)dτ

−g(s, τ, x(δ2(τ)),
∫ τ

t0

k(τ, θ, x(δ3(s)))dθ)dτ∥
]
ds+

1

n
∥un(t)∥

≤ 1

n
∥un(t)∥+

M

k

(
1 + k3T (1 + k1T )

)∫ t

t0

h2(s)∥S(un)(s)− x(s)∥ds.

Applying the Gronwall inequality, it follows that

∥S(un)(t)− x(t)∥ ≤ 1

n
∥un(t)∥exp

[M
k

(
1 + k3T (1 + k1T )

)∫ t

t0

h2(s)ds
]

≤ 1

n
∥un(t)∥exp

[M
k

(
1 + k3T (1 + k1T )

)
∥h2∥L

]
.

Therefore,

∥S(un)− x∥L ≤ 1

n
exp

[M
k

(
1 + k3T (1 + k1T )

)
∥h2∥L

]
∥un∥L → 0 as n→ ∞. (8)

This means that S(un) → x in L2. Therefore, there exists a subsequence S(un)(t) →
x(t) a.e. in H. Let tm ∈ I with tm → T be such that S(un)(tm) → x(tm) for each
m. Since {S(un)} is equicontinuous, for each ϵ > 0 there exists m0 such that

∥x(tm0)− xT ∥ =
∥∥∥ tm0 − t0
T − t0

xT − xT

∥∥∥ =
T − tm0

T − t0
∥xT ∥ <

ϵ

3
,

∥S(un)(T )− S(un)(tm0
)∥ < ϵ

3
for all n.

For this m0, equation (8) implies there exists N > 0 such that

∥S(un)(tm0)− x(tm0)∥ <
ϵ

3
for all n ≥ N.

Hence,

∥S(un)(T )− xT ∥ ≤ ∥S(un)(T )− S(un)(tm0)∥+ ∥S(un)(tm0)− x(tm0)∥
+ ∥x(tm0)− xT ∥

< ϵ.

That is, S(un)(T ) → xT and xT ∈ RT (0).
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Thus, xT ∈ D implies that xT ∈ RT (0). Therefore, D ⊂ RT (0). But RT (0) ⊂
D. Combining these two inclusions yields D = RT (0). Thus, the system (1) is
approximately controllable. Hence the proof is completed.
Remark 3.2. The results of Theorem 3.2 remain valid when (C5) is replaced by
the following assumption:

(C5′) There exists a constant c1 > 0 and measurable functions c2, c3 ∈ L2(I,R)
for each bounded subsets D ⊂ H such that for every t ∈ I, u ∈ H,x, y ∈ D,

≺ f(t, x, y, u), u ≻ ≤ −c1∥u∥2 + c2(t)∥u∥+ c3(t).

Theorem 3.3. If (C1)–(C4),(C5′),(C6)–(C10) are satisfied, then the system (1) is
approximately controllable.

Proof. Let x(t) be defined as in the proof of Theorem 3.2. By Theorem 3.1, for
each n there exists un ∈ C(I,H) such that

x(t) +
1

n
un(t) =

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds.

Differentiating this equation yields

1

T − t0
xT +

1

n
u′n(t)

= f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
,

+A(t)

∫ t

t0

E(t, s)f
(
s, x(δ1(s)),

∫ s

t0

g(s, τ, x(δ2(τ)),∫ τ

t0

k(τ, θ, x(δ3(θ)))dθ)dτ, u(t)
)
ds,

= f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

+A(t)
[ t− t0
T − t0

xT +
1

n
un(t)

]
.

Taking the inner product with un(t), produces

≺ xT
T − t0

, un(t) ≻ +
1

n
≺ u′n(t), un(t) ≻

= ≺ f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
, un(t) ≻

+
t− to
T − t0

≺ A(t)xT , un(t) ≻ − 1

n
≺ −A(t)un(t), un(t) ≻

≤ −c1∥un(t)∥2 + c2(t)∥un(t)∥+ c3(t) +
t− t0
T − t0

≺ A(t)xT , un(t) ≻ −c(t)
n

∥un(t)∥2.

By the same method as used to obtain (7), the same inequality is obtained with
bi replaced by ci, i=1,2,3. Therefore ∥un∥L is bounded. The rest of the proof is
similar to that of Theorem 3.2 and hence omitted.
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Theorem 3.4. Suppose that E(t, s) is compact for every t0 ≤ s < t ≤ T , then
conditions (C2),(C5) [or (C5′)] and (C6)–(C9) imply the approximate controllabil-
ity of system (1).

Proof. By Theorem 2.3.2 of [[19]] it follows that (C10) is satisfied. So, by Remark
3.1 the proof can be completed in the same way as in Theorem 3.2.

Remark 3.3. Obviously other preassigned responses can be taken in the above
results to obtain the same conclusions. For example, x(·) can be defined as

x(t) =
(t− t0)

2

(T − t0)2
(xT − x0) + x0.

4. Controllability of Implicit Delay Systems

In this section the approximate controllability of the implicit system (2) is con-
sidered. Here, assume that L : H → H satisfies the condition

: (C11) If x : Iαi → D is an affine function, then L(x(·), x′(·)) ∈ L2(Iαi ,H).

Theorem 4.1. Suppose that conditions (C2),(C7),(C9) and either one of the
following conditions are satisfied:

: (C12) u→ f(t, x, y, u) is monotone for each (t, x, y) and (C5) is satisfied, or
: (C12′) u→ −f(t, x, y, u) is monotone for any (t, x, y) and (C5′) is satisfied.

Then D ⊂ RT (x0) for each x0 ∈ H, and system (2) is approximately (or exactly)
controllable provided D = H (or D = H).

Proof. Let xT ∈ D and

x(t) =
t− t0
T − t0

(xT − x0) + x0, t ∈ I,

x(t) = x0, t ≤ t0.

Then L(x, x′) ∈ L2(I,H), x(T ) = xT , and x(t) ∈ D for every t ∈ I. If (C10) holds,
define an operator N on L2(I,H) by

Nu(t) = f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

− L(x(t), x′(t)) +A(t)x(t)

= f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)

− L(x(t), x′(t)) +
t− t0
T − t0

A(t)(xT − x0) +A(t)x0.

Then conditions (C2)-(C4) and (C9),(C11) imply thatN maps L2(I,H) to L2(I,H)
and is hemicontinuous, since f is continuous in u. By (C12) it can easily be shown
that N is monotone.



JFCA-2017/8(1) APPROXIMATE CONTROLLABILITY OF NONLINEAR SYSTEMS 155

For each u ∈ L2(I,H), (C5) and (C7) imply that

≺ Nu, u ≻L =

∫ T

t0

≺ Nu(t), u(t) ≻ dt

=

∫ T

t0

≺f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
, u(t)≻ dt

−
∫ T

t0

≺ L(x(t), x′(t)), u(t) ≻ dt+

∫ T

t0

≺ t− t0
T − t0

A(t)(xT − x0), u(t)≻dt

+

∫ T

t0

≺A(t)x0, u(t) ≻ dt

≥
∫ T

t0

[
c1∥u(t)∥2 − c2(t)∥u(t)∥ − c3(t)

]
dt− ∥L(x, x′)∥L∥u∥L

+ ∥ t− t0
T − t0

A(·)(xT − x0)∥L∥u∥L + ∥A(·)x0∥L∥u∥L

≥ c1

∫ T

t0

∥u(t)∥2dt−
∫ T

t0

|c3(t)|dt−
[
∥c2∥L + ∥L(x, x′)∥L

− t− t0
T − t0

∥A(·)(xT − x0)∥L − ∥A(·)x0∥L
]
∥u∥L. (9)

If (C12′) holds define the operator N by

Nu(t) = L(x(t), x′(t))−A(t)x(t)

− f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds, u(t)
)
,

and similarly prove that N is monotone and (9) holds with bi replaced by ci, i =
1, 2, 3.

So, in each case there exists r > 0 such that whenever ∥u∥L = r it follows that

≺ Nu, u ≻L ≥ 0.

By Lemma 2.4, Nu = 0 has solutions in Br; that is, there exists u ∈ L2(I,H) such
that x ∈ S(u). It is obvious that x(T ) = xT and x(t0) = x0. Hence the proof is
completed.

Theorem 4.2. Under the conditions of Theorem 4.1, system (2) is null controllable
on D(A).

Proof. Let x(t) = t1−t
t1−t0

x0, x0 ∈ D(A), t1 ∈ [t0, T ]. Using almost the same

method as in Theorem 4.1, u ∈ L2(I,H) can be found such that x ∈ S(u) with
x(t0) = x0 and x(t1) = 0, and the proof follows.
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5. Example

Consider the following nonlinear distributed-parameter delay control system

∂

∂t
z(y, t) +

n∑
i=1

∂

∂yi
(p(y, t)(

∂

∂yi
z(y, t))

=
z(y, t− h) sin(z(y, t))

(1 + t)(1 + t2)
+

∫ t

0

[ z(y, s)

(1 + t)(1 + t2)2(1 + s)2

+
1

(1 + t)(1 + t2)

∫ s

0

z(y, τ)

(1 + s)(1 + τ)
ezdτ

]
ds, (10)

z(y, t) = 0 on ∂Ω× (I ∪ [−h, 0]),
z(y, 0) = z0(y) for y ∈ Ω.

Here I = [0, T ] and Ω is a bounded open set in R. Let δ(t) = t − h, h > 0 and
p : I × Ω → R be such that

: (i) p(y, t) ≥ c > 0 for every y ∈ Ω, t ∈ I,
: (ii) p is Lipschitz with respect to t, continuously differentiable with respect

to y, and p ∈ L∞.

Let H = L2(Ω) and D = H2(Ω) ∩ H2
0 (Ω). Then D is dense in H. Define the

linear operators A(t) : D ⊂ H → H, for each t ∈ I, by

≺ A(t)z, v ≻ =
n∑

i=1

∫
Ω

−p(y, t)( ∂z
∂yi

)(
∂v

∂yi
)dy, for z, v ∈ D.

Let

f
(
t, x(δ1(t)),

∫ t

t0

g(t, s, x(δ2(s)),

∫ s

t0

k(s, τ, x(δ3(τ)))dτ)ds

=
x(t− h) sin(x(t))

(1 + t)(1 + t2)
+

∫ t

0

[ x(s)

(1 + t)(1 + t2)2(1 + s)2

+
1

(1 + t)(1 + t2)

∫ s

0

x(τ)

(1 + s)(1 + τ)
exdτ

]
ds

then,

∥f(t, x, j)∥ = ∥ 1

(1 + t)(1 + t2)
(x sinx+ j)∥

≤ 1

(1 + t2)
∥x∥+ 1

(1 + t)
∥j∥

Then (10) is equivalent to

z′(t)−A(t)z(t) = f
(
t, z(δ1(t)),

∫ t

t0

g(t, s, z(δ2(s)),

∫ s

t0

k(s, τ, z(δ3(τ)))dτ)ds, u(t)
)
, t ≥ t0,

z(t) = z0, t ≤ t0.

By the above assumptions, there exist µ ≥ 0, k > 0 such that

≺ −A(t)z, z ≻ =

∫
Ω

n∑
i=1

p(y, t)
∥∥∥ ∂z
∂yi

∥∥∥2dy ≥ µ∥z∥2, z ∈ D, (11)

∥A(t)z − A(s)z∥ ≤ k|t− s|∥z∥, z ∈ D. (12)
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Note that if c > 0, then (11) and (12) can be obtained from the Poincare inequal-
ity; if c = 0, then take µ = 0. So, A satisfies conditions (C8), and A(t) generates a
strongly continuous compact evolution operator system E(t, s). Since all the con-
ditions of Theorem (3.3) is satisfied and hence (10) is approximately controllable.
Similarly, if conditions (C2),(C3) and (C11) hold, then Theorem (4.1) implies that
(10) will be approximately controllable.
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