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ON A BOUNDARY VALUE PROBLEM AT RESONANCE ON

THE HALF LINE

A. GUEZANE-LAKOUD, R. KHALDI

Abstract. This paper concerns the solvability of a nonlinear fractional bound-
ary value problem at resonance on the half line. The basic idea is to prove,

by using fixed point theorems, the existence and uniqueness of solution for the
corresponding perturbed problem, then we establish the existence results for
the given problem. An example is given to illustrate the obtained results.

1. Introduction

Fractional differential equations still attracting much attention, this is due to
their ability to describe of memory and hereditary properties of various phenomena,
for some recent results on fractional differential equations and their applications we
refer to the monograph of Kilbas et al [13], Diethelm et al [6], Kiryakova [14, 15],
Samko et al [21] Podlubny [20] and Tenreiro Machado et al [23].

The main goal of this paper is to prove the existence of solutions for the following
fractional boundary value problem (P)

Dq
0+u(t) = −f (t, u(t)) , t > 0, (1.1)

Dq−2
0+ u(0) = u′′ (0) = 0, Dq−1

0+ u (+∞) = Γ (q)u (1) , (1.2)

where f ∈ C (R+ × R,R), 2 < q < 3, Dq
0+ denotes the Riemann-Liouville fractional

derivative. The problem (P) is called at resonance in the sense that the associated
linear homogeneous boundary value problem Lu = Dq

0+u(t) = 0 with conditions

(1.2), has u(t) = ctq−1, c ∈ R as nontrivial solutions. In this case we will apply
fixed point theorems together with some ideas from analysis.

Recently many boundary value problems at resonance have been extensively
studied and many results have been obtained see [2, 7, 8, 9, 10, 11, 12, 17, 18, 24, 26].
For the resonance case, the boundary value problem is approached in several ways.
But the classical method is to decompose the space in the form of a direct sum of
subspaces, one of that isKerL, and then to work with the corresponding projections
on these spaces. In a recent study [19],Nieto investigated a second order boundary
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value problem at resonance by applying fixed point theorem and some analysis tools
which motived the present study.

Boundary value problems on the half line have often appeared in applied mathe-
matics and physics, in fact, they may model some physical phenomena, such as the
models of gas pressure in a semi-infinite porous medium, see [25]. Many methods
are used to investigate these problems such as fixed point theorems, lower and up-
per method solutions, Mawhin coincidence degree theory...see [1, 2, 3, 7, 8, 9, 10,
11, 12, 16, 17, 18, 19, 22, 24, 25, 26, 27].

In [16] the authors investigated the following m-point boundary value problem
on infinite line by using a fixed point theorem on a cone

Dq
0+u(t) + a(t)f (t, u(t)) = 0, t > 0, 2 < q < 3

u (0) = u′ (0) = 0, Dq−1
0+ u (+∞) =

m−2∑
i=1

biu (ξi) .

By application of Leggett-Williams norm type theorem in [3], the authors estab-
lished the existence of positive solutions of the following boundary value problem
at resonance on infinite interval

Dq
0+u(t) + a(t)f (t, u(t)) = 0, t > 0, 3 < q < 4

u (0) = u′ (0) = u′′ (0) = 0, Dq−1
0+ u (+∞) = Dq−1

0+ u (+∞) .

The organization of this work is as follows. In Section 2, we introduce some nota-
tions, definitions and lemmas that will be used later. Section 3 treats the existence
and uniqueness of solution for the perturbed problem by using respectively Schae-
fer fixed point theorem and Banach contraction principal. Then by some analysis
ideas, we prove that the problem (P) has a solution. Finally, we illustrate the
obtained results by an example.

2. Preliminaries

The following lemmas and definitions can be found in [20].
Definition 1. Let α > 0,then the Riemann-Liouville fractional integral of a

function g is defined by

Iαa+g(t) =
1

Γ (α)

∫ t

a

g(s)

(t− s)1−α
ds.

Definition 2. The Riemann fractional derivative of order q of g is defined by

Dq
a+g(t) =

1

Γ (n− q)

(
d

dt

)n ∫ t

a

g(s)

(t− s)q−n+1
ds,

where n = [q] + 1.([q] is the integer part of q).
Lemma 1. The homogenous fractional differential equation Dq

a+g(t) = 0 has
a solution

g(t) = c1t
q−1 + c2t

q−2 + ...+ cnt
q−n,

where, ci ∈ R, i = 1, ..., n and n = [q] + 1.
Lemma 2. Let p, q ≥ 0, f ∈ L1 [a, b] . Then:

1- Ip0+I
q
0+f (t) = Ip+q

0+ f (t) = Iq0+I
p
0+f (t) and cDq

0+I
q
0+f (t) = f (t) , for all t ∈

[a, b] .
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2- If p > q > 0, then the formula cDq
0+I

p
0+f (t) = Ip−q

0+ f (t) , holds almost ev-
erywhere on t ∈ [a, b] , for f ∈ L1 [a, b] and it is valid at any point t ∈ [a, b] if
f ∈ C [a, b] .

3- If q ≥ 0 and p > 0 thenDq
a+ (t− a)

p−1
(x) = Γ(p)

Γ(p−q) (x− a)
p−q−1

, Dq
a+ (t− a)

q−j
(x) =

0, j = 1, 2, ..., n.
To prove the main results of this paper, we need the following Lemma.
Lemma 3. Let 2 < q < 3 and y ∈ C (R+,R) . The linear fractional boundary

value problem{
Dq

0+u (t) = −y(t),

u′′ (0) = Dq−2
0+ u(0) = 0, Dq−1

0+ u (∞) = Γ (q)u (1) ,
(2.1)

has a solution if and only if
∫∞
0

y (t) dt −
∫ 1

0
(1− t) y (t) dt = 0. In this case the

solution can be written as

u(t)− tq−1u(1) =
1

Γ (q)

∫ ∞

0

H(t, s)y(s)ds, (2.2)

where

H(t, s) =

{
−(t− s)q−1 + tq−1, s ≤ t,

tq−1, t ≤ s.
(2.3)

Proof. Applying Lemma 1 to the differential equation in (2.1) we get

u(t) = −Iq0+y(t) + c1t
q−1 + c2t

q−2 + c3t
q−3. (2.4)

Differentiating both sides of (2.4) and using Lemma 2, it yields

u′(t) = −Iq−1
0+ y (t) + c1 (q − 1) tq−2 + c2 (q − 2) tq−3 + c3 (q − 3) tq−4, (2.5)

u′′ (t) = −Iq−2
0+ y (t) + c1 (q − 1) (q − 2) tq−3

+c2 (q − 2) (q − 3) tq−4 + c3 (q − 3) (q − 4) tq−5,

Dq−2
0+ u (t) = −I20+y (t) + c1Γ (q) t+ c2Γ (q − 1) .

The two first conditions in (2.1) give c3 = c2 = 0, the third one implies that∫∞
0

y (t) dt = Γ (q) Iq0+y(1), hence (2.1) has solution if and only if
∫∞
0

y (t) dt −∫ 1

0
(1− t) y (t) dt = 0, then the problem (2.1) has an infinity of solutions given by

u(t) = −Iq0+y(t) + ctq−1. (2.6)

Now we try to rewrite the function u. We have

u(1) = −Iq0+y(1) + c =
−1

Γ (q)

∫ ∞

0

y (s) ds+ c,

then

c =
1

Γ (q)

∫ ∞

0

y (s) ds+ u(1),

substituting c by its value in (2.6) we obtain

u(t) = −Iq0+y(t) +
tq−1

Γ (q)

∫ ∞

0

y (s) ds+ tq−1u(1)

=
1

Γ (q)

∫ ∞

0

H(t, s)y(s)ds+ tq−1u(1).
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Hence the linear problem can be written as

u(t)− tq−1u(1) =
1

Γ (q)

∫ ∞

0

H(t, s)y(s)ds,

where H(t, s) =

{
−(t− s)q−1 + tq−1, s ≤ t,

tq−1, t ≤ s.
The kernel H(t, s) is continuous

according to both variables s, t on R+ and is positive. The proof is completed.
The nonlinear problem (P) can be transformed to the integral equation

u(t)− tq−1u(1) =
1

Γ (q)

∫ ∞

0

H(t, s)f(s, u(s))ds. (2.7)

Define a new function v(t) = u(t)− tq−1u(1). To find a solution u we have to find
v and u(1). Note vc(t) = u(t)− tq−1c, we try to solve for every vc the problem

vc(t) =
1

Γ (q)

∫ ∞

0

H(t, s)f(s, vc(s) + csq−1)ds, (2.8)

if vc is a solution of (2.8) with c = u(1) then u is a solution of (P).

3. Existence and uniqueness results

We will use the Banach space E defined by

E =

{
u ∈ C (R+,R) , lim

t→+∞

|u (t)|
1 + tq−1

< ∞
}
,

equipped with the norm ∥u∥ = supt≥0
|u(t)|

1+tq−1 . Denote by L1 (R+,R) the Banach

space of Lebesgue integrable functions from R+ into R with the norm ∥y∥L1 =∫∞
0

|y (t)| dt. Define the integral operator T : E → E by

Tu(t) = tq−1u(1) +
1

Γ (q)

∫ +∞

0

H (t, s) f (s, u (s)) ds, (3.1)

and the corresponding perturbed operator Tc : E → E by

Tcv(t) =
1

Γ (q)

∫ +∞

0

H (t, s) f
(
s, v (s) + csq−1

)
ds. (3.2)

Theorem 1. Assume that there exist nonnegative functions g, h, ∈ L1 (R+,R+)
and 0 ≤ α < 1 such that∣∣f(t, (1 + tq−1

)
x)
∣∣ ≤ h(t) |x|α + g(t), (t, x) ∈ R+ × R, (3.3)

∥h∥L1 < Γ (q) . (3.4)

Then the map Tc has at least one fixed point v∗ ∈ E.
We apply Schaefer fixed point theorem to prove Theorem 1.
Theorem 2. Let A be a completely continuous mapping of a Banach space X

into it self, such that the set {x ∈ X : x = λAx, 0 < λ < 1} is bounded, then A has
a fixed point.

We recall that a continuous mapping T from a subset M of a normed space X
into an other normed space Y is called completely continuous, iff T maps bounded
subset of M into relatively compact subset of Y . To prove that Tc is completely
continuous, we need the following compactness criterion due to Corduneanu [4]:
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Lemma 4. Let

V = {u ∈ C (R+,R) , ∥u∥ < l, where l > 0} , V (t) =

{
u (t)

1 + tq−1
, u ∈ V

}
.

V is relatively compact in E, if V (t) is equicontinuous on any finite subinterval of
R+ and equiconvergent at ∞, that is for any ε > 0, there exists η = η (ε) > 0 such

that
∣∣∣ u(t1)

1+tq−1
1

− u(t2)

1+tq−1
2

∣∣∣ < ε, ∀u ∈ V, t1, t2 ≥ η, (uniformly according to u).

Proof of Theorem 1. Let us prove that Tc is a completely continuous mapping,
indeed:

1- Tc is continuous: Let (vn)n∈N ∈ E be a convergent sequence to v in E. Let
r1 > max (∥v∥∞ , sup ∥vn∥∞) and remarking that H(t, s) is continuous according

to both variables s, t on R+, nonnegative and 0 ≤ H(t,s)
1+tq−1 ≤ 1, then we get

∣∣∣∣Tcv(t)− Tcvn(t)

1 + tq−1

∣∣∣∣
≤ 1

Γ (q)

∫ ∞

0

H (t, s)

1 + tq−1

∣∣f (s, v (s) + csq−1
)
− f

(
s, vn (s) + csq−1

)∣∣ ds

≤ 1

Γ (q)

∫ ∞

0

∣∣∣∣∣f
(
s,

(
1 + sq−1

) (
v (s) + csq−1

)
1 + sq−1

)∣∣∣∣∣
+

∣∣∣∣∣f
(
s,

(
1 + sq−1

) (
vn (s) + csq−1

)
1 + sq−1

)∣∣∣∣∣ ds
≤ 1

Γ (q)
[∥h∥L1 (∥v∥+ |c|)α + (∥vn∥+ |c|)α + 2 ∥g∥L1 ] < ∞.

Using Lebesgue dominated convergence Theorem and the fact that f is continuous
we get when n → ∞

∥Tcvn − Tcv∥

≤ 1

Γ (q)
sup
t≥0

∫ ∞

0

H (t, s)

1 + tq−1

∣∣f (s, v (s) + csq−1
)
− f

(
s, vn (s) + csq−1

)∣∣ ds → 0.

2- T is relatively compact: Let Br = {v ∈ E, ∥v∥ ≤ r} , first let us show that TcBr

is uniformly bounded. Let v ∈ Br then

|Tcv|
1 + tq−1

≤ 1

Γ (q)

∫ ∞

0

∣∣f (s, v (s) + csq−1
)∣∣ ds

=
1

Γ (q)

∫ ∞

0

∣∣∣∣∣f
(
s,

(
v (s) + csq−1

)
1 + sq−1

(
1 + sq−1

))∣∣∣∣∣ ds
≤ 1

Γ (q)
(∥h∥L1 (∥v∥+ |c|)α + ∥g∥L1) .

Consequently ∥Tcv∥ ≤ 1
Γ(q) (∥h∥L1 (r + |c|)α + ∥g∥L1) < ∞, thus TcBr is uniformly

bounded.
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3- Now we show that TcBr is equicontinuous on any compact interval of R+. Let
v ∈ Br, ∀t1, t2 ∈ [a, b] , 0 ≤ a < b < ∞, t1 ≤ t2, then∣∣∣∣∣ Tcv (t2)

1 + tq−1
2

− Tcv (t1)

1 + tq−1
1

∣∣∣∣∣
≤ 1

Γ (q)

∫ ∞

0

∣∣∣∣∣H (t2, s)

1 + tq−1
2

− H (t1, s)

1 + tq−1
1

∣∣∣∣∣ ∣∣f (s, v (s) + csq−1
)∣∣ ds

≤ 1

Γ (q)

∫ ∞

0

|H (t2, s)−H (t1, s)|
1 + tq−1

2

∣∣f (s, v (s) + csq−1
)∣∣ ds

+
1

Γ (q)

∫ ∞

0

H (t1, s)
(
tq−1
2 − tq−1

1

)
(
1 + tq−1

1

)(
1 + tq−1

2

) ∣∣f (s, v (s) + csq−1
)∣∣ ds

≤
2
(
tq−1
2 − tq−1

1

)
Γ (q) (1 + aq−1)

(∥h∥L1 (∥v∥+ |c|)α + ∥g∥L1) ,

that converges uniformly to zero as t1 → t2. Thus Tc is equicontinuous on the
compact [a, b] .

4- Let us show hat Tc is equiconvergent at ∞. Since∫ ∞

0

∣∣f (s, v (s) + csq−1
)∣∣ ds ≤ ∥h∥L1 (∥v∥+ |c|)α + ∥g∥L1 < ∞,

then limt→+∞

∣∣∣ Tcv(t)
1+tq−1

∣∣∣ = 0, consequently T is equiconvergent at ∞. Thus Tc is

completely continuous.
Now, let us prove that the set {v ∈ E : v = Tcv, 0 < λ < 1} is bounded. Indeed

for λ ∈ (0, 1) such that v = λTc(v), we have v(t) = λ
Γ(q)

∫∞
0

H(t, s)f(s, v(s) +

csq−1)ds. Using assumptions (3.3), we get∣∣∣∣ v(t)

1 + tq−1

∣∣∣∣ =
λ

Γ (q)

∫ +∞

0

H(t, s)

1 + tq−1
f(s,

v(s) + csq−1

1 + sq−1

(
1 + sq−1

)
)ds

≤ 1

Γ (q)
[∥h∥L1 (∥v∥+ |c|)α + ∥g∥L1 ] ,

thus,

∥v∥ ≤ 1

Γ (q)
[∥h∥L1 (∥v∥+ |c|)α + ∥g∥L1 ] , (3.5)

using some ideas from analysis and in view of (3.4), we get

∥v∥ ≤ 1

Γ (q)− ∥h∥L1

[∥h∥L1 (|c|+ 1) + ∥g∥L1 ] . (3.6)

Hence v is bounded independently of λ. Schaefer fixed point theorem implies Tc

has at least a fixed point. Thus equation

v(t) =
1

Γ (q)

∫ +∞

0

H (t, s) f
(
s, v (s) + csq−1

)
ds (3.7)

has at least one solution in E. The proof is completed.
The uniqueness result is given by the following theorem:



JFCA-2017/8(1) ON A BOUNDARY VALUE PROBLEM AT RESONANCE 165

Theorem 3. Assume there exists a nonnegative function k ∈ L1 (R+,R+) such
that for all x, y ∈ R, t ∈ R+ one has∣∣f(t, (1 + tq−1

)
x)− f(t,

(
1 + tq−1

)
y)
∣∣ ≤ k(t) |x− y| , (3.8)

∥k∥L1 < Γ (q) . (3.9)

Then Tc has a unique fixed point v∗c in E.
Proof. Let v and w ∈ E, then by (3.8) we get∣∣∣∣Tcv(t)− Tcw(t)

(1 + tq−1)

∣∣∣∣ ≤ 1

Γ (q)

∫ +∞

0

H(t, s)

(1 + tq−1)
×

∣∣∣∣f(s, v(s) + cs2

(1 + sq−1)

(
1 + sq−1

)
)− f(s,

w(s) + cs2

(1 + sq−1)

(
1 + sq−1

)
)

∣∣∣∣ ds
≤ 1

Γ (q)

∫ +∞

0

k(s)

∣∣∣∣v(s)− w(s)

(1 + sq−1)

∣∣∣∣ ds ≤ ∥v − w∥ ∥k∥L1

Γ (q)
,

thus ∥Tcv − Tcw∥ ≤ ∥v−w∥∥k∥L1

Γ(q) = l ∥v − w∥ , where l =
∥k∥L1

Γ(q) . The assumption

(3.9) implies that l < 1, so the Banach contraction principle ensure the uniqueness
of the fixed point. The proof is completed.

Let us remark that under the assumptions of Theorem 3, the map Ψ : R → E,
Ψ(c) = v∗c is continuous. Moreover the map Λ : R → R, Λ = Φ ◦ Ψ,Λ (c) = v∗c (1)
is also continuous, where Φ : E → R, Φ(v) = v (1) and v∗c is the unique fixed point
of Tc. One can write Λ (c) as

Λ (c) =
1

Γ (q)

∫ 1

0

[
1− (1− s)

q−1
]
f(s, v∗c (s) + csq−1)ds (3.10)

+
1

Γ (q)

∫ ∞

1

f(s, v∗c (s) + csq−1)ds.

Let us show that the problem (1.1)-(1.2) is solvable.
Theorem 4. Under the assumptions of Theorems 1 and 3 and if

limu→±∞f
(
t,
(
1 + tq−1

)
u
)
= ±∞

uniformly on R+ then the problem (1.1)-(1.2) has at least one solution in E.
Proof.
The condition limu→±∞G (u) = ±∞, is assumed to avoid the case f(t,

(
1 + tq−1

)
u(t)) =

y (t) where the problem may have no solution (in the case
∫ +∞
0

y (t) dt−
∫ 1

0
(1− t) y (t) dt ̸=

0). From (3.5) we obtain limc→+∞
∥v∗

c∥
c = 0, then

(
v∗c (t) + ctq−1

)
growths asymptot-

ically as c and uniformly in t. Taking into account that limu→±∞f
(
t,
(
1 + tq−1

)
u
)
=

±∞, then by passing to the limit in (3.10) it yields limc→±∞Λ (c) = ±∞, conse-
quently there exists c∗ ∈ R such that Λ (c∗) = 0, thus c∗ = uc∗(1) and hence
uc∗(t) = v∗c∗(t) + tq−1c∗ is a solution of the nonlinear problem (1.1)-(1.2). The
proof is completed.

Corollary 1. Under the assumptions of Theorems 1 and 3 and if there exist
two functions G ∈ C (R,R) and H ∈ L1 (R+,R+) such that f

(
t,
(
1 + tq−1

)
u
)
=

F (t)G(u), limu→±∞G (u) = ±∞,
∫ +∞
0

H(1, s)F (s)ds < ∞, then the problem (1.1)-
(1.2) has at least one solution in E.

Example 1. The following fractional boundary value problem



166 A. GUEZANE-LAKOUD, R. KHALDI JFCA-2017/8(1)


D

5
2

0+u(t) =
(exp(−t))u

7
3(

1+t
3
2

) 1
3

((
1+t

3
2

)2
+u2

) ,

u′′ (0) = Dq−2
0+ u(0) = 0, Dq−1

0+ u (∞) = Γ
(
5
2

)
u (1) ,

(3.11)

is solvable in E.

Proof. We have q = 5
2 and f(t, u) = (exp(−t))u

7
3(

1+t
3
2

) 1
3

((
1+t

3
2

)2
+u2

)
∣∣∣f(t,(1 + t

5
2

)
u)
∣∣∣ ≤ (exp (−t)) |u|

1
3 ≤ h(t) |u|

1
3 + g(t),

where h(t) = exp (−t) and g(t) = 0, some calculus give ∥h∥L1 = 1 < Γ (q) = 1.3293.
Applying Theorem 1 we conclude that the map Tc has at least one fixed point
v∗ ∈ E. Now we have∣∣∣f(t,(1 + t

3
2

)
x)− f(t,

(
1 + t

3
2

)
y)
∣∣∣ ≤ exp (−t)

∣∣∣∣∣ x
7
3

1 + x2
− y

7
3

1 + y2

∣∣∣∣∣ ,
≤ 0.8 exp (−t) |x− y| = k(t) |x− y| ,

where k(t) = 0.8 exp (−t) , we have ∥k∥L1 = 0.8 < Γ (q) = 1.3293. In view of Theo-

rem 3, Tc has a unique fixed point v∗c in E. One can check that f
(
t,
(
1 + t

3
2

)
u
)
=

(exp (−t)) u
7
3

(1+u2) = F (t)G(u) and limu→±∞ G(u) = limu→±∞
u

7
3

(1+u2) = ±∞. From

Corollary 1 we conclude that the problem (3.11) is solvable in E.
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