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AN EXISTENCE THEOREM FOR A FRACTIONAL

DIFFERENTIAL EQUATION USING PROGRESSIVE

CONTRACTIONS

T. A. BURTON

Abstract. In this brief note we present a simple proof of global existence and

uniqueness of a solution of a fractional differential equation, Dqx = f(t,x).
We require that f be continuous and for each L > 0 there is a K = K(L) > 0

such that 0 < t ≤ L and x, y ∈ < imply |f(t, x)− f(t,y)| ≤ K(L)|x− y| where
K(L) may tend to infinity with L. We then parlay this into a solution on

(0,∞). The proof employs the idea of progressive contractions which avoids
the classical methods involving infinitely repeated translations.

1. Introduction and setting

We present a simple and elementary proof of the existence of a global solution of a
fractional differential equation of Riemann-Liouville type using a method which we
call progressive contractions. For the equation Dqx(t) = f(t, x(t)) with appropriate
initial data we require continuity of f and a Lipschitz condition with “constant”
K which can become unbounded as the length of the interval of definition of the
solution becomes unbounded. We have used the method of progressive contractions
in earlier work not on fractional equations and which has not yet appeared. One
project showed uniqueness of solutions of integral equations and the other showed
global existence of solutions of a general integral equation defining the sum of two
operators. The point is that it is a very flexible idea.

In a sequence of earlier papers ([2], [3], [4]) we have discussed the literature on
existence and uniqueness in some depth, commenting on the results found in [6, p.
77-80], [9, pp. 30-34], and [8, p. 165] which will not be repeated here.

Our work begins with the setting and the quotation of two basic results which
then launch the study of an extension from the local result in Theorem 1.2 to a
global result.

We consider a scalar fractional differential equation of Riemann-Liouville type

Dqx(t) = f(t, x(t)), lim
t↓0

t1−qx(t) = x0 (1.1)
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where q ∈ (0, 1) and x0 6= 0. It is assumed that

f : [0,∞)×< → < is continuous (1.2)

and for each E > 0 there is a K = K(E) > 0 so that

0 ≤ t ≤ E, x, y ∈ < =⇒ |f(t, x) − f(t, y)| ≤ K|x − y|. (1.3)

The following theorem can be found in [1, p. 2].
Theorem 1.1 Let q ∈ (0, 1) and x0 6= 0. Let f(t, x) be a function that is

continuous on the set

B : {(t, x) ∈ <2 : 0 < t ≤ L, x ∈ I}

where I ⊂ < denotes an unbounded interval. Suppose a function x : (0, L] → I

is continuous and that both x(t) and f(t, x(t)) are absolutely integrable on (0, L].
Then x(t) satisfies (1.1) on the interval (0, L] if and only if it satisfies the Volterra
integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds. (1.4)

on this same interval.

We then have the following existence theorem found in [2, p. 251].
Theorem 1.2 Let f : [0, L] × < → < be continuous and satisfy the Lipschitz

condition (1.3). Then, for each q ∈ (0, 1), there is a T0 ∈ (0, L] such that (1.4) has
a unique continuous solution ξ on (0, T0] with

lim
t↓0

∫ t

0

(t − s)q−1f(s, ξ(s))ds = 0, lim
t↓0

t1−qξ(t) = x0. (1.5)

Finally, both ξ(t) and f(t, ξ(t)) are absolutely integrable.

This theorem asks only continuity and a local Lipschitz condition. This is exactly
what we expect for an elementary ordinary differential equation, in marked contrast
to what is often required in the literature for (1.4). The purpose of this note is to
let L → ∞ and K = K(L) → ∞, obtaining exactly the same result on [0,∞).

2. Extending the solution to (0,∞)

We begin with the assumptions of Theorem 1.2, asking in addition that f be
continuous on [0,∞) and accepting a unique solution on a fixed interval (0, T0].
Thus, our L here can be arbitrarily large. We use the notation of Theorem 1.2. Let
q ∈ (0, 1) be fixed, let E > T0 (of Th. 1.2) be given, let α ∈ (0, 1), let K satisfy
(1.3), and find T > 0 so that for T0 of Th. 1.2

K

Γ(q)

∫ T

T0

(T − s)q−1ds =
K

Γ(q)

(T − T0)
q

q
< α. (2.1)

Divide the interval [T0, E] into equal parts with end points T0, T1, ..., Tn = E with
each part having length S < T − T0.
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We will need a form related to (2.1). With the change of variable u = Ti − s

(i = 1, . . . , n), we have
∫ Ti

Ti−1

(Ti − s)q−1ds =

∫ Ti−Ti−1

0

uq−1du =
Sq

q
(2.2)

<
(T − T0)

q

q
<

Γ(q)α

K

since Ti − Ti−1 = S.
Definition 2.1 Let g : (0,∞) → < be defined by

0 < t ≤ T0 =⇒ g(t) =
tq−1

T
q−1
0

and

T0 ≤ t < ∞ =⇒ g(t) = 1.

For any continuous function φ : (0, H ] → < then

|φ|g := sup
0<t≤H

|φ(t)|

g(t)

provided it exists.

The complete metric space used as in the proof below was introduced in El’sgol’ts
[7, p. 16] and repeated in Burton [5, p. 177].

Theorem 1.2 If (1.2) and (1.3) hold for each E > 0 then (1.4) has a unique
solution on (0,∞).

Proof

Step 1. Let (M1, | · |g) be the complete metric space of continuous functions
φ : (0, T1] → < with φ(t) = ξ of Theorem 1.2 on (0, T0].

Define P : M1 → M1 by φ ∈ M1 implies that

(Pφ)(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, φ(s))ds.

As ξ satisfies (1.4) on (0, T0] for 0 < t ≤ T0 we have

(Pφ)(t) = ξ(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, ξ(s))ds

so P does map M1 → M1.
Now if φ1, φ2 ∈ M1 then

|(Pφ1)(t) − (Pφ2)(t)| =

∣

∣

∣

∣

1

Γ(q)

∫ t

0

(t − s)q−1[f(s, φ1(s)) − f(s, φ2(s))]ds

∣

∣

∣

∣

( since φ1 = φ2 = ξ on (0, T0] and using (1.3) also now let t > T0)

≤
K

Γ(q)

∫ t

T0

(t − s)q−1 |φ1(s) − φ2(s)|ds

≤
K

Γ(q)
|φ1 − φ2|

[T0,T1]

∫ T1

T0

(T1 − s)q−1ds

≤ α|φ1 − φ2|g
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where |φ1 − φ2|
[T0,T1] denotes the supremum on that interval. In fact, P is a

contraction on M1 with unique fixed point ξ1 where ξ1 agrees with ξ on (0, T0]
because ξ and ξ1 are both unique on (0, T0].

Step 2. Let (M2, | · |g) be the complete metric space of continuous functions
φ : (0, T2] → < with φ(t) = ξ1 of Step 1 on (0, T1].

Define P : M2 → M2 by φ ∈ M2 implies that

(Pφ)(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, φ(s))ds.

As ξ1 satisfies (1.4) on (0, T1] and in M2 each φ(t) = ξ1 on (0, T1] we have

(Pφ)(t) = ξ1(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, ξ1(s))ds

for 0 ≤ t ≤ T1 so P does map M2 → M2.
Now if φ1, φ2 ∈ M2 then

|(Pφ1)(t)−(Pφ2)(t)| =

∣

∣

∣

∣

1

Γ(q)

∫ t

0

(t − s)q−1[f(s, φ1(s)) − f(s, φ2(s))]ds

∣

∣

∣

∣

( and since φ1 = φ2 = ξ1 on (0, T1] and by (1.3))

≤
K

Γ(q)

∫ t

T1

(t − s)q−1|φ1(s) − φ2(s)|ds

≤
K

Γ(q)
|φ1 − φ2|

[T1,T2]

∫ T2

T1

(T2 − s)q−1ds

(using (2.1) and (2.2), T2 − T1 = S)

=
K

Γ(q)
|φ1 − φ2|

[T1,T2]

∫ T1

T0

(T1 − s)q−1ds

≤ α|φ1 − φ2|g

where |φ1 − φ2|
[T1,T2] denotes the supremum on that interval. In fact, P is a

contraction on M2 with unique fixed point ξ2 where ξ2 agrees with ξ1 on (0, T1].
We continue stepping S units at a time until we reach E noting on the i−th step

that after taking into account φ1 = φ2 on (0, Ti−1], changing variable, and using
(2.2) we obtain

∫ Ti

Ti−1

(Ti − s)q−1ds =

∫ T1

T0

(T1 − u)q−1du ≤
Γ(q)α

K
.

So we get a contraction on Mi at each step and a solution ξi. Upon completion of
the n-steps we have a solution ξn on (0, E].

Now, to get a solution on (0,∞) we get a sequence of solutions {ξi} on intervals
(0, i] and construct the set of functions {ξi∗} which are solutions from the previous
sequence, but continued for t > i at the constant value ξi(i). This sequence con-
verges uniformly on compact sets to a continuous solution x(t) on (0,∞) because
at each value of t and for i > t it is the case that x(t) coincides with ξi(t).
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