
Journal of Fractional Calculus and Applications

Vol. 8(2) July 2017, pp. 19-31.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

EXISTENCE OF POSITIVE SOLUTIONS TO A PERIODIC

BOUNDARY VALUE PROBLEMS FOR NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

L. HU, S. ZHANG

Abstract. In this paper, we study a class of differential equation of fractional
order with periodic boundary conditions at resonance. By Leggett-Williams

norm-type theorem for coincidences due to O’Regan and Zima, we present
a new result on the existence of positive solutions. At last, an example is
presented to illustrate our main results.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integra-
tion to arbitrary order. Fractional differential equations have recently proved to
be valuable tools in many fields, such as viscoelasticity, engineering, physics and
economics, see [1]-[5].

During the last ten years, fractional boundary value conditions have attracted
many authors. The researchers studied the existence and multiplicity of solutions
or positive solutions for fractional boundary value problems and obtained many
interesting results by using some fixed point theorems, such as the Schauder fixed-
point theorem, the Leggett-Williams fixed-point theorem, the Guo-Krasnosel??skii
fixed-point theorem, etc. For some recent works on the topic, see [6]-[12] and
references therein.

Periodic boundary value problems occur in the mathematical modeling of a va-
riety of physical processes and have recently received considerable attention, see
[13]-[16]. In recent years, periodic boundary value conditions of fractional order
or integral order at resonance have been studied by some authors. Most of the
references focused on the existence of solutions (see [17]-[21]). Meanwhile, some re-
searchers have given attention to the existence of positive solution of the boundary
value problems at resonance , such as [23]-[25].
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In [17], Zima and Drygaś gained the existence of positive solutions for the fol-
lowing second-order differential equation subject to periodic boundary conditions:{

x′′(t) + h(t)x′(t) + f(t, x(t), x′(t)) = 0, t ∈ [0, T ],

x(0) = x(T ), x′(0) = x′(T ),

where f : [0, T ]× [0,+∞)× R → R and h : [0, T ] → (0,+∞) are continuous.
In [18], the authors applied the continuation theorem to the study of periodic

boundary value problem for fractional p-Laplacian equation:{
Dβ

0+ϕp(D
α
0+x(t)) = f(t, x(t), Dα

0+x(t)), t ∈ [0, T ],

x(0) = x(T ), Dα
0+x(0) = Dα

0+x(T ),

where 0 < α, β ≤ 1, Dα
0+ is a Caputo fractional derivative, and f : [0, T ]×R2 → R

is continuous.
In [19], Chen and Liu investigated the existence of solutions for the following

periodic boundary value problem:{
x′′(t) = f(t, x(t), Dα

0+x(t)), t ∈ [0, 1],

x(0) = x(1), Dα
0+x(0) = Dα

0+x(1),

where 0 < α < 2 is a real number, Dα
0+ is a Caputo fractional derivative, and

f : [0, 1]× R2 → R is continuous.
From the above works, we can see a fact: the study of periodic boundary value

problems of fractional equations mainly focuses on the nonresonant periodic bound-
ary conditions and the acquisition of the existence of solution. To the best of our
knowledge, the existence of positive solutions to fractional differential equations
with periodic boundary value conditions at resonance is at its infancy and much of
the work on this topic need to be done. To fill this gap, we investigate the existence
of positive solutions of fractional differential equation with periodic boundary value
conditions of the form:{

Dα
0+u(t) = f

(
t, u(t)

)
, 0 < t < 1,

u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1),
(1.1)

where 2 < α < 3, Dα
0+ denotes the Caputo fractional derivative, f : [0, 1]× R → R

is continuous.
The rest of this paper is organized as follows. Section 2, we give some necessary

notations, definitions and lemmas. In Section 3, we obtain the existence of positive
solutions of (1.1) by Theorem 2.1. Finally, an example is given to illustrate our
results in Section 4.

2. Preliminaries

First of all, we present the necessary definitions and lemmas from fractional
calculus theory. For more details see [5].

Definition 2.1 ([5]). The Riemann-Liouville fractional integral of order α > 0 of
a function f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).
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Definition 2.2 ([5]). The Caputo fractional derivative of order α > 0 of a contin-
uous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n − 1 < α ≤ n, provided that the right-hand side is pointwise defined on
(0,∞).

Lemma 2.3 ([5]). The fractional differential equation

Dα
0+y(t) = 0

has solution y(t) = c0+ c1t+ · · ·+ cn−1t
n−1, ci ∈ R, i = 0, 1, · · · , n− 1, n = [α]+ 1.

Furthermore, for y ∈ ACn[0, 1],

(
Iα0+D

α
0+y

)
(t) = y(t)−

n−1∑
k=0

y(k)(0)

k!
tk

and (
Dα

0+I
α
0+y

)
(t) = y(t).

Lemma 2.4 ([5]). The relation

Iαa+I
β
a+f(x) = Iα+β

a+ f(x),

is valid in following case β > 0, α+ β > 0, f(x) ∈ L1(a, b).

In the following, we provide the necessary background definitions on Fredholm
operators and cones in Banach space (see [22]).

Let X, Y be real Banach spaces. Consider a linear mapping L : domL ⊂ X → Y
and a nonlinear operator N : X → Y . Assume that

(A1) L is a Fredholm operator of index zero; that is, ImL is closed and
dimkerL = codim ImL < ∞.

This assumption implies that there exist continuous projections P : X → X and
Q : Y → Y such that ImP = kerL and kerQ = ImL. Moreover, since dim ImQ =
codim ImL, there exists an isomorphism J : ImQ → kerL. Denote by Lp the
restriction of L to kerP ∩domL. Clearly, Lp is an isomorphism from kerP ∩domL
to ImL, we denote its inverse by Kp : ImL → kerP ∩ domL. It is known that the
coincidence equation Lx = Nx is equivalent to

x = (P + JQN)x+KP (I −Q)Nx.

Let C be a cone in X such that

(i) µx ∈ C for all x ∈ C and µ ≥ 0,
(ii) x,−x ∈ C implies x = θ.

It is well known that C induces a partial order in X by

x ≼ y if and only if y − x ∈ C.

The following property is valid for every cone in a Banach space X.

Lemma 2.5 ([26]). Let C be a cone in X. Then for every u ∈ C \ {0} there exists
a positive number σ(u) such that

∥x+ u∥ ≥ σ(u)∥u∥ for all x ∈ C.
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Let γ : X → C be a retraction; that is, a continuous mapping such that γ(x) = x
for all x ∈ C. Set

Ψ := P + JQN +Kp(I −Q)N and Ψγ := Ψ ◦ γ.

We use the following result due to O’Regan and Zima.

Theorem 2.6 ([26]). Let C be a cone in X and let Ω1, Ω2 be open bounded
subsets of X with Ω1 ⊂ Ω2 and C ∩ (Ω2 \Ω1) ̸= ∅. Assume (A1) and the following
assumptions hold:

(A2) QN : X → Y is continuous and bounded and Kp(I − Q)N : X → X be
compact on every bounded subset of X,

(A3) Lx ̸= λNx for all x ∈ C ∩ ∂Ω2 ∩ ImL and λ ∈ (0, 1),
(A4) γ maps subsets of Ω2 into bounded subsets of C,
(A5) deg{[I − (P + JQN)γ]|kerL, kerL ∩ Ω2, 0} ≠ 0,
(A6) there exists u0 ∈ C \ {0} such that ∥x∥ ≤ σ(u0)∥Ψx∥ for x ∈ C(u0) ∩ ∂Ω1,

where C(u0) = {x ∈ C : µu0 ≼ x for some µ > 0} and σ(u0) such that
∥x+ u0∥ ≥ σ(u0)∥x∥ for every x ∈ C,

(A7) (P + JQN)γ(∂Ω2) ⊂ C,
(A8) Ψγ(Ω2 \ Ω1) ⊂ C.

Then the equation Lx = Nx has a solution in the set C ∩ (Ω2 \ Ω1).

3. Existence and uniqueness

In this section, we prove the existence results for (1.1). We use the Banach space
X = Y = C[0, 1] with the supremum norm ∥x∥ = maxt∈[0,1] |x(t)|.

Define the operator L : domL → X by

Lu = Dα
0+u

where

domL =
{
x ∈ X : Dα

0+u(t) ∈ Y, u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1)
}
.

Define the operator

N : X → Y

by

Nu(t) = f
(
t, u(t)

)
.

Then the problem (1.1) can be written by Lu = Nu, u ∈ domL.
For simplicity of notation, we set

G(t, s) =



1 + (α−1)(2t+αt2−2tα−αt)+α−4
2(α−1)Γ(α+1) + Γ(α−1)

Γ(2α−1) −
Γ(α−1)

(α−2)Γ(2α−2) (1− s)
α

+
[

2−α
2α(α−1) +

t−t2

2

]
1−s

(α−2)Γ(α−1) +
1+t−tα

(α−1)(α−2)Γ(α) (1− s)
2

+ (1−s)3−α(t−s)α−1

(α−2)Γ(α) , 0 ≤ s < t ≤ 1,

1 + (α−1)(2t+αt2−2tα−αt)+α−4
2(α−1)Γ(α+1) + Γ(α−1)

Γ(2α−1) −
Γ(α−1)

(α−2)Γ(2α−2) (1− s)
α

+
[

2−α
2α(α−1) +

t−t2

2

]
1−s

(α−2)Γ(α−1)

+ 1+t−tα
(α−1)(α−2)Γ(α) (1− s)

2
, 0 ≤ t < s ≤ 1.

We denote a constant κ ∈ (0, 1) satisfying

κG(t, s) < 1. (3.1)
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Lemma 3.1. The mapping L : domL ⊂ X is a Fredholm operator of index zero.
Furthermore, the operator KP : ImL → domL ∩ kerP can be written by

KP y(t) =

∫ 1

0

k(t, s)y(s)ds, t ∈ [0, 1],

where

k(t, s) :=



(t−s)α−1

Γ(α) − Γ(α−1)(1−s)2α−3

Γ(2α−2) − (1−s)α−2

2Γ(α) + (1−s)α−1

(α−1)Γ(α)

+ (1−s)α−2

Γ(α+1) + t(1−s)α−2

2Γ(α−1) − t(1−s)α−1

Γ(α) − t2(1−s)α−2

2Γ(α−1) , 0 ≤ s < t ≤ 1,

−Γ(α−1)(1−s)2α−3

Γ(2α−2) − (1−s)α−2

2Γ(α) + (1−s)α−1

(α−1)Γ(α)

+ (1−s)α−2

Γ(α+1) + t(1−s)α−2

2Γ(α−1) − t(1−s)α−1

Γ(α) − t2(1−s)α−2

2Γ(α−1) 0 ≤ t < s ≤ 1.

Proof. By Lemma 2.3, Dα
0+u(t) = 0 has solution

u(t) = c0 + c1t, c0, c1 ∈ R.

According to the boundary value conditions of (1.1), we have

kerL = {c, c ∈ R} ∼= R1.

Let y ∈ ImL, so there exists a function u(t) ∈ domL satisfying Lu(t) = y(t). By
Lemma 2.3, we have

u(t) = Iα0+y(t) + c0 + c1t+ c2t
2.

By u′′(0) = u′′(1), we can obtain
∫ 1

0
(1− s)

α−3
y(s)ds = 0.

On the other hand, suppose y ∈ Y satisfying
∫ 1

0
(1− s)

α−3
y(s)ds = 0. Let

u(t) = Iα0+y(t) +

[
1

2
Iα−1
0+ y(1)− Iα0+y(1)

]
· t− 1

2
Iα−1
0+ y(1) · t2.

We can easily prove u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1), that is u(t) ∈ domL.
Thus, we conclude that

ImL =

{
y ∈ Y :

∫ 1

0

(1− s)
α−3

y(s)ds = 0

}
.

Consider the linear operator P : X → X defined by

Px(t) = (α− 2)

∫ 1

0

(1− s)
α−3

x(s)ds, t ∈ [0, 1].

Define the operator Q : Y → Y by

Qy(t) = (α− 2)

∫ 1

0

(1− s)
α−3

y(s)ds, t ∈ [0, 1].

For u(t) ∈ X, we get

P (Pu) = P

[
(α− 2)

∫ 1

0

(1− s)
α−3

u(s)ds

]
= (α− 2)

∫ 1

0

(1− s)
α−3

u(s)ds = Pu.

So we have P 2 = P . Obviously, Q2 = Q. Note that ImP = kerL and kerQ = ImL.
It follows from IndL = dim kerL− codim ImL = 0 that L is a Fredholm mapping
of index zero.

Next, we will prove that the operator KP is the inverse of L|domL∩KerP .
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In fact, for u(t) ∈ domL ∩ kerP , we have Dα
0+u(t) = y(t). By Lemma 2.3, we

have u(t) = Iα0+y(t) + c0 + c1t + c2t
2. According to u(0) = u(1), u′(0) = u′(1), we

get

c1 =
1

2
Iα−1
0+ y(1)− Iα0+y(1), c2 = −1

2
Iα−1
0+ y(1).

According to u(t) ∈ kerP , that is (α− 2)
∫ 1

0
(1− s)

α−3
u(s)ds = 0, we deduce

c0 = −Γ(α− 1)I2α−2
0+ y(1)− c1

α− 1
− 2c2

α(α− 1)
.

Define an operator

KP y(t) := Iα0+y(t) + c0 + c1t+ c2t
2.

Substituting c0, c1, c2 in above equality, we obtain

KP y(t) = Iα0+y(t) + c0 + c1t+ c2t
2

= Iα0+y(t)− Γ(α− 1)I2α−2
0+ y(1)− 1

α− 1

[
1

2
Iα−1
0+ y(1)− Iα0+y(1)

]
+

1

α(α− 1)
Iα−1
0+ y(1) +

[
1

2
Iα−1
0+ y(1)− Iα0+y(1)

]
t− 1

2
Iα−1
0+ y(1)t2.

=
1

Γ (α)

∫ t

0

(t− s)
α−1

y(s)ds− Γ (α− 1)

Γ (2α− 2)

∫ 1

0

(1− s)
2α−3

y(s)ds

− 1

2Γ (α)

∫ 1

0

(1− s)
α−2

y(s)ds+
1

(α− 1) Γ (α)

∫ 1

0

(1− s)
α−1

y(s)ds

+
1

Γ (α+ 1)

∫ 1

0

(1− s)
α−2

y(s)ds+
t

2Γ (α− 1)

∫ 1

0

(1− s)
α−2

y(s)ds

− t

Γ (α)

∫ 1

0

(1− s)
α−1

y(s)ds− t2

2Γ (α− 1)

∫ 1

0

(1− s)
α−2

y(s)ds

=

∫ 1

0

k(t, s)y(s)ds.

It is easy to see that LKpy(t) = y(t). Hence, KP =
(
L|domL∩KerP

)−1
. This

completes the proof Lemma 3.1. �

Lemma 3.2. Assume Ω ⊂ X is a open bounded set such that dom(L) ∩ Ω ̸= ∅,
then N is L-compact on Ω.

Proof. By the continuity of f , we can obtain that QN(Ω) and KP (I − Q)N(Ω)
are bounded. Hence, for u(t) ∈ Ω, t ∈ [0, 1], there exists a positive constant T
such that |(I −Q)Nu(t)| ≤ T , |12I

α−1
0+ (I −Q)Nu(1)− Iα0+(I −Q)Nu(1)| ≤ T and

| 12I
α−1
0+ (I −Q)Nu(1)| ≤ T.
Thus, in the view of Arzela-Ascoli theorem, we need only prove that KP (I −

Q)N(Ω) is equicontinuous.
For 0 ≤ t1 < t2 ≤ 1, u ∈ Ω, by the definition of KP , we have

|KP (I −Q)Nu(t2)−KP (I −Q)Nu(t1)|

=

∣∣∣∣[Iα0+(I −Q)Nu(t)
]
t=t2

+ c0 + c1t2 + c2t
2
2
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−
[
Iα0+(I −Q)Nu(t)

]
t=t1

− c0 − c1t1 − c2t
2
1

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣ ∫ t2

0

(t2 − s)α−1(I −Q)Nu(s)ds−
∫ t1

0

(t1 − s)α−1(I −Q)Nu(s)ds

∣∣∣∣
+

∣∣∣∣12Iα−1
0+ (I −Q)Nu(1)− Iα0+(I −Q)Nu(1)

∣∣∣∣ · |t2 − t1|

+

∣∣∣∣12Iα−1
0+ (I −Q)Nu(1)

∣∣∣∣ · |t22 − t21|

≤ 1

Γ(α)

∣∣∣∣ ∫ t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1

]
(I −Q)Nu(s)ds

∣∣∣∣
+

1

Γ(α)

∣∣∣∣ ∫ t2

t1

(t2 − s)
α−1

(I −Q)Nu(s)ds

∣∣∣∣+ T
(
t2 − t1 + t22 − t21

)
≤ T

Γ(α+ 1)

[
tα2 − tα1 + (t2 − t1)

α
]
+ T

(
t2 − t1 + t22 − t21

)
.

Notice that t, t2, tα are uniformly continuous on [0, 1]. Thus, we have KP (I −
Q)N(Ω) is equicontinuous on [0, 1]. The proof is completed. �

Theorem 3.3. Assume that

(H1) for t ∈ [0, 1] and u(t) ∈ [0, B], one has

−κu(t) ≤ f(t, u(t)) ≤ −c1u(t) + c2 and f(t, u(t)) ≤ −b1|f(t, u(t))|+ b2u(t) + b3,

where b1, b2, b3, c1, c2, B are positive constants with

B >
c2
c1

+
8b2c2

(α− 2)b1c1
+

8b3
(α− 2)b1

.

(H2) there exist r ∈ (0, B), t0 ∈ [0, 1], m ∈ (0, 1) and h(u) : (0, r] → [0,+∞) such

that f(t, u) ≥ h(u) for t ∈ [0, 1], u ∈ (0, b]. Moreover, h(u)
u is non-increasing

on (0, r] and

(α− 2)
h(r)

r

∫ 1

0

G(t0, s)(1− s)α−3ds ≥ 1−m

m
.

Then the problem (1.1) has at least one positive solution on [0, 1].

Proof. According to Lemma 3.1 and Lemma 3.2, we have that the conditions (A1)
and (A2) of Theorem 2.6 are satisfied.

Consider the cone

C = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}.
Let

Ω1 =
{
x ∈ X : m∥x∥ < |x(t)| < r, t ∈ [0, 1]

}
,

Ω2 =
{
x ∈ X : ∥x(t)∥ < B, t ∈ [0, 1]

}
.

Obviously, Ω1 and Ω2 are bounded and

Ω1 =
{
x ∈ X : m∥x∥ ≤ |x(t)| ≤ r, t ∈ [0, 1]

}
⊂ Ω2.

Moreover, C ∩ (Ω2 \ Ω1) ̸= ∅. Let J = I and (γx)(t) = |x(t)| for x ∈ X, then γ is
a retraction and maps subsets of Ω2 into bounded subsets of C, which means that
(A4) holds.
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Next, we will show (A3) holds. Suppose that there exist u0 ∈ ∂Ω2 ∩ C ∩ domL
and λ0 ∈ (0, 1) such that Lu0 = λ0Nu0, that is D

α
0+u0(t) = λ0f(t, u0(t)), t ∈ [0, 1].

In view of (H1), we get

Dα
0+u0(t) = λ0f(t, u0(t)) ≤ −λ0b1|f(t, u0(t))|+ λ0b2u0(t) + λ0b3

= −b1|λ0f(t, u0(t))|+ λ0b2u0(t) + λ0b3

= −b1|Dα
0+u0(t)|+ λ0b2u0(t) + λ0b3

≤ −b1|Dα
0+u0(t)|+ b2u0(t) + b3 (3.2)

and

Dα
0+u0(t) = λ0f(t, u0(t)) ≤ −λ0c1u0(t) + λ0c2. (3.3)

In view of Dα
0+u0(t) = λ0f(t, u0(t)) ∈ ImL, from the definition of ImL and (3.3),

we obtain

0 =

∫ 1

0

(1− s)
α−3

Dα
0+u0(s)ds ≤

∫ 1

0

(1− s)
α−3

(
− λ0c1u0(s) + λ0c2

)
ds

which gives ∫ 1

0

(1− s)
α−3

u0(s)ds ≤
c2

(α− 2)c1
. (3.4)

Furthermore, from (3.2) and (3.4), we have

0 =

∫ 1

0

(1− s)
α−3

Dα
0+u0(s)ds

≤
∫ 1

0

(1− s)
α−3[− b1|Dα

0+u0(t)|+ b2u0(t) + b3
]
ds

= −b1

∫ 1

0

(1− s)
α−3 ∣∣Dα

0+u0(s)
∣∣ ds+ b2

∫ 1

0

(1− s)
α−3

u0(s)ds+
b3

α− 2

which gives∫ 1

0

(1− s)
α−3 ∣∣Dα

0+u0(s)
∣∣ ds ≤ b2

b1

∫ 1

0

(1− s)
α−3

u0(s)ds+
b3

(α− 2)b1

≤ b2c2
(α− 2)b1c1

+
b3

(α− 2)b1
. (3.5)

According to the function expression of k(t, s), it is easy to see that

|k(t, s)| ≤ 8(1− s)α−3, s, t ∈ [0, 1]. (3.6)

From (3.4), (3.5), (3.6) and the equation u0 = (I −P )u0+Pu0 = KPL(I −P )u0+
Pu0 = Pu0 +KPLu0, we can get

u0 = Pu0 +KPLu0

= (α− 2)

∫ 1

0

(1− s)
α−3

u0(s)ds+

∫ 1

0

k(t, s)Dα
0+u0(s)ds

≤ (α− 2) · c2
(α− 2)c1

+

∫ 1

0

|k(t, s)| ·
∣∣Dα

0+u0(s)
∣∣ds

=
c2
c1

+

∫ 1

0

|k(t, s)|
(1− s)α−3

· (1− s)α−3
∣∣Dα

0+u0(s)
∣∣ds
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≤ c2
c1

+ 8

∫ 1

0

(1− s)α−3
∣∣Dα

0+u0(s)
∣∣ds

≤ c2
c1

+
8b2c2

(α− 2)b1c1
+

8b3
(α− 2)b1

.

Then, we have

B = ∥u0∥ ≤ c2
c1

+
8b2c2

(α− 2)b1c1
+

8b3
(α− 2)b1

,

which contradicts (H1). Hence (A3) holds.
To prove (A5), consider u(t) ∈ kerL ∩ Ω2, then u(t) ≡ c. For c ∈ [−B,B] and

λ ∈ [0, 1], we have

H(c, λ) = [I − λ(P + JQN)γ]c

= c− λ(α− 2)

∫ 1

0

(1− s)
α−3|c|ds− λ(α− 2)

∫ 1

0

(1− s)
α−3

f(s, |c|)ds

= c− λ|c| − λ(α− 2)

∫ 1

0

(1− s)
α−3

f(s, |c|)ds.

= c− λ(α− 2)

∫ 1

0

(1− s)
α−3[

f(s, |c|) + |c|
]
ds.

By use of proof by contradiction, it is easy to show that H(c, λ) = 0 implies c ≥ 0.
Suppose H(B, λ) = 0 for some λ ∈ (0, 1], then we have

0 = B − λB − λ(α− 2)

∫ 1

0

(1− s)
α−3

f(s,B)ds.

According to (H1), we have

0 ≤ B(1− λ) = λ(α− 2)

∫ 1

0

(1− s)
α−3

f(s,B)ds ≤ λ(−c1B + c2) < 0,

which is a contradiction. In addition, if λ = 0, then B = 0, which is impossible. As
a result, for x ∈ kerL ∩ ∂Ω2 and λ ∈ [0, 1], we have H(x, λ) ̸= 0 . Thus,

deg{[I − (P+JQN)γ]KerL,KerL ∩ Ω2, 0}
= deg{H(·, 1),KerL ∩ Ω2, 0}
= deg{H(·, 0),KerL ∩ Ω2, 0}
= deg{I,KerL ∩ Ω2, 0}
= 1 ̸= 0.

So (A5) holds.
Next, we prove (A6). Let u0(t) ≡ 1, t ∈ [0, 1], then u0 ∈ C \ {0}, C(u0) = {x ∈

C : x(t) > 0, t ∈ [0, 1]}. We take σ(u0) = 1. Let u ∈ C(u0)∩∂Ω1, then 0 < ∥u∥ ≤ r
and u(t) ≥ m∥u∥ on [0, 1].

By (H2), for u ∈ C(u0) ∩ ∂Ω1, we have

(Ψ)u(t0) =
[(
P + JQN +Kp(I −Q)N

)
u(t)

]
t=t0

=
[
Pu(t)

]
t=t0

+
[(
JQN +Kp(I −Q)N

)
u(t)

]
t=t0

= (α− 2)

∫ 1

0

(1− s)α−3u(s)ds+ (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3f
(
s, u(s)

)
ds
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≥ (α− 2)

∫ 1

0

(1− s)α−3m∥x∥ds+ (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3f
(
s, u(s)

)
ds

≥ m∥u∥+ (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3h
(
u(s)

)
ds

= m∥u∥+ (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3 ·
h
(
u(s)

)
u(s)

u(s)ds

≥ m∥u∥+ (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3 ·
h
(
u(s)

)
u(s)

·m∥u∥ds

≥ m∥u∥+m∥u∥ · (α− 2)

∫ 1

0

G(t0, s)(1− s)α−3h(r)

r
ds

≥ m∥u∥+m∥u∥ · 1−m

m
= ∥u∥.

Thus, for all x ∈ C(u0) ∩ ∂Ω1, we have ∥x∥ ≤ σ(u0)∥Ψx∥, i.e. (A6) holds.
For u ∈ ∂Ω2, by (H2), we have[

(P + JQN) ◦ γ
]
u(t) = P (|u(t)|) + JQN(|u(t)|)

= (α− 2)

∫ 1

0

(1− s)
α−3|u(s)|ds+ (α− 2)

∫ 1

0

(1− s)
α−3

f(s, |u(s)|)ds

≥ (α− 2)

∫ 1

0

(1− s)α−3(1− κ)|u(s)|ds

≥ 0.

Thus, for u ∈ ∂Ω2, one has
[
(P + JQN) ◦ γ

]
x(t) ⊂ C. Then (A7) holds.

Next, we prove (A8). For u(t) ∈ Ω2 \ Ω1, by (H2) and (3.1), we have

Ψγu(t) =
[(
P + JQN +Kp(I −Q)N

)
◦ γ

]
u(t)

=
(
P + JQN +Kp(I −Q)N

)
|u(t)|

= P
(
|u(t)|

)
+

[
JQN +Kp(I −Q)N

]
|u(t)|

= (α− 2)

∫ 1

0

(1− s)α−3|u(s)|ds+ (α− 2)

∫ 1

0

(1− s)α−3G(t, s)f(s, |u(s)|)ds

> (α− 2)

∫ 1

0

(1− s)α−3|u(s)|ds+ (α− 2)

∫ 1

0

(1− s)α−3G(t, s)(−κ|u(s)|)ds

> (α− 2)

∫ 1

0

(1− s)α−3|u(s)|
(
1− κG(t, s)

)
ds

≥ 0.

Hence, Ψγ(Ω2 \ Ω1) ⊂ C, that is (A8) holds.
Hence, applying Theorem 2.6, BVP (1.1) has a positive solution u∗(t) on [0, 1]

with r ≤ ∥u∗(t)∥ ≤ B. This completes the proof. �

4. An example

In this section, we give an example to illustrate our main results.
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Example 4.1. Consider the fractional periodic boundary value problem{
D2.5

0+ u(t) = f(t, u(t)), 0 < t < 1,

u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1),
(4.1)

where

f(t, u) =
1

100
(1 + t2)

(
− 1

2
u+

1

2

)
.

Corresponding to BVP (4.1), we have that α = 2.5 and

G(t, s) =



1 + 2t+2.5t2−2t2.5−2.5t−1
2Γ(3.5) + Γ(1.5)

6 − Γ(1.5)(1− s)
2.5

+(t− t2 − 2
15 )

1−s
Γ(1.5) +

4+4t−10t
3Γ(2.5) (1− s)

2

+ 2(1−s)0.5(t−s)1.5

Γ(2.5) , 0 ≤ s < t ≤ 1,

1 + 2t+2.5t2−2t2.5−2.5t−1
2Γ(3.5) + Γ(1.5)

6 − Γ(1.5)(1− s)
2.5

+(t− t2 − 2
15 )

1−s
Γ(1.5) +

4+4t−10t
3Γ(2.5) (1− s)

2
, 0 ≤ t < s ≤ 1.

By simple calculation, we find that 1
15G(t, s) < 1 and if t ∈ [0, 1] and u ∈ [0, 2], one

has

− 1

15
u(t) ≤ f(t, u(t)) ≤ − 1

100
u(t) +

2

125
,

f(t, u(t)) ≤ −
∣∣f(t, u(t))∣∣+ 1

100
u(t) +

11

1000
.

So, we can choose κ = 1
15 , B = 2, c1 = 1

100 , c2 = 3
200 , b1 = 1, b2 = 1

100 , b3 = 11
1000 .

Furthermore, it is easy to verify that

c2
c1

+
8b2c2

(α− 2)b1c1
+

8b3
(α− 2)b1

= 1.916 < 2 = B.

So, (H1) is satisfied.
We take r = 0.9 ∈ [0, 2], ρ = 1, h(u) = u

2000 and q(t) = 1
100 (1 + t2). By

calculation, we obtain

f(t, u(t)) ≥ h(u) =
1

2000
u(t), (t, u) ∈ [0, 1]× (0, 0.9]

and
h(u)

u
=

1
20u(t)

u(t)
=

1

20
,

which is non-increasing on (0, 0.9].
Let t0 = 0, then we have

G(t0, s) = G(0, s) ≈ 0.99− 0.88(1− s)
2.5 − 0.5(1− s) + 1.01(1− s)

2
> 0.6 > 0.

Using the given data, we have

(α− 2)
h(r)

r

∫ 1

0

G(0, s)(1− s)α−3ds ≈ 0.00044 >
1−m

m

holds form = 0.9995. One sees that (H2) is satisfied. In consequence, the conclusion
of Theorem 3.3 implies that the problem (4.1) has a positive solution on [0, 1].
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