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A COMPREHENSIVE CLASS OF ANALYTIC BI-UNIVALENT

FUNCTIONS BY MEANS OF CHEBYSHEV POLYNOMIALS

SERAP BULUT, NANJUNDAN MAGESH AND CHINNASWAMY ABIRAMI

Abstract. In this present paper, we introduce a subclass Bµ
Σ (λ, t) of analytic

and bi-univalent functions using the Chebyshev polynomials expansions and

obtain the initial coefficient bounds and Fekete-Szegö problem. Further we
discuss its consequences.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.1)

which are analytic in the open unit disc ∆ = {z : z ∈ C and |z| < 1}. Further,
by S we will showdenote the family of all functions in A which are univalent in ∆.

For two functions f and g, analytic in ∆, we say that the function f(z) is
subordinate to g(z) in ∆, and write

f(z) ≺ g(z) (z ∈ ∆)

if there exists a Schwarz function w(z), analytic in ∆, with

w(0) = 0 and |w(z)| < 1 (z ∈ ∆)

such that
f(z) = g(w(z)) (z ∈ ∆) .

In particular, if the function g is univalent in ∆, the above subordination is equiv-
alent to

f(0) = g(0) and f(∆) ⊂ g(∆).

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥

1

4

)
,
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where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in ∆ if both f(z) and f−1(z) are
univalent in ∆. Let Σ denote the class of bi-univalent functions in ∆ given by (1.1).
Several recent investigations (see, for example, [1, 3, 5, 6, 9, 10, 12, 13, 14, 15, 17])
provide the detailed study of bi-univalent functions.

Some of the important and well-investigated subclasses of the univalent function
class S include (for example) the class S∗(α) of starlike functions of order α in ∆
and the class K(α) of convex functions of order α in ∆. By definition, we have

S∗(α) :=

{
f : f ∈ A and ℜ

(
zf ′(z)

f(z)

)
> α; z ∈ ∆; 0 ≤ α < 1

}
(1.3)

and

K(α) :=

{
f : f ∈ A and ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> α; z ∈ ∆; 0 ≤ α < 1

}
. (1.4)

For 0 ≤ α < 1, a function f ∈ Σ is in the class S∗
Σ(α) of bi-starlike function of

order α, or KΣ (α) of bi-convex function of order α if both f and f−1 are respectively
starlike or convex functions of order α.

The significance of Chebyshev polynomial in numerical analysis is increased in
both theoretical and practical points of view. Out of four kinds of Chebyshev
polynomials, many researchers dealing with orthogonal polynomials of Chebyshev.
For a brief history of Chebyshev polynomials of first kind Tn(t), the second kind
Un(t) and their applications one can refer [7, 8, 11, 2]. The Chebyshev polynomials
of the first and second kinds are well known and they are defined by

Tn(t) = cosnθ and Un(t) =
sin(n+ 1)θ

sin θ
(−1 < t < 1)

where n denotes the polynomial degree and t = cos θ.

Definition 1. For λ ≥ 1, µ ≥ 0 and t ∈ (1/2, 1], a function f ∈ Σ given by (1.1) is
said to be in the class Bµ

Σ (λ, t) if the following subordinations hold for all z, w ∈ ∆ :

(1− λ)

(
f(z)

z

)µ

+ λf ′(z)

(
f(z)

z

)µ−1

≺ H(z, t) :=
1

1− 2tz + z2
(1.5)

and

(1− λ)

(
g(w)

w

)µ

+ λg′(w)

(
g(w)

w

)µ−1

≺ H(w, t) :=
1

1− 2tw + w2
, (1.6)

where the function g = f−1 is defined by (1.2) .

We note that if t = cosα, where α ∈ (−π/3, π/3), then

H(z, t) =
1

1− 2 cosαz + z2
= 1 +

∞∑
n=1

sin(n+ 1)α

sinα
zn (z ∈ ∆).

Thus

H(z, t) = 1 + 2 cosαz + (3 cos2 α− sin2 α)z2 + . . . (z ∈ ∆).

From [16], we can write

H(z, t) = 1 + U1(t)z + U2(t)z
2 + . . . (z ∈ ∆, t ∈ (−1, 1))
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where

Un−1 =
sin(n arccos t)√

1− t2
(n ∈ N)

are the Chebyshev polynomials of the second kind and we have

Un(t) = 2tUn−1(t)− Un−2(t),

and

U1(t) = 2t, U2(t) = 4t2−1, U3(t) = 8t3−4t, U4(t) = 16t4−12t2+1, . . . . (1.7)

The generating function of the first kind of Chebyshev polnomial Tn(t), t ∈
[−1, 1], is given by

∞∑
n=0

Tn(t)z
n =

1− tz

1− 2tz + z2
(z ∈ ∆).

The first kind of Chebyshev polnomial Tn(t) and second kind of Chebyshev
polnomial Un(t) are connected by:

dTn(t)

dt
= nUn−1(t); Tn(t) = Un(t)− tUn−1(t); 2Tn(t) = Un(t)− Un−2(t).

Remark 1. (i) For µ = 1, we get the class B1
Σ (λ, t) = BΣ (λ, t) consists of functions

f ∈ Σ satisfying the condition

(1− λ)
f (z)

z
+ λf ′ (z) ≺ H(z, t) =

1

1− 2tz + z2

and

(1− λ)
g (w)

w
+ λg′ (w) ≺ H(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (1.2) . This class introduced and studied
by Bulut et al. [4].

(ii) For λ = 1, we have a class Bµ
Σ (1, t) = Bµ

Σ (t) consists of bi-Bazilevič functions:

f ′ (z)

(
f (z)

z

)µ−1

≺ H(z, t) =
1

1− 2tz + z2

and

g′ (w)

(
g (w)

w

)µ−1

≺ H(w, t) =
1

1− 2tw + w2
,

where the function g = f−1 is defined by (1.2) .
(iii) For λ = 1 and µ = 1, we have the class B1

Σ (1, t) = BΣ (t) consists of
functions f satisfying the condition

f ′ (z) ≺ H(z, t) =
1

1− 2tz + z2

and

g′ (w) ≺ H(w, t) =
1

1− 2tw + w2
,

where the function g = f−1 is defined by (1.2) .
(iv) For λ = 1 and µ = 0, we have the class B0

Σ (1, t) = S∗
Σ (t) consists of functions

f satisfying the condition

zf ′(z)

f(z)
≺ H(z, t) =

1

1− 2tz + z2
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and
wg′ (w)

g (w)
≺ H(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (1.2) .

In this present paper, we define a subclass Bµ
Σ (λ, t) of analytic and bi-univalent

functions using the Chebyshev polynomials expansions and obtain the initial coef-
ficient bounds and Fekete-Szegö problem. Further we discuss its consequences.

2. Main results

Theorem 1. For λ ≥ 1, µ ≥ 0 and t ∈ (1/2, 1], let the function f ∈ Σ given by
(1.1) be in the class Bµ

Σ (λ, t) .Then

|a2| ≤
2t
√
2t√∣∣∣(µ+ λ)

2 − 2 [2(µ+ λ)2 − (µ+ 2λ)(µ+ 1)] t2
∣∣∣ , (2.1)

|a3| ≤
4t2

(µ+ λ)
2 +

2t

µ+ 2λ
, (2.2)

and for some η ∈ R,

∣∣a3 − ηa22
∣∣ ≤


2t

µ+2λ , |η − 1| ≤ |(µ+λ)2−2[2(µ+λ)2−(µ+2λ)(µ+1)]t2|
4(µ+2λ)t2

8|η−1|t3

|(µ+λ)2−2[2(µ+λ)2−(µ+2λ)(µ+1)]t2| , |η − 1| ≥ |(µ+λ)2−2[2(µ+λ)2−(µ+2λ)(µ+1)]t2|
4(µ+2λ)t2

.

(2.3)

Proof. Let the function f ∈ Σ given by (1.1) be in the class Bµ
Σ (λ, t) . From (1.5)

and (1.6), we have

(1− λ)

(
f(z)

z

)µ

+ λf ′(z)

(
f(z)

z

)µ−1

= 1 + U1(t)p(z) + U2(t)p
2(z) + · · · (2.4)

and

(1− λ)

(
g(w)

w

)µ

+ λg′(w)

(
g(w)

w

)µ−1

= 1 + U1(t)q(w) + U2(t)q
2(w) + · · · (2.5)

for some analytic functions

p(z) = c1z + c2z
2 + c3z

3 + · · · (z ∈ ∆), (2.6)

and

q(w) = d1w + d2w
2 + d3w

3 + · · · (w ∈ ∆), (2.7)

such that p(0) = q(0) = 0, |p(z)| < 1 (z ∈ ∆) and |q(w)| < 1 (w ∈ ∆) . It is
well-known that if |p(z)| < 1 and |q(w)| < 1, then

|cj | ≤ 1 and |dj | ≤ 1 for all j ∈ N. (2.8)

From (2.4), (2.5), (2.6) and (2.7), we have

(1−λ)

(
f(z)

z

)µ

+λf ′(z)

(
f(z)

z

)µ−1

= 1+U1(t)c1z+
[
U1(t)c2 + U2(t)c

2
1

]
z2 + · · ·

(2.9)
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and

(1−λ)

(
g(w)

w

)µ

+λg′(w)

(
g(w)

w

)µ−1

= 1+U1(t)d1w+
[
U1(t)d2 + U2(t)d

2
1

]
w2+· · · .

(2.10)
Equating the coefficients in (2.9) and (2.10), we get

(µ+ λ)a2 = U1(t)c1 (2.11)

(µ+ 2λ)

[
µ− 1

2
a22 + a3

]
= U1(t)c2 + U2(t)c

2
1 (2.12)

− (µ+ λ)a2 = U1(t)d1 (2.13)

and

(µ+ 2λ)

[
µ+ 3

2
a22 − a3

]
= U1(t)d2 + U2(t)d

2
1. (2.14)

From (2.11) and (2.13) , we obtain

c1 = −d1 (2.15)

and
2 (µ+ λ)

2
a22 = U2

1 (t)
(
c21 + d21

)
. (2.16)

Also, by using (2.12) and (2.14) , we obtain

(µ+ 2λ) (µ+ 1) a22 = U1(t) (c2 + d2) + U2(t)
(
c21 + d21

)
. (2.17)

By using (2.16) in (2.17) , we get[
(µ+ 2λ) (µ+ 1)− 2U2(t)

U2
1 (t)

(µ+ λ)
2

]
a22 = U1(t) (c2 + d2) . (2.18)

From (1.7), (2.8) and (2.18) , we have the desired inequality (2.1) . Next, by sub-
tracting (2.14) from (2.12) , we have

2 (µ+ 2λ) a3 − 2 (µ+ 2λ) a22 = U1(t) (c2 − d2) + U2(t)
(
c21 − d21

)
. (2.19)

Further, in view of (2.15), we obtain

a3 = a22 +
U1(t)

2 (µ+ 2λ)
(c2 − d2) . (2.20)

Hence using (2.16) and applying (1.7) , we get desired inequality (2.2) .
Now, by using (2.18) and (2.20) for some η ∈ R, we get

a3 − ηa22 = (1− η)

[
U3
1 (t)(c2 + d2)

(µ+ 2λ) (µ+ 1)U2
1 (t)− 2 (µ+ λ)

2
U2(t)

]
+

U1(t) (c2 − d2)

2 (µ+ 2λ)

= U1(t)

[(
h(η) +

1

2 (µ+ 2λ)

)
c2 +

(
h(η)− 1

2 (µ+ 2λ)

)
d2

]
,

where

h(η) =
U2
1 (t)(1− η)

(µ+ 2λ) (µ+ 1)U2
1 (t)− 2 (µ+ λ)

2
U2(t)

So, we conclude that

∣∣a3 − ηa22
∣∣ ≤


2t

µ+2λ , 0 ≤ |h(η)| ≤ 1
2(µ+2λ)

4 |h(η)| t , |h(η)| ≥ 1
2(µ+2λ)

.

This completes the proof of Theorem 1. �
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Taking µ = 1 in Theorem 1, we get the following consequence.

Corollary 1. [4] For λ ≥ 1 and t ∈ (1/2, 1], let the function f ∈ Σ given by (1.1)
be in the class BΣ (λ, t) .Then

|a2| ≤
2t
√
2t√∣∣∣(1 + λ)

2 − 4λ2t2
∣∣∣ ,

|a3| ≤
4t2

(1 + λ)
2 +

2t

1 + 2λ
,

and for some η ∈ R,

∣∣a3 − ηa22
∣∣ ≤


2t

1+2λ , |η − 1| ≤ |(1+λ)2−4λ2t2|
4(1+2λ)t2

8|η−1|t3
|(1+λ)2−4λ2t2| , |η − 1| ≥ |(1+λ)2−4λ2t2|

4(1+2λ)t2

.

Taking λ = 1 in Theorem 1, we get the following consequence.

Corollary 2. For µ ≥ 0 and t ∈ (1/2, 1], let the function f ∈ Σ given by (1.1) be
in the class Bµ

Σ (t) .Then

|a2| ≤
2t
√
2t√∣∣∣(µ+ 1)

2 − 2µ(µ+ 1)t2
∣∣∣ ,

|a3| ≤
4t2

(µ+ 1)
2 +

2t

µ+ 2
,

and for some η ∈ R,

∣∣a3 − ηa22
∣∣ ≤


2t

µ+2 , |η − 1| ≤ |(µ+1)2−2µ(µ+1)t2|
4(µ+2)t2

8|η−1|t3

|(µ+1)2−2µ(µ+1)t2| , |η − 1| ≥ |(µ+1)2−2µ(µ+1)t2|
4(µ+2λ)t2

.

Taking λ = 1 and µ = 1 in Theorem 1, we get the following consequence.

Corollary 3. For t ∈ (1/2, 1], let the function f ∈ Σ given by (1.1) be in the class
BΣ (t) .Then

|a2| ≤
t
√
2t√

1− t2
,

|a3| ≤ t2 +
2t

3
,

and for some η ∈ R,

∣∣a3 − ηa22
∣∣ ≤


2t
3 , |η − 1| ≤ 1−t2

3t2

2|η−1|t3
1−t2 , |η − 1| ≥ 1−t2

3t2

.

Taking λ = 1 and µ = 0 in Theorem 1, we get the following consequence.



38 S. BULUT, N. MAGESH AND C. ABIRAMI JFCA-2017/8(2)

Corollary 4. For t ∈ (1/2, 1], let the function f ∈ Σ given by (1.1) be in the class
S∗
Σ (t) .Then

|a2| ≤ 2t
√
2t,

|a3| ≤ 4t2 + t,

and for some η ∈ R,

∣∣a3 − ηa22
∣∣ ≤

 t , |η − 1| ≤ 1
8t2

8 |η − 1| t3 , |η − 1| ≥ 1
8t2

.
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