ENVIRONMENTAL IMPACT OF VOLATILE ORGANIC COMPOUNDS EMITTED FROM ASPHALT PAVEMENT

[1]

Khalifa, Rokaya, I.⁽¹⁾; Howaihy, M. A.⁽¹⁾ and Kamel, A. H.⁽²⁾

1) Department of Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University 2) Faculty of Science, Ain Shams University

ABSTRACT

Hot mix asphalt (HMA) is a major construction material used for building roads, airport runways, and parking lots (ASCE 2014). During HMA construction, a massive amount of volatile organic compounds (VOC'Ss) is emitted from the hot asphalt mixtures, creating a potential health risk to onsite workers. Few studies have quantitatively investigated (Chong *et al.*, 2013). The constituents and the potential health effects of the VOC's generated from HMA pavement construction were studied. This paper presents the results of a study in which air samples were collected at multiple locations and time points of several projects during HMA pavement construction and were their chemical compositions and concentrations subsequently characterized by using gas chromatography/mass selective detector (GC/MSD). Although the individual concentrations of the identified chemicals were found to be below various exposure limits, their collective effect on human health remains unknown and may not be ignored (Chong *et al.*, 2013).

Keywords: Asphalt; Volatile Organic Compounds (VOC's)

INTRODUCTION

The purpose of this research was to determine the origins of the majority of ambient VOC'Ss detected in Giza government in March, August, October and December of 2017 in Maryoutia Street, El Zomor street, El-Orouba street and Feisal street respectively. A preliminary study was conducted to determine whether they were being emitted from an industrial point source, or Vol. 43, No. 1, Sept. 2018 1 by personal vehicles source. The initial results showed that the greatest amount of VOC's didn't come from these alleged sources. The research samples were taken from the sites before and immediately after pavement.

Furthermore, this research shows that newly applied asphalt may continue to release VOCs after the initial pour, making asphalt one of the most important factors to be considered when testing the Ozone precursor (Kice and Sean Jason, 2005).

The majority of ozone production in the troposphere however, occurs when sunlight reacts with NOx and VOC's in a photochemical reaction (NOAA, 2001). Other byproducts are also produced depending upon the chemical species of both NOx and VOC's involved in the reaction. There are roughly about 120 species of NOx and VOC's that can be involved in this reaction (Finlayson and Pitts, 1999).

AIM OF STUDY

- The knowledge about asphalt pavement the emissions.
- The environment impact of asphalt pavement.
- The effect of the exposure VOC's on health.

MATERIALS AND METHODS

This study represents the construction, characterization concentration and chemical composition of several air sample collected from multiple location and time point of several projects during (HMA) pavement Giza zone. Gas analyzer used to measure the different pollutants and volatile organic compounds.

Vol. 43, No. 1, Sept. 2018

STATISTICAL ANALYSIS

All analysis was done using the statistical package for the social science (SPSS software version 22) on a personal computer.

Level of significance:

p value = level of significance.

p > 0.05 non significant.

 $p \le 0.05$ significant.

 $p \le 0.001$ highly significant.

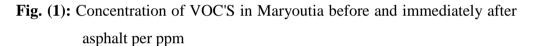
RESULTS

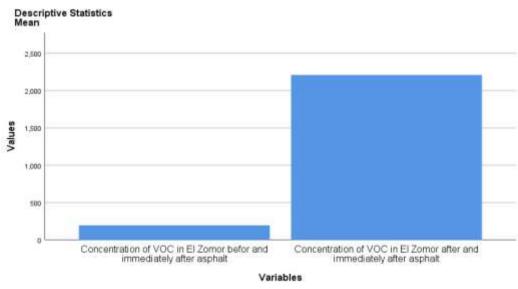
Table (1): Concentration of Air Pollutants in Maryoutia St. and El Zomor St.

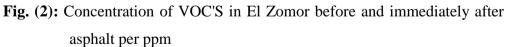
Time (min.)	Before a	asphalt	After asphalt		
Time (mm.)	Maryoutia	El Zomor	Maryoutia	El Zomor	
1	130	159	1753	1985	
2	128	158	1770	1990	
3	136	156	1790	1993	
4	120	169	1810	1999	
5	126	165	1810	2011	
6	115	172	1820	2195	
7	124	179	1821	2196	
8	146	175	1823	2200	
9	129	178	1823	2201	
10	134	188	1830	2212	
11	138	182	1833	2215	
12	146	184	1834	2215	
13	147	185	1834	2230	
14	138	189	1834	2239	
15	145	190	1835	2243	
16	137	193	1838	2243	
17	129	199	1840	2249	

before and immediately after asphalt per ppm

Khalifa, Rokaya, et al.


Table (1): Cont.					
Time (min)	Before	asphalt	After asphalt		
Time (min.)	Maryoutia	El Zomor	Maryoutia	El Zomor	
18	135	210	1841	2251	
19	139	205	1841	2254	
20	145	209	1843	2259	
21	131	212	1843	2260	
22	167	215	1843	2264	
23	162	213	1844	2279	
24	160	206	1849	2284	
25	154	217	1851	2290	
26	169	219	1854	2295	
27	154	224	1856	2297	
28	169	225	1860	2310	
29	159	215	1864	2315	
30	145	220	1895	2310	


 Table (2):
 study of VOC"s in Maryoutia and El Zomor before and immediately after asphalt per ppm


Difference in Concentration of VOC'S in Maryoutia before and immediately										
after asphalt										
Min. Max. Mean Std. Deviation p-value										
Concentration of VOC'S in Maryoutia before asphalt	115	169	141.90	14.709						
Concentration of VOC'S in Maryoutia immediately after asphalt	1753	1895	1832.73	27.235	P<0.0001					
Concentration of VOC'S in El Zomor before asphalt	156	225	193.70	21.324						
Concentration of VOC'S in El Zomor immediately after asphalt	1985	2315	2209.47	103.343	P<0.0001					

The p-value is < .00001. The result is significant at p< 0.5.

J. Environ. Sci. Institute of Environmental Studies and Research – Ain Shams University

Time (min)	Before as	sphalt	After as	After asphalt		
Time (min.)	El Orouba	Feisal	El Orouba	Feisal		
1	149	115	1730	1550		
2	150	116	1753	1561		
3	154	117	1770	1573		
4	159	119	1790	1575		
5	143	125	1794	1576		
6	146	121	1810	1590		
7	147	123	1810	1597		
8	149	130	1810	1597		
9	148	128	1813	1598		
10	149	127	1820	1603		
11	144	131	1820	1610		
12	159	133	1821	1613		
13	156	134	1823	1619		
14	156	135	1825	1621		
15	160	137	1830	1621		
16	167	138	1833	1625		
17	168	131	1834	1630		
18	169	131	1834	1635		
19	161	132	1835	1636		
20	160	129	1841	1639		
21	154	125	1843	1639		
22	153	127	1843	1640		
23	154	124	1844	1643		
24	149	129	1848	1656		
25	160	123	1849	1660		
26	164	124	1851	1660		
27	163	126	1854	1661		
28	160	133	1860	1667		
29	155	132	1891	1669		
30	150	130	1895	1680		

Table (3): Concentration of Air Pollutants in El-Orouba St. and Feisal St.before and immediately after asphalt per ppm

J. Environ. Sci.
Institute of Environmental Studies and Research – Ain Shams University

Table (4): Study of VOC'S in El Orouba and Feisal before and immediately after asphalt

Difference in Concentration of VOC'S in El-Orouba and Feisal before and									
immediately after asphalt									
	Min.	Max.	Mean	Std. Deviation	p-value				
Concentration of VOC'S in El Orouba before asphalt	143	169	155.20	7.151					
Concentration of VOC'S in El Orouba immediately after asphalt	1730	1895	1825.80	34.745	p<0.0001				
Concentration of VOC'S in Feisal before asphalt	115	138	127.50	6.010					
Concentration of VOC'S in Feisal immediately after asphalt	1550	1680	1621.47	34.247	p<0.0001				

The p-value is < .00001. The result is significant at p < .05.

Table (5):	Study	of	VOC'S	in	Feisal	in	winter	season	and	El-Zomor	in
	summe	er se	ason aft	er a	asphalt	rep	resentin	g tempe	ratur	e effect	

Difference in Concentration of VOC'S in Feisal in winter season and El Zomor in summer season before and after asphalt representing temperature effect.									
	Min	Max	Mean	Std. Deviation	p-value				
Concentration of VOC'S in Feisal before asphalt	115	138	127.50	6.010	p <				
Concentration of VOC'S in El Zomor before asphalt	156	225	193.70	21.324	0.0001				
Concentration of VOC'S in Feisal immediately after asphalt	1550	1680	1621.47	34.247	p<				
Concentration of VOC'S in El Zomor immediately after asphalt	1985	2315	2209.47	103.343	0.0001				

The p-value is < .00001. The result is significant at p < .05.

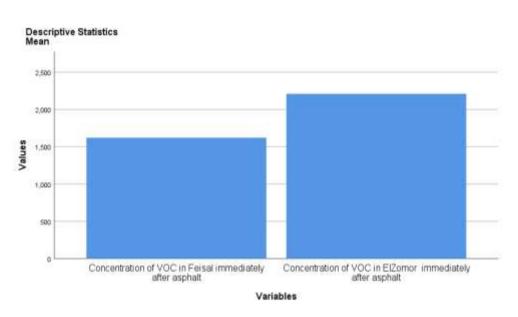
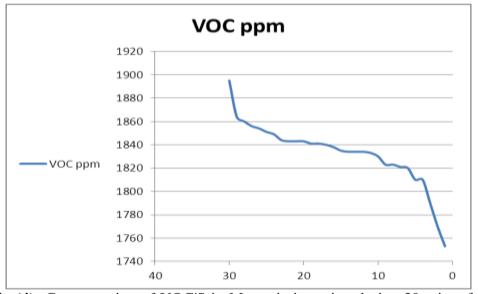
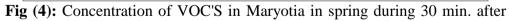




Fig (3): Concentration of VOC'S in Feisal in winter season and El Zomor in summer season after asphalt representing temperature effect.

asphalt representing increasing concentration with time

8

DISCUSSION

Volatile organic compounds (VOC'S) emission from consumer and commercial products are a significant contributing factor in the creation of air pollution in urban areas (CEPA 1999). These emissions contribute the formation of ground-level ozone and fine particulate matter, which increase the smog formation.

The measured VOC's which summarized in Table 1 shows a significant increase of VOC'S (minimum, maximum, mean and St deviation level) from 115,169,141.90 and 14.709 ppb respectively to 1753,1895,1832.73 and 27.235 ppm respectively after asphalt pavement in Maryoutia St. with p-value <0.0001 and a significant increase of VOC'S (minimum, maximum, mean and St deviation level) from 156,225,193.7 and 21.324 ppm respectively to 1985,2315,2209.47 and 103.343 ppb respectively after asphalt pavement in El-Zomor St. with p-value <0.0001 as obtained by statistical study in table 2 which indicate an extremely statistically significant increase of VOC'S due to asphalt pavement. By conventional criteria, this difference in Maryotia St. and El Zomor St. is considered to be extremely statistically significant as shown in Fig. 1 and Fig. 2 respectively.

The measured VOC's are summarized in Table 3 shows a significant increase of VOC'S (minimum, maximum, mean and St deviation level) from 143,169,155.2 and 7.151 ppm respectively to 1730,1895,1825.8 and 34.745 ppm respectively after asphalt pavement in El-Orouba St. with p-value <0.0001 and a significant increase of VOC'S (minimum, maximum, mean and St deviation level) from 115,138,127.5 and 6.01 ppm respectively to

1550,1680,1621.47 and 34.247 ppm respectively after asphalt pavement in Feisal St with p-value <0.0001 as obtained by statistical study in Table 4 which indicate an extremely statistically significant increase of VOC'S due to asphalt pavement.

Comparative study between the measured VOC's in El Zomor asphalt pavement project before and after asphalt pavement which have been carried out in summer with relatively high temperature and Feisal asphalt pavement project before and after asphalt pavement which have been carried out in winter with relatively low temperature are summarized in Table 5.

An increase of VOC'S (minimum, maximum, mean and St deviation level) before asphalt pavement in El Zomor 156,225,193.7 and 21.324 than before asphalt pavement in Feisal 115,138,127.5 and 6.01 before asphalt with p-value < 0.0001.

An increase of VOC'S (minimum, maximum, mean and St deviation level) after asphalt pavement in El Zomor 1985,2315,2209.47 and 103.343 than after asphalt pavement in Feisal 1550,1680,1621.47 and 34.247 after asphalt with p-value <0.0001.

By conventional criteria, this difference is considered to be extremely statistically significant the increase in VOC's level due to seasonal temperature increase from Winter (Feisal pavement project) to summer (El-Zomor pavement project) as shown in Fig 3.

Statistical study of the increase in VOC's level during 30 min readings is shown in table 1 and shown in fig 4.

Vol. 43, No. 1, Sept. 2018

CONCLUSION AND RECOMMENDATION

This paper has presented evidence of a previously uninvestigated point source for VOC's. More research should be conducted to investigate this subject and to determine the scale of pollution from asphalt VOC's.

Asphalt should not be poured during peak ozone months. Time temperature and other meteorological factors should be assessed.

REFERENCES

- ASCE (2014): American Society of Civil Engineers. ISSN: 0733-9364. Accession Number: 01515870 Serial URL: http://ascelibrary.org/journal/jcemd4
- CEPA (1999): Canadian Environmental Protection Act, 1999. An Act respecting pollution prevention and the protection of the environment and human health in order to contribute to sustainable development.
- Dan Chong; Yuhong Wang, P.E.; Hai Guo and Yujie Lu, A.M. (2013): ASCE Volatile Organic Compounds Generated in Asphalt Pavement Construction and Their Health Effects on Workers.
- Finlayson-Pitts, B., Pitts, J., (1999): Chemistry of the Upper and Lower Atmosphere, Academic Press.
- Kice and Sean Jason (2005): Identifying asphalt construction as a point source emitter of volatile organic compounds near the Louisiana State. University ozone monitoring station (2005). LSU Master's Theses. 1839. https://digitalcommons.lsu.edu/gradschool_theses /1839
- NOAA (2018): National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2001, published online January 2002, retrieved on June 9, 2018 from https://www.ncdc.noaa.gov/sotc/global/200113.

Vol. 43, No. 1, Sept. 2018

U.S. EPA (2015): United States Environmental Protection Agency 2015. 2011 National Emissions Inventory, Version 2, technical support document. Draft report. https://www.epa.gov/sites/production/ files/2015-10/documents/nei2011v2_tsd_14aug2015.pdf (PDF).

التأثير البيئي للمركبات العضوية الطيارة المنبعثة من الخلطات الاسغلتية

[۱]

ر**قية ابراهيم خليفه^(۱)– محمود أحمد حويحى^(۱)– أيمن حلمى كامل^(٢)) ١) قسم العلوم الأساسية، معهد البحوث والدراسات البيئية، جامعة عين شمس ٢) قسم الكيمياء التحليلية، كلية العلوم، جامعة عين شمس**

المستخلص

مزيج الاسفلت الساخن (HMA) هو مادة رئيسية تستخدم لبناء الطرق، ومدارج المطارات، ومواقف السيارات. خلال استخدام HMA تتبعث كمية هائلة من المركبات العضوية المتطايرة (VOC's) من خليط الاسقلت الساخن مما ينتج مخاطر صحية محتملة للعمال فى الموقع. وقد حققت دراسات قليلة في الاثار الصحية المحتملة من المركبات العضوية المتطايرة المتولدة فى عملية الرصف HMA. يعرض هذا البحث نتائج دراسة جمعت فيها عينات هواء فى مواقع ونقاط زمنية متعددة من عدة مشاريع خلال عملية الرصف HMA. وعلى الرغم من ان التركيزات تأكد ارتفاعها نتيجة عملية السفلته، إلا أن تأثيرها الجماعى على صحة الانسان لا زال غير معروف ولا يمكن تجاهله. يساهم هذا البحث فى معرفة تركيزات المركبات العضوية المتطايرة المتولدة فى بناء رصيف الاسقلت والمخاطر الصحية المحتملة على العمال، وتدابير التخفيف الممكنة.

وبدراسة المواد العضوية المتطايرة فى أربع مناطق بمحافظة الجيزة فى الاربع مواسم للتعرف على مستويات المواد العضوية المتطايرة من عملية السفلته فى الشتاء والصيف والربيع والخريف، وهل توجد فروق بين هذه المستويات نتيجة استخدام الاسفلت ونتيجة اختلاف درجات الحرارة، تم الحصول على نتائج فى الاربع مناطق (المريوطية – الزمر – العروبة – فيصل) بمتوسطات ما قبل الاسفلت (127.5 ppb،155.2،193.7،141.9) على التوالي وبمتوسطات ما بعد الاسفلت وهد لات ريفات (المريوطية – الزمر – العروبة – فيصل) بمتوسطات ما ولا السفلت الما بعد الاسفلت (1621،1825،2209،ppb1832) على التوالي ومعدلات ثقة (P value < 0.0001)، كما وجد ان اقل ارتفاع للمواد المتطايرة حدث فى فصل الشتاء بمنطقة فيصل واعلاها فى فصل الصيف بمنطقة الزمر، كما وجد ان الارتفاع يكون متناسباً طرديا مع الوقت ما بعد اضافة الأسفلت.

Vol. 43, No. 1, Sept. 2018