
Journal of Fractional Calculus and Applications

Vol. 8(2) July 2017, pp. 68-78.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

RELATIVE TYPE AND RELATIVE WEAK TYPE BASED

GROWTH PROPERTIES OF ENTIRE FUNCTIONS OF SEVERAL

COMPLEX VARIABLES

SANJIB KUMAR DATTA AND TANMAY BISWAS

Abstract. In the paper we wish to introduce the idea of relative type and
relative weak type of entire functions of several complex variables with respect

to another entire function of several complex variables and prove some related
growth properties of it.

1. Introduction, Definitions and Notations

Let f be an entire function of two complex variables holomorphic in the
closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and Mf (r1, r2) = max {|f (z1, z2)| : |zi| ≤ ri, i = 1, 2}. Then in view of maximum
principal and Hartogs theorem {[8], p. 2, p. 51}, Mf (r1, r2) is an increasing func-
tions of r1, r2.

The following definition is well known:

Definition 1. {[8], p. 339, (see also [1])} The order v2
ρf of an entire function

f(z1, z2) is defined as

v2ρf = lim sup
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
= lim sup

r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
.

We see that the order v2ρf of an entire function f(z1, z2) is defined in
terms of the growth of f(z1, z2) with respect to the exponential function exp (z1z2).
However, In the same way one can define the lower order of f(z1, z2) denoted by

v2λf as follows :

v2λf = lim inf
r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
= lim inf

r1,r2→∞

log logMf (r1, r2)

logMexp(z1z2) (r1, r2)
.
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An entire function of two complex variables for which order and lower order
are the same is said to be of regular growth. Functions which are not of regular
growth are said to be of irregular growth.

The rate of growth of an entire function generally depends upon the order
( lower order) of it. The entire function with higher order is of faster growth than
that of lesser order. But if orders of two entire functions are the same, then it is
impossible to detect the function with faster growth. In that case, it is necessary
to compute another class of growth indicators of entire functions called their types
and thus one can define type of an entire function f(z1, z2) denoted by v2σf in the
following way:

Definition 2. The type v2σf of an entire function f(z1, z2) is defined as

v2σf = lim sup
r1,r2→∞

logMf (r1, r2)

[r1r2]
v2ρf

, 0 < v2ρf < ∞ .

Similarly, the lower type v2σf of an entire function f(z1, z2) may be defined as

v2σf = lim inf
r1,r2→∞

logMf (r1, r2)

[r1r2]
v2ρf

, 0 < v2ρf < ∞ .

Analogusly to determine the relative growth of two entire functions of two
complex variables having same non zero finite lower orders one may introduce the
definition of weak type v2τf of f(z1, z2) of finite positive lower order v2λf in the
following way:

Definition 3. The weak type v2τf of an entire function f(z1, z2) of finite positive
lower order v2λf is defined by

v2τf = lim inf
r1,r2→∞

logMf (r1, r2)

[r1r2]
v2λf

, 0 < v2λf < ∞ .

Similarly, one may define the growth indicator v2τf of an entire function f(z1, z2)
of finite positive lower order v2λf in the following way:

v2τf = lim sup
r1,r2→∞

logMf (r1, r2)

[r1r2]
v2λf

, 0 < v2λf < ∞ .

If f is non-constant then Mf (r) is strictly increasing and continuous, and
its inverse Mf

−1 : (|f (0)| ,∞) → (0,∞) exists and is such that lim
s→∞

Mf
−1 (s) = ∞.

Bernal {[2], [3]} introduced the definition of relative order of g with respect to f ,
denoted by ρf (g) as follows :

ρg (f) = inf {µ > 0 : Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

The definition coincides with the classical one [14] if g (z) = exp z.
During the past decades, several authors ( see [5],[9],[10],[11],[12],[13]) made

closed investigations on the properties of relative order of entire functions of single
variable. In the case of relative order, it was then natural for Banerjee and Dutta [4]
to define the relative order of entire functions of two complex variables as follows:
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Definition 4. [4] The relative order between two entire functions of two complex
variables denoted by v2ρg (f) is defined as:

v2ρg (f) = inf {µ > 0 : Mf (r1, r2) < Mg (r
µ
1 , r

µ
2 ) ; r1 ≥ R (µ) , r2 ≥ R (µ)}

= lim sup
r1,r2→∞

logM−1
g Mf (r1, r2)

log (r1r2)

where f and g are entire functions holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}
and the definition coincides with Definition 1 {see [4]} if g (z) = exp (z1z2) .

Extending this notion, Dutta [7] introduced the idea of relative order of
entire functions of several complex variables in the following way:

Definition 5. [7] Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
of n complex variables z1, z2, ..., zn with maximum modulus functions
Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively then the relative order of f with
respect to g, denoted by vnρg (f) is defined by

vnρg (f) = inf {µ > 0 : Mf (r1, r2, ..., rn) < Mg (r
µ
1 , r

µ
2 , ..., r

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

The above definition can equivalently be written as

vnρg (f) = lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Similarly, one can define the relative lower order of f with respect to g denoted
by vnλg (f) as follows :

vnλg (f) = lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Also an entire function of several complex variables for which order and lower
order are the same is said to be of regular growth. The function exp (z1z2...zn) is an
example of regular growth of entire function of several complex variables. Further
the functions which are not of regular growth are said to be of irregular growth.

Now in the case of relative order of entire functions of several complex
variables, it therefore seems reasonable to define suitably the relative type and
relative weak type respectively in order to compare the relative growth of two entire
functions of several complex variables having same non zero finite relative order
or relative lower order with respect to another entire function of several complex
variables. Their definitions are as follows:

Definition 6. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
such that 0 < vn

ρg (f) < ∞. Then the relative type vnσg (f) of f(z1, z2, ..., zn) with
respect to g(z1, z2, ..., zn) is defined as :

vnσg (f) = inf
{
k > 0 : Mf (r1, r2, ..., rn) < Mg(kr

vn
ρg(f)

1 , krvn
ρg(f)

2 , ..., krvn
ρg(f)

n )

for all sufficiently large values of r1, r2, ..., rn} .

Equivalent formula for vnσg (f) is

vn
σg (f) = lim sup

r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

.
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Likewise, one can define the relative lower type of an entire function f(z1, z2, ..., zn)
with respect to an entire function g(z1, z2, ..., zn) denoted by vn

σg (f) as follows :

vn
σg (f) = lim inf

r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]vn
ρg(f)

, 0 <
vn
ρg (f) < ∞ .

Definition 7. The relative weak type vn
τg (f) of an entire function f(z1, z2, ..., zn)

with respect to another entire function g(z1, z2, ..., zn) having finite positive relative
lower order vn

λg (f) is defined as:

vn
τg (f) = lim inf

r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]vn
λg(f)

.

Also one may define the growth indicator vnτg (f) of an entire function f(z1, z2, ..., zn)
with respect to an entire function g(z1, z2, ..., zn) in the following way :

vnτg (f) = lim sup
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnλg(f)

, 0 < vnλg (f) < ∞ .

If we consider g(z1, z2, ..., zn) = exp (z1z2...zn) , then Definition 5, Definition
6 and Definition 7 reduces to the following classical definition of order (lower order),
type (lower type) and weak type in connection with several complex variables:

Definition 8. The order vnρf and the lower order vnλf of an entire function
f(z1, z2, ..., zn) are defined as

vnρf = lim sup
r1,r2,...,rn→∞

log[2] Mf (r1, r2, ..., rn)

log (r1r2...rn)
and

vnλf = lim inf
r1,r2,...,rn→∞

log[2] Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Definition 9. Let f(z1, z2, ..., zn) be an entire function such that 0 < vnρf < ∞.
Then the type vnσf and the lower type vnσf of an entire function f(z1, z2, ..., zn)
are defined as follows:

vnσf = lim sup
r1,r2,...,rn→∞

logMf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

and

vnσf = lim inf
r1,r2,...,rn→∞

logMf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

, 0 < vnρf < ∞ .

Definition 10. Let f(z1, z2, ..., zn) be an entire function such that 0 < vnλf < ∞.
Then the weak type vn

τf of an entire function f(z1, z2, ..., zn) is defined as:

vn
τf = lim inf

r1,r2,...,rn→∞

logMf (r1, r2, ..., rn)

[r1r2...rn]
vnλf

.

Also one may define the growth indicator vnτf of an entire function f(z1, z2, ..., zn)
in the following way :

vnτf = lim sup
r1,r2,...,rn→∞

logMf (r1, r2, ..., rn)

[r1r2...rn]
vnλf

, 0 < vnλf < ∞ .

In the paper we study some relative growth properties of entire functions of
several complex variables with respect to another entire function of several complex
variables on the basis of relative type and relative weak type of several complex
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variables. We do not explain the standard definitions and notations in the theory
of entire function of two complex variables as those are available in [8].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [6] Let f(z1, z2, ..., zn) be an entire function with 0 ≤ vnλf ≤ vnρf < ∞
and g(z1, z2, ..., zn) be entire of regular growth . Then

vnλg (f) =
vnλf

vnλg
and vnρg (f) =

vnρf

vnρg
.

Lemma 2. [6] Let f(z1, z2, ..., zn) be an entire function with regular growth and
g(z1, z2, ..., zn) be entire with 0 ≤ vnλg ≤ vnρg < ∞. Then

vnλg (f) =
vnρf

vnρg
and vnρg (f) =

vnλf

vnλg
.

3. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
with finite non-zero order. Also let g(z1, z2, ..., zn) be of regular growth. Then[

vnσf

vnσg

] 1
v2ρg

≤ vnσg (f) ≤ min

{[
vnσf

vnσg

] 1
vnρg

,

[
vnσf

vnσg

] 1
vnρg

}

≤ max

{[
vnσf

vnσg

] 1
vnρg

,

[
vnσf

vnσg

] 1
vnρg

}
≤ vnσg (f) ≤

[
vnσf

vnσg

] 1
vnρg

.

Proof. From the definitions of vnσf and vnσf , we have for all sufficiently large values
of r1, r2, ..., rn that

Mf (r1, r2, ..., rn) ≤ exp {(vnσf + ε) [r1r2...rn]
vnρf } , (1)

Mf (r1, r2, ..., rn) ≥ exp {(vnσf − ε) [r1r2...rn]
vnρf } (2)

and also for a sequence of values of r1, r2, ..., rn tending to infinity, we get that

Mf (r1, r2) ≥ exp {(vnσf − ε) [r1r2...rn]
vnρf } , (3)

Mf (r1, r2) ≤ exp {(vnσf + ε) [r1r2...rn]
vnρf } . (4)

Similarly from the definitions of vnσg and vnσf , it follows for all sufficiently large
values of r1, r2, ..., rn that

Mg (r1, r2, ..., rn) ≤ exp {(vnσg + ε) [r1r2...rn]
vnρg}

i.e., [r1r2...rn] ≤ M−1
g [exp {(vnσg + ε) [r1r2...rn]

vnρg}]

i.e., M−1
g (r1, r2, ..., rn) ≥

[(
log (r1r2...rn)

(vnσg + ε)

) 1
vnρg

]
, (5)

Mg (r1, r2, ..., rn) ≥ exp {(vnσ − ε) [r1r2...rn]
vnρg}

i.e., [r1r2...rn] ≥ M−1
g [exp {(vnσ − ε) [r1r2...rn]

vnρg}]

i.e., M−1
g (r1, r2, ..., rn) ≤

[(
log (r1r2...rn)

(vnσg − ε)

) 1
vnρg

]
(6)
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and for a sequence of values of r1, r2, ..., rn tending to infinity, we obtain that

Mg (r1, r2, ..., rn) ≥ exp {(vnσg − ε) [r1r2...rn]
vnρg}

i.e., [r1r2...rn] ≥ M−1
g [exp {(vnσg − ε) [r1r2...rn]

vnρg}]

i.e., M−1
g (r1, r2, ..., rn) ≤

[(
log (r1r2...rn)

(vnσg − ε)

) 1
vnρg

]
, (7)

Mg (r1, r2, ..., rn) ≤ exp {(vnσg + ε) [r1r2...rn]
vnρg}

i.e., [r1r2...rn] ≤ M−1
g [exp {(vnσg + ε) [r1r2...rn]

vnρg}]

i.e., M−1
g (r1, r2, ..., rn) ≥

[(
log (r1r2...rn)

(vnσg − ε)

) 1
vnρg

]
. (8)

Now from (3) and in view of (5) , we get for a sequence of values of r1, r2, ..., rn
tending to infinity that

M−1
g Mf (r1, r2, ..., rn) ≥ M−1

g [exp {(vnσf − ε) [r1r2...rn]
vnρf }]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[(
log exp {(vnσf − ε) [r1r2...rn]

vnρf }
(vnσg + ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≥
[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

.

As ε (> 0) is arbitrary, in view of Lemma 1 it follows that

lim sup
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≥
[
vnσf

vn
σg

] 1
vnρg

i.e., vnσg (f) ≥
[
vnσf

vnσg

] 1
vnρg

. (9)

Analogously from (2) and in view of (8) , it follows for a sequence of values of
r1, r2, ..., rn tending to infinity that

M−1
g Mf (r1, r2, ..., rn) ≥ M−1

g

[
exp

{
(vnσf − ε) [r1r2...rn]

vnρf
}]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[(
log exp {(vnσf − ε) [r1r2...rn]

vnρf }
(vnσg + ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≥
[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

.
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Since ε (> 0) is arbitrary, we get from above and Lemma 1 that

lim sup
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≥
[
vnσf

vnσg

] 1
vnρg

i.e., vnσg (f) ≥
[
vnσf

vnσg

] 1
vnρg

. (10)

Again in view of (6) we have from (1) , for all sufficiently large values of r1, r2, ..., rn
that

M−1
g Mf (r1, r2, ..., rn) ≤ M−1

g [exp {(vnσf + ε) [r1r2...rn]
vnρf }]

i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[(
log exp {(vnσf + ε) [r1r2...rn]

vnρf }
(vnσg − ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[
(vnσf + ε)

(vn
σg − ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≤
[
(vnσf + ε)

(vnσg − ε)

] 1
vnρg

.

Since ε (> 0) is arbitrary, we obtain in view of Lemma 1 that

lim sup
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≤
[
vnσf

vnσg

] 1
vnρg

i.e., vnσg (f) ≤
[
vnσf

vnσg

] 1
vnρg

. (11)

Again from (2) and in view of (5) , we get for all sufficiently large values of r1, r2, ..., rn
that

M−1
g Mf (r1, r2, ..., rn) ≥ M−1

g [exp {(vnσf − ε) [r1r2...rn]
vnρf }]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[(
log exp {(vnσf − ε) [r1r2...rn]

vnρf }
(vnσg + ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≥

[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≥
[
(vnσf − ε)

(vnσg + ε)

] 1
vnρg

.

As ε (> 0) is arbitrary, it follows from above and Lemma 1 that

lim inf
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≥
[
vnσf

vnσg

] 1
vnρg

i.e., vnσg (f) ≥
[
vnσf

vnσg

] 1
vnρg

. (12)

Also in view of (7) , we get from (1) for a sequence of values of r1, r2, ..., rn tending
to infinity that

M−1
g Mf (r1, r2, ..., rn) ≤ M−1

g [exp {(vnσf + ε) [r1r2...rn]
vnρf }]
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i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[(
log exp {(vnσf + ε) [r1r2...rn]

vnρf }
(vnσg − ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[
(vnσf + ε)

(vnσg − ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≤
[
(vnσf + ε)

(vnσg − ε)

] 1
vnρg

.

Since ε (> 0) is arbitrary, we get from Lemma 1 and above that

lim inf
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≤
[
vnσf

vnσg

] 1
vnρg

i.e., vnσg (f) ≤
[
vnσf

vnσg

] 1
vnρg

. (13)

Similarly from (4) and in view of (6) , it follows for a sequence of values of r1, r2, ..., rn
tending to infinity that

M−1
g Mf (r1, r2, ..., rn) ≤ M−1

g [exp {(vnσf + ε) [r1r2...rn]
vnρf }]

i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[(
log exp {(vnσf + ε) [r1r2...rn]

vnρf }
(vnσg − ε)

) 1
vnρg

]

i.e., M−1
g Mf (r1, r2, ..., rn) ≤

[
(vnσf + ε)

(vnσg − ε)

] 1
vnρg

· [r1r2...rn]
vnρf

vnρg

i.e.,
M−1

g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρf

vnρg

≤
[
(vnσf + ε)

(vnσg − ε)

] 1
vnρg

.

As ε (> 0) is arbitrary, we obtain from Lemma 1 and above that

lim inf
r1,r2,...,rn→∞

M−1
g Mf (r1, r2, ..., rn)

[r1r2...rn]
vnρg(f)

≤
[
vnσf

vnσg

] 1
vnρg

i.e., vnσg (f) ≤
[
vnσf

vnσg

] 1
vnρg

. (14)

Thus the theorem follows from (9) , (10) , (11) , (12) , (13) and (14) . �

Theorem 2. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
with finite non-zero order. Also let f(z1, z2, ..., zn) be of regular growth. Then[

vnτf

vnτg

] 1
v2λg

≤ vnσg (f) ≤ min

{[
vnτf

vnτg

] 1
vnλg

,

[
vnτf

vnτg

] 1
vnλg

}

≤ max

{[
vn
τf

vnτg

] 1
vnλg

,

[
vn
τf

vnτg

] 1
vnλg

}
≤ vnσg (f) ≤

[
vnτf

vnτg

] 1
vnλg

.
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Proof. From the definitions of vnτf and vnτf , we have for all sufficiently large values
of r1, r2, ..., rn that

Mf (r1, r2, ..., rn) ≤ exp
{
(vnτf + ε) · [r1r2...rn]vnλf

}
,

Mf (r1, r2, ..., rn) ≥ exp
{
(vnτf − ε) · [r1r2...rn]vnλf

}
and also for a sequence of values of r1, r2, ..., rn tending to infinity, we get that

Mf (r1, r2, ..., rn) ≥ exp
{
(vnτf − ε) · [r1r2...rn]vnλf

}
,

Mf (r1, r2, ..., rn) ≤ exp
{
(vnτf + ε) · [r1r2...rn]vnλf

}
.

Similarly from the definitions of v\nτg and vnτg, it follows for all sufficiently large
values of r1, r2, ..., rn that

Mg (r1, r2, ..., rn) ≤ exp
{
(vnτg + ε) [r1r2...rn]

vnλg

}
i.e., (r1r2...rn) ≤ M−1

g

[
exp

{
(vn

τg + ε) [r1r2...rn]
vnλg

}]
i.e., M−1

g (r1, r2, ..., rn) ≥

[(
log (r1r2...rn)

(vnτg + ε)

) 1
vnλg

]
,

Mg (r1, r2, ..., rn) ≥ exp
{
(vnτg − ε) [r1r2...rn]

vnλg

}
i.e., (r1r2...rn) ≥ M−1

g

[
exp

{
(vnτg − ε) [r1r2...rn]

vnλg

}]
i.e., M−1

g (r1, r2, ..., rn) ≤

[(
log (r1r2...rn)

(vnτg − ε)

) 1
vnλg

]
and for a sequence of values of r1, r2, ..., rn tending to infinity, we obtain that

Mg (r1, r2, ..., rn) ≥ exp
{
(vnτg − ε) [r1r2...rn]

vnλg

}
i.e., (r1r2...rn) ≥ M−1

g

[
exp

{
(vnτg − ε) [r1r2...rn]

vnλg

}]
i.e., M−1

g (r1, r2, ..., rn) ≤

[(
log (r1r2...rn)

(vnτg − ε)

) 1
vnλg

]
,

Mg (r1, r2, ..., rn) ≤ exp
{
(vnτg + ε) [r1r2...rn]

vnλg

}
i.e., (r1r2...rn) ≤ M−1

g

[
exp

{
(vnτg + ε) [r1r2...rn]

vnλg

}]
i.e., M−1

g (r1, r2, ..., rn) ≥

[(
log (r1r2...rn)

(vnτg − ε)

) 1
vnλg

]
.

�

Now using the same technique of Theorem 1, one can easily prove the con-
clusion of the present theorem by the help of Lemma 2 and the above inequalities.
Therefore the remaining part of the proof of the present theorem is omitted.
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Similarly in the line of Theorem 1 and Theorem 2 and with the help of
Lemma 1 and Lemma 2, one may easily prove the following two theorems and
therefore their proofs are omitted:

Theorem 3. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
with finite non-zero lower order. Also let g(z1, z2, ..., zn) be of regular growth. Then[

vnτf

vnτg

] 1
vnλg

≤ vnτg (f) ≤ min

{[
vnτf

vnτg

] 1
vnλg

,

[
vnτf

vnτg

] 1
vnλg

}

≤ max

{[
vn
τf

vnτg

] 1
vnλg

,

[
vn
τf

vnτg

] 1
vnλg

}
≤ vnτg (f) ≤

[
vnτf

vnτg

] 1
vnλg

.

Theorem 4. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions
with finite non-zero order. Also let f(z1, z2, ..., zn) be of regular growth. Then[

vnσf

vnσg

] 1
vnρg

≤ vnτg (f) ≤ min

{[
vn
σf

vnσg

] 1
vnρg

,

[
vnσf

vnσg

] 1
vnρg

}

≤ max

{[
vnσf

vnσg

] 1
vnρg

,

[
vnσf

vnσg

] 1
vnρg

}
≤ vnτg (f) ≤

[
vnσf

vnσg

] 1
vnρg

.
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