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ON THE GENERALIZED RELATIVE TYPE AND

GENERALIZED RELATIVE WEAK TYPE RELATED GROWTH

ANALYSIS OF ENTIRE FUNCTIONS

SANJIB KUMAR DATTA, TANMAY BISWAS

Abstract. In the paper we study some relative growth properties of entire
functions with respect to another entire function on the basis generalized rel-
ative type and generalized relative weak type.

1. Introduction and preliminaries

We denote by C the set of all finite complex numbers. Let f be an entire
function defined on C. We use the standard notations and definitions in the theory
of entire functions which are available in [19]. In the sequel the following two
notations are used:

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, · · · ;

log[0] x = x

and

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · · ;

exp[0] x = x.

Taking this into account, Juneja, Kapoor and Bajpai [12] defined the (p, q)-
th order and (p, q)-th lower order of an entire function f respectively as follows:

ρf (p, q) = lim sup
r→∞

log[p] Mf (r)

log[q] r
and λf (p, q) = lim inf

r→∞

log[p] Mf (r)

log[q] r
,

where p, q are any two positive integers with p ≥ q .

These definitions extended the definitions of order ρf and lower order λf of
an entire function f which are classical in complex analysis for integers p = 2 and
q = 1 since these correspond to the particular case ρf (2, 1) = ρf and λf (2, 1) = λf .
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In this connection we just recall the following definitions :

Definition 1. [12] An entire function f is said to have index-pair (p, q), p ≥ q ≥ 1
if b < ρf (p, q) < ∞ and ρf (p− 1, q − 1) is not a nonzero finite number, where
b = 1 if p = q and b = 0 if p > q. Moreover if 0 < ρf (p, q) < ∞, then

ρf (p− n, q) = ∞ for n < p, ρf (p, q − n) = 0 for n < q and

ρf (p+ n, q + n) = 1 for n = 1, 2, .... .

Similarly for 0 < λf (p, q) < ∞, one can easily verify that

λf (p− n, q) = ∞ for n < p, λf (p, q − n) = 0 for n < q and

λf (p+ n, q + n) = 1 for n = 1, 2, .... .

To compare the growth of entire functions having the same (p, q)-th order,
Juneja, Kapoor and Bajpai [13] also introduced the concepts of (p, q)-th type and
(p, q)-th lower type in the following manner :

Definition 2. [13] The (p, q) th type and the (p, q) th lower type of entire function
f having finite positive (p, q) th order ρf (p, q) (b < ρf (p, q) < ∞) are defined as :

σf (p, q) = lim sup
r→∞

log[p−1] Mf (r)(
log[q−1] r

)ρf (p,q)
and

σf (p, q) = lim inf
r→∞

log[p−1] Mf (r)(
log[q−1] r

)ρf (p,q)
, 0 ≤ σf ≤ σf ≤ ∞,

where p, q are any two positive integers, b = 1 if p = q and b = 0 for p > q .

Similarly, extending the notion of weak type as introduced by Datta and
Jha [4], one can define (p, q) -th weak type to determine the relative growth of two
entire functions having same non zero finite (p, q)-th lower order in the following
manner:

Definition 3. The (p, q) -th weak type τf (p, q) of an entire function f having
finite positive (p, q)-th lower order λf (p, q) (b < λf (p, q) < ∞) is defined by

τf (p, q) = lim inf
r→∞

log[p−1] Mf (r)(
log[q−1] r

)λf (p,q)

where p, q are any two positive integers, b = 1 if p = q and b = 0 for p > q .
Also one may define the growth indicator τf (p, q) of an entire function f

in the following way :

τf (p, q) = lim sup
r→∞

log[p−1] Mf (r)(
log[q−1] r

)λf (p,q)
, 0 < λf (p, q) < ∞.

For p = l and q = 1, the above definitions reduces to generalized order ρ
[l]
f

[17] (respectively, generalized lower order λ
[l]
f ) which are as follows:
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Definition 4. [17] The generalized order ρ
[l]
f (respectively, generalized lower order

λ
[l]
f ) of an entire function f is defined as

ρ
[l]
f = lim sup

r→∞

log[l] Mf (r)

log logMexp z (r)
= lim sup

r→∞

log[l] Mf (r)

log r(
respectively λ

[l]
f = lim inf

r→∞

log[l] Mf (r)

log logMexp z (r)
= lim inf

r→∞

log[l] Mf (r)

log r

)
where l ≥ 1.

Definition 5. The generalized type σ
[l]
f and generalized lower type σ

[l]
f of an entire

function f are defined as

σ
[l]
f = lim sup

r→∞

log[l−1] Mf (r)

rρf
and σ

[l]
f = lim inf

r→∞

log[l−1] Mf (r)

rρf
, 0 < ρ

[l]
f < ∞.

where l ≥ 1. Moreover, when l = 2 then σ
[2]
f and σ

[2]
f are correspondingly denoted

as σf and σf which are respectively known as type and lower type of entire f.

Definition 6. The generalized weak type τ
[l]
f for l ≥ 1 of an entire function f of

finite positive generalized lower order λ
[l]
f are defined by

τ
[l]
f = lim inf

r→∞

log[l−1] Mf (r)

rλf
, 0 < λ

[l]
f < ∞.

Also one may define the growth indicator τ
[l]
f of an entire function f in the

following way :

τ
[l]
f = lim sup

r→∞

log[l−1] Mf (r)

rλf
, 0 < λ

[l]
f < ∞.

For l = 2, the above definition reduces to the classical definition as established by

Datta and Jha [4]. Also τf and τf are stand for τ
[2]
f and τ

[2]
f .

For any two entire functions f and g, Bernal {[1], [2]} initiated the definition
of relative order of f with respect to g, indicated by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
,

which keeps away from comparing growth just with exp z to find out order of entire
functions as we see in the earlier and of course this definition corresponds with the
classical one [18] for g = exp z.

Analogously, one may define the relative lower order of f with respect to g
denoted by λg (f) as

λg (f) = lim inf
r→∞

logM−1
g Mf (r)

log r
.

To compare the relative growth of two entire functions having same non
zero finite relative order with respect to another entire function, Roy [16] recently
introduced the notion of relative type of two entire functions in the following man-
ner:
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Definition 7. [16] Let f and g be any two entire functions such that 0 < ρg (f) <
∞. Then the relative type σg (f) of f with respect to g is defined as :

σg (f)

= inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}
= lim sup

r→∞

M−1
g Mf (r)

rρg(f)
.

Likewise one can define the relative lower type of an entire function f with
respect to an entire function g denoted by σg (f) as follows :

σg (f) = lim inf
r→∞

M−1
g Mf (r)

rρg(f)
, 0 < ρg (f) < ∞ .

Analogously to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [9] introduced the definition of relative weak type of an entire
function f with respect to another entire function g of finite positive relative lower
order λg (f) in the following way:

Definition 8. [9] The relative weak type τg (f) of an entire function f with respect
to another entire function g having finite positive relative lower order λg (f) is
defined as:

τg (f) = lim inf
r→∞

M−1
g Mf (r)

rλg(f)
.

Also one may define the growth indicator τg (f) of an entire function f with respect
to an entire function g in the following way :

τg (f) = lim sup
r→∞

M−1
g Mf (r)

rλg(f)
, 0 < λg (f) < ∞ .

Lahiri and Banerjee [14] gave a more generalized concept of relative order
in the following way:

Definition 9. [14] If l ≥ 1 is a positive integer, then the l- th generalized relative

order of f with respect to g, denoted by ρ
[l]
g (f) is defined by

ρ[l]g (f) = inf
{
µ > 0 : Mf (r) < Mg

(
exp[l−1] rµ

)
for all r > r0 (µ) > 0

}
= lim sup

r→∞

log[l] M−1
g Mf (r)

log r
.

Clearly ρ
[1]
g (f) = ρg (f) and ρ

[1]
exp z (f) = ρf .

Likewise one can define the generalized relative lower order of f with respect to

g denoted by λ
[l]
g (f) as

λ[l]
g (f) = lim inf

r→∞

log[l] M−1
g Mf (r)

log r
.

Further to compare the relative growth of two entire functions having same
non zero finite generalized relative order with respect to another entire function,
Datta et al [10] introduced the definition of generalized relative type and generalized
relative lower type of an entire function with respect to another entire function
which are as follows :
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Definition 10. [10] The generalized relative type σ
[l]
f and generalized relative

lower type σ
[l]
f of an entire function f are defined as

σ[l]
g (f) = lim sup

r→∞

log[l−1] M−1
g Mf (r)

rρ
[l]
g (f)

and

σ[l]
g (f) = lim inf

r→∞

log[l−1] M−1
g Mf (r)

rρ
[l]
g (f)

, 0 < ρ[l]g (f) < ∞.

For l = 2, Definition 10 reduces to Definition 7.
Similarly to determine the relative growth of two entire functions having

same non zero finite generalized relative lower order with respect to another entire
function, Datta et al [12] also introduced the concepts of generalized relative weak
type of an entire function with respect to another entire function in the following
manner:

Definition 11. [10] The generalized relative weak type τ
[l]
g (f) of an entire function

f with respect to another entire function g having finite positive generalized relative

lower order λ
[l]
g (f) is defined as:

τ [l]g (f) = lim inf
r→∞

log[l−1] M−1
g Mf (r)

rλ
[l]
g (f)

.

Further one may define the growth indicator τ
[l]
g (f) of an entire function f with

respect to an entire function g in the following way :

τ [l]g (f) = lim sup
r→∞

log[l−1] M−1
g Mf (r)

rλ
[l]
g (f)

, 0 < λ[l]
g (f) < ∞ .

Definition 11 also reduces to Definition 8 for particular l = 2.
For entire functions, the notions of the growth indicators such as order and

type (weak type) are classical in complex analysis and during the past decades,
several researchers have already been exploring their studies in the area of compar-
ative growth properties of composite entire functions in different directions using
the classical growth indicators. But at that time, the concepts of relative order
(generalized relative orders) relative type (generalized relative type) and relative
weak type (generalized relative weak type) of entire functions and as well as their
technical advantages of not comparing with the growths of exp z are not at all
known to the researchers of this area. Therefore the studies of the growths of
composite entire functions in the light of their relative order (generalized relative
orders) relative type (generalized relative type) and relative weak type (generalized
relative weak type) are the prime concern of this paper. In fact some light has
already been thrown on such type of works by Datta et al. in [3], [5], [6], [7], [8],
[9] and [10]. Actually in this paper we study some relative growth properties of
entire functions with respect to another entire function on the basis of generalized
relative type and generalized relative weak type which infact extend some results of
[11]. In this connection we recall one related known property which will be needed
in order to prove our results, as we see in the following theorem:

Theorem 1. [15] Let f be an entire function with 0 < λ
[m]
f ≤ ρ

[m]
f < ∞ and g be

an entire function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive
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integers such that m ≥ p. Then

λ
[m]
f

ρg (m, p)
≤ λ[p]

g (f) ≤ min

{
λ
[m]
f

λg (m, p)
,

ρ
[m]
f

ρg (m, p)

}

≤ max

{
λ
[m]
f

λg (m, p)
,

ρ
[m]
f

ρg (m, p)

}
≤ ρ[p]g (f) ≤

ρ
[m]
f

λg (m, p)
.

2. Results

In this section we present the main results of the paper.

Theorem 2. Let f be an entire function with 0 < ρ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then

max


[

σ
[m]
f

τg (m, p)

] 1
λg(m,p)

,

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

 ≤ σ[p]
g (f) ≤

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

.

Proof. From the definitions of σ
[m]
f and σ

[m]
f , we have for all sufficiently large values

of r that

Mf (r) ≤ exp[m−1]
{(

σ
[m]
f + ε

)
rρ

[m]
f

}
, (1)

Mf (r) ≥ exp[m−1]
{(

σ
[m]
f − ε

)
rρ

[m]
f

}
(2)

and also for a sequence of values of r tending to infinity, we get that

Mf (r) ≥ exp[m−1]
{(

σ
[m]
f − ε

)
rρ

[m]
f

}
, (3)

Mf (r) ≤ exp[m−1]
{(

σ
[m]
f + ε

)
rρ

[m]
f

}
. (4)

Similarly from the definitions of σg (m, p) and σg (m, p) , it follows for all sufficiently
large values of r that

Mg (r) ≤ exp[m−1]

{
(σg (m, p) + ε)

(
log[p−1] r

) 1
ρg(m,p)

}
i.e., r ≤ M−1

g

[
exp[m−1]

{
(σg (m, p) + ε)

(
log[p−1] r

) 1
ρg(m,p)

}]

i.e., M−1
g (r) ≥ exp[p−1]

( log[m−1] r

(σg (m, p) + ε)

) 1
ρg(m,p)

 and (5)

M−1
g (r) ≤ exp[p−1]

( log[m−1] r

(σg (m, p)− ε)

) 1
ρg(m,p)

 . (6)

Also for a sequence of values of r tending to infinity, we obtain that

M−1
g (r) ≤ exp[p−1]

( log[m−1] r

(σg (m, p)− ε)

) 1
ρg(m,p)

 and (7)
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M−1
g (r) ≥ exp[p−1]

( log[m−1] r

(σg (m, p) + ε)

) 1
ρg(m,p)

 . (8)

From the definitions of τ
[m]
f and τ

[m]
f , we have for all sufficiently large values of r

that

Mf (r) ≤ exp[m−1]
{(

τ
[m]
f + ε

)
rλ

[m]
f

}
, (9)

Mf (r) ≥ exp[m−1]
{(

τ
[m]
f − ε

)
rλ

[m]
f

}
(10)

and also for a sequence of values of r tending to infinity, we get that

Mf (r) ≥ exp[m−1]
{(

τ
[m]
f − ε

)
rλ

[m]
f

}
, (11)

Mf (r) ≤ exp[m−1]
{(

τ
[m]
f + ε

)
rλ

[m]
f

}
. (12)

Similarly from the definitions of τg (m, p) and τg (m, p) , it follows for all sufficiently
large values of r that

Mg (r) ≤ exp[m−1]

{
(τg (m, p) + ε)

(
log[p−1] r

)λg(m,p)
}

i.e., r ≤ M−1
g

[
exp[m−1]

{
(τg (m, p) + ε)

(
log[p−1] r

)λg(m,p)
}]

i.e., M−1
g (r) ≥ exp[p−1]

( log[m−1] r

(τg (m, p) + ε)

) 1
λg(m,p)

 and (13)

M−1
g (r) ≤ exp[p−1]

( log[m−1] r

(τg (m, p)− ε)

) 1
λg(m,p)

 . (14)

Also for a sequence of values of r tending to infinity, we obtain that

M−1
g (r) ≤ exp[p−1]

( log[m−1] r

(τg (m, p)− ε)

) 1
λg(m,p)

 and (15)

M−1
g (r) ≥ exp[p−1]

( log[m−1] r

(τg (m, p) + ε)

) 1
λg(m,p)

 . (16)

Now from (3) and in view of (13), we get for a sequence of values of r tending to
infinity that

log[p−1] M−1
g Mf (r) ≥ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f − ε

)
rρ

[m]
f

}]
i.e., log[p−1] M−1

g Mf (r)

≥ log[p−1] exp[p−1]

 log[m−1] exp[m−1]
{(

σ
[m]
f − ε

)
rρ

[m]
f

}
(τg (m, p) + ε)


1

λg(m,p)
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i.e., log[p−1] M−1
g Mf (r) ≥


(
σ
[m]
f − ε

)
(τg (m, p) + ε)


1

λg(m,p)

· r
ρ
[m]
f

λg(m,p) .

Since in view of Theorem 1,
ρ
[m]
f

λg(m,p) ≥ ρ
[p]
g (f) and as ε (> 0) is arbitrary, therefore

it follows from above that

lim sup
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

i.e., σ[p]
g (f) ≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

. (17)

Similarly from (2) and in view of (16), it follows for a sequence of values of r tending
to infinity that

log[p−1] M−1
g Mf (r) ≥ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f − ε

)
r
ρ
[m]
f

}]

i.e., log[p−1] M−1
g Mf (r)

≥ log[p−1] exp[p−1]

 log[m−1] exp[m−1]

{(
σ
[m]
f − ε

)
r
ρ
[m]
f

}
(τg (m, p)− ε)


1

λg(m,p)

i.e., log[p−1] M−1
g Mf (r) ≥


(
σ
[m]
f − ε

)
(τg (m, p) + ε)


1

λg(m,p)

· r
ρ
[m]
f

λg(m,p) .

Since in view of Theorem 1, it follows that
ρ
[m]
f

λg(m,p) ≥ ρ
[p]
g (f) and ε (> 0) is arbitrary.

Therefore we get from above that

lim sup
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

i.e., σ[p]
g (f) ≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

. (18)

Again in view of (6), we have from (1) for all sufficiently large values of r that

log[p−1] M−1
g Mf (r) ≤ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f + ε

)
rρ

[m]
f

}]
i.e., log[p−1] M−1

g Mf (r)

≤ log[p−1] exp[p−1]

 log[m−1] exp[m−1]
{(

σ
[m]
f + ε

)
rρ

[m]
f

}
(σg (m, p)− ε)


1

ρg(m,p)
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i.e., log[p−1] M−1
g Mf (r) ≤


(
σ
[m]
f + ε

)
(σg (m, p)− ε)


1

ρg(m,p)

· r
ρ
[m]
f

ρg(m,p) . (19)

As in view of Theorem 1, it follows that
ρ
[m]
f

ρg(m,p) ≤ ρ
[p]
g (f) . Since ε (> 0) is arbitrary,

we get from (19) that

lim sup
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≤

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

i.e., σ[p]
g (f) ≤

[
σ
[p]
f

σg (m, p)

] 1
ρg(m,p)

. (20)

Thus the theorem follows from (17), (18) and (20). �

The conclusion of the following corollary can be carried out from (6) and
(9); (9) and (14) respectively after applying the same technique of Theorem 2 and
with the help of Theorem 1. Therefore its proof is omitted.

Corollary 1. Let f be an entire function with 0 < λ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then

σ[p]
g (f) ≤ min


[

τ
[m]
f

τg (m, p)

] 1
λg(m,p)

,

[
τ
[m]
f

σ (m, p)

] 1
ρg(m,p)

 .

Similarly in the line of Theorem 2 and with the help of Theorem 1, one may
easily carried out the following theorem from pairwise inequalities numbers (10)
and (13) ; (7) and (9); (6) and (12) respectively and therefore its proofs is omitted:

Theorem 3. Let f be an entire function with 0 < λ
[m]
f ≤ ρ

[m]
f < ∞ and g be an

entire function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive
integers such that m ≥ p. Then[

τ
[m]
f

τg (m, p)

] 1
λg(m,p)

≤ τ [p]g (f) ≤ min


[

τ
[m]
f

σg (m, p)

] 1
ρg(m,p)

,

[
τ
[m]
f

σg (m, p)

] 1
ρg(m,p)

 .

Corollary 2. Let f be an entire function with 0 < ρ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then

τ [p]g (f) ≥ max


[

σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

,

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

 .

With the help of Theorem 1, the conclusion of the above corollary can be
carry out from (2) , (5) and (2) , (13) respectively after applying the same technique
of Theorem 2 and therefore its proof is omitted.
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Theorem 4. Let f be an entire function with 0 < ρ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then[

σ
[m]
f

τg (m, p)

] 1
λg(m,p)

≤ σ[p]
g (f) ≤ min


[

σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

,

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

 .

Proof. From (2) and in view of (13), we get for all sufficiently large values of r that

log[p−1] M−1
g Mf (r) ≥ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f − ε

)
rρ

[m]
f

}]

i.e., log[p−1] M−1
g Mf (r)

≥ log[p−1] exp[p−1]

 log[m−1] exp[m−1]
{(

σ
[m]
f − ε

)
rρ

[m]
f

}
(τg (m, p) + ε)


1

λg(m,p)

i.e., log[p−1] M−1
g Mf (r) ≥


(
σ
[m]
f − ε

)
(τg (m, p) + ε)


1

λg(m,p)

· r
ρ
[m]
f

λg(m,p) .

Now in view of Theorem 1, it follows that
ρ
[m]
f

λg(m,p) ≥ ρ
[p]
g (f) . Since ε (> 0) is

arbitrary, we get from above that

lim inf
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

i.e., σ[p]
g (f) ≥

[
σ
[m]
f

τg (m, p)

] 1
λg(m,p)

. (21)

Further in view of (7) , we get from (1) for a sequence of values of r tending to
infinity that

log[p−1] M−1
g Mf (r) ≤ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f + ε

)
rρ

[m]
f

}]

i.e., log[p−1] M−1
g Mf (r)

≤ log[p−1] exp[p−1]

 log[m−1] exp[m−1]
{(

σ
[m]
f + ε

)
rρ

[m]
f

}
(σg (m, p)− ε)


1

ρg(m,p)

i.e., log[p−1] M−1
g Mf (r) ≤


(
σ
[m]
f + ε

)
(σg (m, p)− ε)


1

ρg(m,p)

· r
ρ
[m]
f

ρg(m,p) . (22)
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Again as in view of Theorem 1,
ρ
[m]
f

ρg(m,p) ≤ ρ
[p]
g (f) and ε (> 0) is arbitrary, therefore

we get from (22) that

lim inf
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≤

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

i.e., σ[p]
g (f) ≤

[
σ
[p]
f

σg (m, p)

] 1
ρg(m,p)

. (23)

Likewise from (4) and in view of (6), it follows for a sequence of values of r tending
to infinity that

log[p−1] M−1
g Mf (r) ≤ log[p−1] M−1

g

[
exp[m−1]

{(
σ
[m]
f + ε

)
rρ

[m]
f

}]
i.e., log[p−1] M−1

g Mf (r)

≤ log[p−1] exp[p−1]

 log[m−1] exp[m−1]
{(

σ
[m]
f + ε

)
rρ

[m]
f

}
(σg (m, p)− ε)


1

ρg(m,p)

i.e., log[p−1] M−1
g Mf (r) ≤


(
σ
[m]
f + ε

)
(σg (m, p)− ε)


1

ρg(m,p)

· r
ρ
[m]
f

ρg(m,p) . (24)

Analogously, we get from (24) that

lim inf
r→∞

log[p−1] M−1
g Mf (r)

r
ρ
[p]
g (f)

≤

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

i.e., σ[p]
g (f) ≤

[
σ
[m]
f

σg (m, p)

] 1
ρg(m,p)

, (25)

since in view of Theorem 1,
ρ
[m]
f

ρg(m,p) ≤ ρ
[p]
g (f) and ε (> 0) is arbitrary.

Thus the theorem follows from (21), (23) and (25). �

Corollary 3. Let f be an entire function with 0 < λ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then

σ[p]
g (f) ≤ min


[

τ
[m]
f

τg(m,p)

] 1
λg(m,p)

,

[
τ
[m]
f

τg(m,p)

] 1
λg(m,p)

,[
τ
[m]
f

σg(m,p)

] 1
ρg(m,p)

,

[
τ
[m]
f

σ(m,p)

] 1
ρg(m,p)

 .

The conclusion of the above corollary can be carried out from pairwise
inequalities no (6) and (12) ; (7) and (9) ; (12) and (14); (9) and (15) respectively
after applying the same technique of Theorem 4 and with the help of Theorem 1.
Therefore its proof is omitted.
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Similarly in the line of Theorem 2 and with the help of Theorem 1, one
may easily carried out the following theorem from pairwise inequalities no (11) and
(13) ; (10) and (16); (6) and (9) respectively and therefore its proofs is omitted:

Theorem 5. Let f be an entire function with 0 < λ
[m]
f < ∞ and g be an entire

function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive integers
such that m ≥ p. Then

max


[

τ
[m]
f

τg (m, p)

] 1
λg(m,p)

,

[
τ
[m]
f

τg (m, p)

] 1
λg(m,p)

 ≤ τ [p]g (f) ≤

[
τ
[m]
f

σg (m, p)

] 1
ρg(m,p)

.

Corollary 4. Let f be an entire function with 0 < λ
[m]
f ≤ ρ

[m]
f < ∞ and g be an

entire function with 0 < λg (m, p) ≤ ρg (m, p) < ∞ where p and m are positive
integers such that m ≥ p. Then

τ [p]g (f) ≥ max


[

σ
[m]
f

σg(m,p)

] 1
ρg(m,p)

,

[
σ
[m]
f

σg(m,p)

] 1
ρg(m,p)

,[
σ
[m]
f

τg(m,p)

] 1
λg(m,p)

,

[
σ
[m]
f

τg(m,p)

] 1
λg(m,p)

 .

The conclusion of the above corollary can be carried out from pairwise
inequalities no (3) and (5) ; (2) and (8) ; (3) and (13); (2) and (16) respectively
after applying the same technique of Theorem 4 and with the help of Theorem 1.
Therefore its proof is omitted.

Acknowledgment

The authors are thankful to the referee for his/her valuable suggestions
which have considerably improved the paper.

References

[1] L. Bernal, Crecimiento relativo de funciones enteras. Contribuci ón al estudio de lasfunciones
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