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APPROXIMATE CONTROLLABILITY OF AN IMPULSIVE

NEUTRAL DIFFERENTIAL EQUATION WITH DEVIATING

ARGUMENT AND BOUNDED DELAY

SANJUKTA DAS

Abstract. In this paper we prove the approximate controllability of an impul-

sive neutral differential equation with deviated argument and control parame-
ter included in the nonlinear term. We use Schuader fixed point theorem and
fundamental assumptions on system operators to prove the result. Thereby

we remove the need to assume the invertibility of a controllability operator,
which fails to exist in infinite dimensional space, if the generated semigroup is
compact. We also give an example to illustrate our result.

1. Introduction

Impulsive dynamical behaviour due to abrupt jumps at certain time instants in
the evolution process is exhibited by various physical and biological systems. It is
interesting to study impulsive control systems which is based on the theory of im-
pulsive differential equations due to its theoretical and practical significance. The
study of impulsive control systems in Banach spaces is stimulated by its numerous
applications in nanoelectronics, pharmacokinetics, population dynamics, etc. Neu-
tral differential equations are functional differential equations in which the highest
order derivative of the unknown function appear both with and without deviations.
We refer the papers of Benchohra et al. [11] and Chang [12] which discuss the exact
controllability of impulsive functional systems with infinite delay. However, in these
papers the invertibility of a controllability operator is assumed. As a consequence
their approach fails in infinite dimensional spaces whenever the semigroup is com-
pact. Also it is practically difficult to verify their condition directly. This is one of
the motivations of our paper.

Although with a different approach Zhou [9] established approximate controlla-
bility of an abstract semilinear control system. Naito [1] proved that under range
condition on the control action operator, the same semilinear system in [9] is approx-
imately controllable. Mahmudov [10] established that approximate controllability
of semilinear system is implied by approximate controllability of its linear part.
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In certain real world problems, delay depends not only on the time but also
on the unknown quantity. The differential equations with deviated arguments are
generalization of delay differential equations in which the unknown quantity and
its derivative appear in different values of their arguments. It is interesting to note
that approximate controllability problem for impulsive nonlinear dynamical systems
with deviated argument has not been investigated thoroughly in literature. In an
attempt to fill this gap we study the approximate controllability of the following
control system using semigroup theory and fixed point approach which removes the
above restrictions.

Our aim is to study the semilinear problem (1.1) with the nonlinear term con-
taining the control parameter coupled with impulsive conditions since it was not
studied before. This work is an extension of our previous works [13, 14, 15]. We
study the nonlinear term with deviated argument and control parameter in a neu-
tral differential equation with impulsive conditions and finite delay.
In this paper we study the approximate controllability of the following problem

d[x(t) + g(t, xt)]

dt
= A[x(t) + g(t, xt))] +Bu(t) + f(t, x(a(x(t), t)), u(t)), t ∈ J

x0(θ) = ϕ(θ), θ ∈ [−r, 0]
x(t+k )− x(t−k ) = Ik(x(tk)), k = 1, ...,m,

(1.1)

where A is the infinitesimal generator of C0 semigroup S(t). The state variable x(.)
takes values in the Hilbert space X and the control parameter u ∈ L2(J, U), where
U is a Hilbert space. B is a bounded linear operator from U to X. The function
x : [−r, 0] ∪ J → X is defined as xt(θ) = x(t + θ), −r ≤ θ ≤ 0, t ∈ J. D =
t1, t2.....tm ⊂ J = [0, T ], 0 = t0 < tl < · · · < tm < tm+1 = T, Ik(k = 1, 2, · · · ,m) is
a nonlinear map and ∆x(tk) = x(t+k ) − x(t+k ). x(t

+
k ), x(t

−
k ) represents the jump in

the state x at time tk with Ik determining the size of the jump.

2. Preliminaries

Now for convenience, let us introduce the notation

M = sup{||S(t)|| : 0 ≤ t ≤ T}, M1 = ||B||, ||g(., ϕ)|| ≤M2

supt∈J ∥S(t)(x0 + g(0, ϕ)∥ ≤M0

||λ|| =
∫ b

0
|λi(s)|ds.

k = max{1,MM1,MM1T}.
ai = 3kM2M1||λi||1, bi = 3M ||λi||1, ci = max{a, b}
d1 = 3kMM1(||xT ||+M0 +M2 +MΣm

k=1dk),
d2 = (3M ||x0||+M2 +MΣm

k=1dk)
d = max{d1, d2}

Let us define the following operators:

Let ΓT
0 =

∫ T

0
S(T − s)BB∗S∗(T − s)ds

Let R(α,ΓT
0 ) = (αI + ΓT

0 )
−1

(H1) The semigroup S(t), t > 0, is compact.
(H2) The function f : J ×X × U → X is continuous and there exists function

λ(.) ∈ L1(I,R
+) and a non decreasing function gi ∈ L1(C × U,R+), i =



134 SANJUKTA DAS JFCA-2017/8(2)

1, 2, ..., q, such that

||f(t, x, u)|| ≤
q∑

i=1

λi(t)gi(x, u)

for all (t, ϕ, x) ∈ I ×X × U .
(H3) For each α > 0

limsupr→∞(r −
q∑

i=1

ci
α
sup{gi(x, u) : ||(x, u)|| ≤ r}) = ∞

(H4) IkC(X,X) and there exists a constant dk such that

||Ik(x)|| ≤ dk

for each x ∈ X(k = 1, 2, ...,m).
(H5) g : J ×X is completely continuous and uniformly bounded ||g(., ϕ)|| ≤M2.
(H6) The function f : I ×X × U → X is continuous and there exists a constant

L > 0 such that ∥ f(., x(a(x(.), .)), u) ∥≤ L for all t ∈ I, u ∈ U
(H7) αR(α,ΓT

0 ) → 0 as α→ 0+

(H8) ||Ik(x(tk))−Ik(y(tk))|| ≤ LI(||x(tk)−y(tk)||), ∀ x(tk), y(tk) ∈ Jk = J{t1, t2, ..., tm}.
(H9) a : X × J → J such that |a(x(s), s)| < s.

Remark The assumption (H7) holds iff the following linear system is approxi-
mately controllable.

x′(t) = Ax(t) + (Bu)(t), t ∈ [0, T ]

x(0) = x0

Definition 1. We define the mild solution of (1.1) as x(.) ∈ PC(J,X), x0 = ϕ
and which satisfies the following integral equation

x(t) = S(t)[ϕ(0) + g(0, ϕ)] + g(t, xt) +

∫ t

0

S(t− s)[f(s, x(s), x(a(x(s), s)))

+ Bu(s)]ds+
∑

0<tk≤t

S(t− tk)Ikx(tk), 0 ≤ t ≤ T (2.1)

For α > 0 define an operator Fα(x, u) = (z, v) on PC × C(J, U) where PC =
PC([−r, T ], X) = {x : [−r, T ] → X : xk ∈ C(Jk, X), k = 1, ...m}, where Jk =
J {t1, t2, ...tm}

v(t) = B∗T ∗(T − t)R(α,ΓT
0 )p(x, u) (2.2)

z(t) = S(t)(x0 + g(0, ϕ))− g(t, xt) +

∫ t

0

S(t− s)[f(s, x(a(x(s), s)), u)

+ Bv(s)]ds+
∑

0<tk<t

S(t− tk)Ik(x(tk)) (2.3)

p(x(.)) = xT − S(T )(x0 + g(0, ϕ)) + g(T, xT )

−
∫ T

0

S(T − s)f(s, x(h(x(s), s)), u)−
m∑

k=1

S(T − tk)Ik(x(tk)) (2.4)

Let Yr0 = {x(.) ∈ PC([−r, b], X) × C(J × U) : ||xt|| + ||v(t)|| ≤ r0} and r0 is a
positive constant.
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3. Main Result

Theorem 3.1. For arbitrary h ∈ X ,the control

u(t) = B∗S∗(T − t)R(α,ΓT
0 )p(x, u) (3.1)

where

p(x, u) = h − S(T )(x0 + g(0, ϕ(0))) + g(T, xT )

−
∫ T

0

S(T − s)f(s, x(a(x(s), s)), u(s))ds (3.2)

transfers initial state x0 to

zT =h− α(αI + ΓT
0 )

−1(h− S(T )[g(0, ϕ(0)) + ϕ(0)) + g(T, x(T ))

−
∫ T

0

S(T − r)f(r, x(a(x(r), r)), u(r))dr]
(3.3)

Proof. By substituting (2.2), (2.3) in the mild solution

z(t) = S(t)(x0 + g(0, ϕ(0))− g(t, xt)

+

∫ t

0

S(t− s)[f(s, x(a(x(s), s)), u(s)) +Bv(s)]ds (3.4)

and writing the obtained equation at t = T

z(T ) = S(T )(x0 + g(0, ϕ(0))− g(T, (xT )))

+

∫ T

0

S(T − s)[f(s, x(a(x(s), s)), u(s))

+BB∗S∗(T − s)(αI + ΓT
0 )

−1p(x, u)ds

= S(T )(x0 + g(0, ϕ(0))− g(T, xT )

+

∫ T

0

S(T − s)f(s, x(a(x(s), s))), u(s))ds+ ΓT
0 Rp(x)

Using ΓT
0 (αI + ΓT

0 )
−1 = I − α(αI + ΓT

0 )
−1 We get

z(t) = S(T )(x0 + g(0, ϕ(0))− g(T, xT )

+

∫ T

0

S(T − s)f(s, x(a(x(s), s)), u(s))ds

+ p(x, u)− α(αI + Γ0T )
−1p(x, u)

= h− p(x, u) + p(x, u)− α(αI + ΓT
0 )

−1p(x, u)

= h− α(αI + ΓT
0 )p(x, u)

(3.5)

Thus the control u(t) = B∗S∗(T − t)R(α,ΓT
0 )p(x, u) transfers initial state x0 to

zT = h− α(αI + ΓT
0 )

−1(h− S(T )[g(0, ϕ(0)) + ϕ(0))

−
∫ T

0

S(T − r)f(r, x(a(x(r), r)), u(r))dr] + g(T, x(T )).

�

Theorem 3.2. Assume that hypotheses (H1)− (H9) hold, then for all 0 < α ≤ 1
the system (1.1) has a solution on J.
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Proof. Step1: For 0 < α ≤ 1, there is a positive constant r0 = r0(α) such that
Fα : Yr0 → Yr0 . Let

µi(r) = sup{gi(x, v) : ||(x, v)|| ≤ r, (x, v) ∈ C × U}.
By the assumption (H3) there exists r0 > 0 such that

d

α
+

q∑
i=1

ci
α
µi(r0) ≤ r0

If (x, y) ∈ Yr0

||v(t)|| ≤ 1

α
[MM1(||xT ||+M0 +M2)

+ M

∫ T

0

{
m∑
i=1

λi(s)gi(x(a(x(s), s)), u)}ds+MΣm
i=1dk]

≤ 1

α
MM1(||xT ||+M0 +M2 +MΣm

i=1dk)

+
1

α
M2M1Σ

q
i=1||λ||1µi(r0)

≤ 1

α
[
d

3k
+

1

3k
Σq

i=1ciµ(r0)]

=
1

α3k
(d+Σq

i=1ciµi(r0))

≤ r0
3k

(3.6)

||z(t)|| = ∥S(t)(x0 + g(0, ϕ))− g(t, xt)

+

∫ t

0

S(t− s)[Bv(s) + f(s, x(a(x(s), s)), u)]ds

+
∑

0<tk<t

S(t− tk)Ik(x(tk))∥

≤ d

3
+MM1T ||v||+M

∫ t

0

q∑
i=1

λi(s)gi(x(a(x(s), s), u(s))ds

≤ d

3
+MM1T ||v||+M

∫ t

0

q∑
i=1

λi(s)gi(x(s), s), u(s))ds

≤ d

3
+ k||v||+ 1

3

q∑
i=1

µi(r0)ci

≤ 1

3
[d+

q∑
i=1

ciµi(r0)] + k||v||

≤ 2r0
3

(3.7)

We get
||Fα(x, u)(t)|| = ||z(t)||+ ||v(t)|| ≤ r0.

Therefore, Fα maps Yr0 into itself.
Step 2 : As per infinite-dimensional version of Arzela-Ascoli theorem and step 1 we
need to prove that:
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(i) for arbitrary t ∈ J the set V (t) = {Fα(x, u)(t) : (x, u) ∈ Yr0} is relatively
compact,
(ii) for an arbitrary ϵ > 0 there exists δ > 0 such that ||Fα(x, u)(t1)−Fα(x, u)(t2)|| <
ϵ if (x, u) ∈ Yr0 , |t1 − t2| ≤ δ, for all t1, t2 ∈ J.
In the case, t = 0 it is trivial, since V (0) = ϕ(0). So let t be a fixed real no. and
let be a given real number satisfying 0 < τ < t.
Define

Fα
τ (x, u)(t) = S(τ)Fα

1 (t− τ), B∗S∗(T − s)R(α,ΓT
0 )p(x, u)

Fα
1 (x, u)(t− η) = S(t− η)(x0 + g(0, x0) +

∫ t−η

0

S(t− s− η)Bvds

+

∫ t−η

0

S(t− s− η)f(s, x(a(x(s), s)), u(s))ds

Since S(t) is compact and z(t− τ) is bounded on Yr0 , the set

Vτ (t) = {Fα
τ (x, u)(t) + g(t, xt) : (x, u) ∈ Yr0}

is relatively compact in X. i.e. there exists a finite set {yi, 1 ≤ i ≤ n} in PC × U
s.t.

Vτ (t) ⊂ ∪m
i=1B(yi, ϵ/2),

where B(yi, ϵ/2) is an open ball in PC × U with centre at yi and radius ϵ/2. Also,

||(Fα
1 x)(t)− (Fα

τ x)(t)||

≤ ||
∫ t

t−η

S(t− s)BB∗S∗(T − s)(αI + ΓT
0 )

−1p(x)ds

+

∫ t

t−η

S(t− s)f(s, x(a(x(s), s)), u(s))ds||

≤ 1

α
M2M2

1Pη +MΣq
i=1

∫ t

0

λi(s)dsµi(r0)

≤ ϵ/2

where

P =||xT ||+M ||x0 + g(0, x0)||+M2 +M

∫ T

0

Σq
i=1λi(s)µi(r0)ds

+Σq
i=1S(T − tk)Ik(x(tk))

(3.8)

So,

V (t) = {Fα
1 (x, u) + g(t, xt) : (x, u) ∈ Yr0} ⊂ ∪m

i=1B(yi, ϵ)

Hence for each t ∈ [0, T ], V (t) is relatively compact in C × U .
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Step 3: We prove V = {Fα(x, u)(.)|(x, u) ∈ Yr0} is equicontinuous on [0, T ]. For
0 < ta + θ < tb + θ ≤ T

||v(ta)− v(tb)|| ≤ ||B∗S∗(T − ta)−B∗S∗(T − tb)||

× 1

α
[||xT ||+M0 +M2

+M

∫ T

0

(

q∑
i=1

λi(s)gi(x(a(x(s), s)), u))ds+MΣm
i=1dk]

≤ ||B∗S∗(T − ta)−B∗S∗(T − t2)||

× 1

α
[||xT ||+M0 +M2 +MΣm

i=1dk

+M2M1Σ
q
i=1||λ||1µi(r0)]

||ztb − zta || ≤ ||(S(tb + θ)− S(ta + θ))(ϕ(0) + g(0, x0))||

+M

∫ t1+θ

0

||[S(tb + θ − s)− S(ta + θ − s)]

× Σq
i=1λi(s)gi(x(a(x(s), s)), u(s))∥ds

+

∫ ta+θ

tb+θ

S(tb + θ − s)Σq
i=1λi(s)gi(x(a(x(s), s)), u(s))ds

+

∫ ta+θ

0

||(S(tb + θ − s)− S(ta + θ − s))Bv(s)||ds

+MM1

∫ tb+θ

ta+θ

||v(s)||ds+
∫ tb+θ

ta+θ

∥g(s, xs)∥ds

+Σ0<tk<ta+θ||S(tb + θ − tk)− S(ta + θ − tk)||||Ikx(tk)||
+Σta+θ≤tk<tb+θ||S(tb + θ − tk)||||Ikx(tk)||

||z(tb + θ)− z(ta + θ)||
≤ ||S(ta + θ)− S(tb + θ)||||x0 + g(0, x0)||

+Σq
i=1

∫ ta+θ

0

||[S(ta + θ − s)− S(tb + θ − s)]λi(s)ds||µi(r0)

+MΣq
i=1

∫ tb+θ

ta+θ

λi(s)dsµi(r0)

+M1

∫ ta+θ

||S(ta + θ − s)− S(tb + θ − s)||||v(s)||ds

+MM1

∫ tb+θ

ta+θ

||v(s)||ds+M2

∫ tb+θ

ta+θ

ds

+Σ0<tk<ta+θ||S(tb + θ − tk)− S(ta + θ − tk)||dk
+Σta+θ<tk<tb+θ||S(tb + θ − tk)||dk
= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8

(3.9)

Thus RHS doesn’t depend on particular choices of (x, u). It is clear that I2 → 0,
I4 → 0 and I6 → 0 as t1 − t2 → 0. Since the semigroup S(.) is compact, so
||S(t2 + θ − s)− S(t1 + θ − s)|| → 0 as t1 − t2 → 0. Then I1 → 0 and by Lebesgue
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Dominated Convergence theorem I3, I5, I7, I8 → 0 as t1 − t2 → 0. So Fα
1 [Yr0 ]

is equicontinuous and bdd. Equicontinuity of g follows from (H5). So Fα[Yr0 ]
is equicontinuous and bdd. So equicontinuity of V is shown. By Arzela-Ascoli,
Fα[Yr0 ] is relatively compact in PC(J,X). To apply Schauder fixed point theorem
it remains to show that Fα is continuous on PC[J,X]× C[J, U ].
Let (yn(s), un(s)) ∈ PC × U s.t. (yn(s), un(s)) → (y(s), u(s)) then for all

{yn(a(yn(s), s)), un(s)} ∈ PC(J,X)× C(J, U)

(yn(a(yn(s), s)), un(s)) → (y(a(y(s), s)), u(s)) in PC(I,X)× C(I, U). since

||yn(a(yn(s), s))− y(a(y(s), s))||
≤ ||yn(a(yn(s), s))− y(a(yn(s), s))||
+ ||y(a(yn(s), s))− y(a(y(s), s))||
≤ sup||yn − y||+ ||y(a(y(s), s)− y(a(y(s), s))||
→ 0

as

n→ ∞.

(3.10)

Since f and g are continuous hence

f(s, yn(a(yn(s), s)), un(s)) → f(s, y(a(y(s), s)), u(s))

and

g(s, yns ) → g(s, ys)

for each s ∈ J and

||f(s, yn(a(yn(s), s)), un(s)− f(s, y(a(y(s), s)), u(s))|| ≤ 2

q∑
i=1

λi(s)µ(r0),

and

||g(s, yns )− g(s, ys)|| ≤ 2M2

By Lebesgue Dominated Convergence theorem

||(Fα(yn))(t)− (Fαy)(t)||
≤ ||vn(t)− v(t)||+ ||znt (θ)− zt(θ)||
≤ ||B∗S∗R(α,ΓT

0 )[p(y
n, u)− p(y, u)]||

+ ||g(t, ynt )− g(t, yt)||+
∫ t

0

S(t− s)[||Bvn(s)−Bv(s)||

+ ||f(s, yn(a(yn(s), s)), un(s))− f(s, y(a(y(s), s)), u(s))||]ds

+
∑

0<tk<t

∥S(t− tk)(Ik(y
n(tk))− Ik(y(tk))∥

≤ a1||g(s, yns )− g(s, ys)||+ a2||f(s, yn(a(yn(s), s)), un(s)
− f(s, y(a(y(s), s)), u(s))||+mMLI∥yn(tk)− y(tk)∥
−→ 0

(3.11)

where a1, a2 are appropriate constants. Hence Fα is a compact continuous operator
on Yr0 and from Schauder’s fixed point theorem, Fα has a fixed point. �



140 SANJUKTA DAS JFCA-2017/8(2)

Theorem 3.3. Assume (H1), (H2), (H3) and (BA1) are satisfied then the system

d(x(t) + g(t, x(t))

dt
= A[x(t) + g(t, x(t))] +Bu(t) + f(t, x(t), x(a(x(t), t)), u(t))

(3.12)
is approximately controllable on [0, T ]

Proof. Let xα be fixed point of F in Yr where

(Fx)(t) = S(t)(x0 + g(0, x0))− g(t, x(t))

+

∫ t

0

S(t− s)[f(s, x(a(x(s), s)), u(s)) +Bu(s)]ds (3.13)

By previous theorem any fixed point of F is a mild solution of (3.12 on [0, T ] under
the control

uα(t) = B∗S∗(T − t)R(α,ΓT
0 )p(x

α, uα)

and satisfies xα(T ) = h− αR(α,ΓT
0 )p(x, u).

By using hypothesis (H2) we get
∫ T

0
∥ f(s, xα(a(xα(s), s)), uα(s)) ∥ ds ≤ L2T

Consequently ,the sequence f(s, xα(a(xα(s), s))uα(s)) is bounded in L2(J,X). Thus
there are subsequences ,still denoted by f(s, xα(a(xα(s), s)), uα(s)) that converge
weakly to say f(s, x(a(x(s), s)), u(s)).
Define

q = h− S(T )(x0 + g(0, x0))− g(T, x(T ))

−
∫ T

0

S(T − s)f(s, x(a(x(s), s)), u(s))ds−
m∑

k=1

S(T − tk)Ik(x(tk)).

It follows that

∥ p(xα)− q ∥≤∥
∫ T

0

S(T − s)[f(s, xα(a(xα(s), s)), uα(s))

− f(s, x(a(x(s), s)), u(s))]ds ∥ +||Σm
i=1S(t− tk)(Ik(x

α(t))− Ik(x(t))||
(3.14)

By the compactness of operators of the operators

k(t) →
∫ t

0
S(t− s)k(s)ds : L2([0, T ], X) → C([0, T ], X) and [H5]

the RHS of (3.3) tends to 0 as α→ 0+ By (3.3)

∥ xα(T )− h ∥ =∥ αR(α,ΓT
0 )p(x

α, uα) ∥
=∥ αR(α,ΓT

0 )(p(x
α, uα)− q + q) ∥

≤∥ αR(α,ΓT
0 )q ∥ + ∥ αR(α,ΓT

0 )(p(x
α, uα)− q) ∥

≤∥ αR(α,ΓT
0 )q ∥ + ∥ αR(α,ΓT

0 ) ∥∥ p(xα, uα)− q ∥
≤∥ αR(α,ΓT

0 )q ∥ + ∥ p(xα, uα)− q ∥→ 0

as α+ → 0. This proves the approximate controllability of (1.1) �
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4. Example

Let us consider the following controlled neutral system with impulses

∂

∂t
[x(t, ξ)− ζ(t, x(t− h, ξ))] =

∂2

∂ξ2
[x(t, ξ)− ζ(t, x(t− h, ξ))] + u(t, ξ)

+ f(t, x(a(x(t, ξ), t), ξ), u(t, ξ)), 0 < y < 1

x(t+k , ξ)− x(t−k , ξ) = Ik(x(t
−
k , ξ)), k = 1, · · · ,m.

x(t, 0) = x(t, 1) = 0, t > 0

x(t, ξ) = ϕ(t, ξ), −h ≤ t ≤ 0; (4.1)

Here ϕ is continuous and Ik ∈ C(R,R).
Let g(t, xt)(ξ) = ζ(t, x(t− h, ξ)),

F (t, x(a(x(t), t)), u(t))(ξ) = f(t, x(a(x(t, ξ), t), ξ), u(t, ξ))

and (Bu)(t)(ξ) = u(t, ξ), Taking X = L2(0, 1) and we define A : X → X by

Ax = d2x
dξ2 where domain of A is

D(A) = {x ∈ X, x,
dx

dξ
are absolutely continuous,

d2x

dξ2
∈ X,

dx

dy
(0) =

dx

dy
(1) = 0} (4.2)

Then Ax =
∑∞

n=1(−n2π2) < x, en > en, x ∈ D(A).

where en(θ) =
√
2cos(nπθ) 0 < x < 1, n = 1, 2, ...

The operator A generates a compact semigroup

S(t)x =
∞∑

n=1

2e−n2π2tcos(nπξ)

∫ 1

0

cos(nπξ)

∫ 1

cos(nπξ)x(ψ)dψ

+

∫ 1

0

x(ψ)dψ, x ∈ X (4.3)

Further, the functions f, ζ are continuous and there exists constants k1, k2 such that
f(t, x(a(x(t, ξ), t), ξ), u(t, ξ)) ≤ k1, ζ(t, x(t − h, ξ)) ≤ k2 and there exists constants
dk such that ∥Ik(x)∥ ≤ dk.
Hence (4.1) can be expressed as (1.1) with A, g, Ik and F as defined above. The
linear system corresponding to (4.1) is approximately controllable, and by Theorem
3.3, the system (4.1) is approximately controllable.
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