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INEQUALITIES FOR A CLASS OF FUNCTIONS STARLIKE

WITH RESPECT TO SYMMETRIC POINTS

DEEPAK BANSAL

Abstract. The purpose of the present paper is to investigate a subordination
theorem, boundedness properties associated with partial sums and an integral

mean inequality for a class of functions starlike with respect to symmetric
points.

1. Introduction

Let S denote the class of functions f(z) normalized by f(0) = f ′(0) − 1 = 0,
analytic and univalent in the open unit disk U = {z; z ∈ C : |z| < 1}, then f(z) can
be expressed as:

f(z) = z +
∞∑
n=2

anz
n. (1.1)

Consider the subclass T of the class S consisting of functions of the form

f(z) = z −
∞∑
n=2

|an|zn. (1.2)

If the functions g(z) and h(z) belonging to the class S are, respectively, given by

g(z) = z +
∞∑
n=2

bnz
n and h(z) = z +

∞∑
n=2

cnz
n then the Hadamard product (or

convolution) denoted by (g ∗ h)(z) of the two functions g(z) and h(z) is defined by

(g ∗ h)(z) = z +

∞∑
n=2

bncnz
n = (h ∗ g)(z). (1.3)

A domain D ⊂ C is convex if the line segment joining any two points in D lies
entirely in D, while a domain is starlike with respect to a point w0 ∈ D if the line
segment joining any point of D to w0 lies inside D. A function f ∈ S is starlike
if f(U) is a starlike domain with respect to origin, and convex if f(U) is convex.

Analytically, f ∈ S if and only if Re
(
zf ′(z)
f(z)

)
> 0, whereas f ∈ S is convex if and
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only if Re
(
1 + zf ′′(z)

f ′(z)

)
> 0. The classes consisting of starlike and convex functions

are denoted by S∗ and K respectively. The classes S∗(α) and K(α) of starlike
and convex functions of order α, 0 ≤ α < 1, are respectively characterized by

Re
(
zf ′(z)
f(z)

)
> α and Re

(
1 + zf ′′(z)

f ′(z)

)
> α.

Let S∗
s be the subclass of S consisting of functions given by (1.1), satisfying

Re

{
zf ′(z)

f(z)− f(−z)

}
> 0 (z ∈ U). (1.4)

Function f(z) ∈ S∗
s are called starlike with respect to symmetric points and were

introduced by Sakaguchi [2]. A subclass S∗
s (α, β) of S∗

s of functions f(z), regular
and univalent in U given by (1.1) and satisfying the condition∣∣∣∣ zf ′(z)

f(z)− f(−z)
− 1

∣∣∣∣ < β

∣∣∣∣ αzf ′(z)

f(z)− f(−z)
+ 1

∣∣∣∣ (z ∈ U, 0 ≤ α ≤ 1, 1/2 < β ≤ 1)

(1.5)
was introduced in [4]. Further, we let

T S∗
s(α, β) = S∗

s (α, β) ∩ T (1.6)

The objective of the present paper is to investigate the integral means inequality,
a subordination theorem and partial sums for the class S∗

s (α, β). For this we need
the following results:

Lemma 1.1. A function of the form (1.1) is in
∞∑
n=2

ψ(n;α, β)|an| ≤ 1, (1.7)

where

ψ(n;α, β) =
n(1 + αβ) + (β − 1)[1− (−1)n]

β(2 + α)− 1
(0 ≤ α ≤ 1, 1/2 < β ≤ 1), (1.8)

then f(z) ∈ S∗
s (α, β).

Lemma 1.2. A function of the form (1.2) is in T S∗
s (α, β) (0 ≤ α ≤ 1, 1/2 < β ≤ 1)

if and only if
∞∑
n=2

ψ(n;α, β)|an| ≤ 1, (1.9)

where ψ(n;α, β) is given by (1.8).

Lemma 1.1 and Lemma 1.2 were earlier proved by Rosy et al. [4].
From (1.8) it is easy to check that

ψ(n+ 1;α, β)− ψ(n;α, β) =

{
αβ+2β−1
β(2+α)−1 , n even

1+αβ+2(1−β)
β(2+α)−1 , n odd

(1.10)

which is positive for 0 ≤ α ≤ 1, 1/2 < β ≤ 1. Hence sequence (1.8) is non-decreasing

sequence. Again ψ(2;α, β) = 2(1+αβ)
(β(2+α)−1) which is positive for 0 ≤ α ≤ 1, 1/2 < β ≤

1, hence all the terms of sequence ψ(n;α, β) are positive. Similarly

ψ(n;α, β)− n =

{
2n(1−β)
β(2+α)−1 , n even
2(n−1)(1−β)
β(2+α)−1 , n odd

(1.11)
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which is positive for 0 ≤ α ≤ 1, 1/2 < β ≤ 1. Hence all the terms of the sequence
⟨ψ(n;α, β)− n⟩∞n=2 are positive.

2. Integral Means Inequalities

The following subordination result due to Littlewood [1] will be required in our
investigation.

Lemma 2.1. If f(z) and g(z) are analytic in U with f(z) ≺ g(z), then

2π∫
0

∣∣f(reiθ)∣∣µdθ ≤ 2π∫
0

∣∣g(reiθ)∣∣µdθ, (2.1)

where µ > 0, z = reiθ (0 < r < 1).

Theorem 2.1. Let µ > 0. If f(z) ∈ T S∗
s(α, β) (0 ≤ α ≤ 1, 1/2 < β ≤ 1) is given

by (1.2) then for z = reiθ (0 < r < 1):

2π∫
0

∣∣f(reiθ)∣∣µdθ ≤ 2π∫
0

∣∣f1(reiθ)∣∣µdθ, (2.2)

where

f1(z) = z − β(2 + α)− 1

2(1 + αβ)
z2. (2.3)

The proof of the above theorem is simple so we leave it here.

3. Subordination Theorem

Before stating and proving our subordination theorem, we need the following
definition and a lemma due to Wilf [6].

Definition 3.1. If f, g ∈ H where H denote the class of all holomorphic functions,
then the function f is said to be subordinate to g, written as f(z) ≺ g(z) (z ∈ U),
if there exists a Schwarz function w ∈ H with w(0) = 0 and |w(z)| < 1 (z ∈ U)
such that f(z) = g(w(z)). In particular, if g is univalent in U, then we have the
following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Definition 3.2. An infinite sequence {bn}∞1 of complex numbers will be called a
subordinating factor sequence if whenever

f(z) =

∞∑
n=1

anz
n (3.1)

is analytic, univalent and convex in U, then
∞∑
n=1

anbnz
n ⊆ f(z) (z ∈ U, a1 = 0). (3.2)

Lemma 3.1. The sequence {bn}∞1 is a subordinating factor sequence if and only if

ℜ

{
1 + 2

∞∑
k=1

bkz
k

}
> 0 (z ∈ U). (3.3)
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Theorem 3.1. Let f(z) of the form (1.1) satisfy the coefficient inequality (1.7),
then

1 + αβ

1 + 3αβ + 2β
(f ∗ g) (z) ≺ g(z), (3.4)

for every function g(z) ∈ K (Class of convex functions). In particular:

ℜ{f(z)} > −1 + 3αβ + 2β

2(1 + αβ)
(z ∈ U). (3.5)

The constant factor 1+αβ
1+3αβ+2β in the subordination result (3.4) cannot be replaced

by any larger one.

Proof. Let f(z) defined by (1.1) satisfy the coefficient inequality (1.7). In view of
Definition 3.2, the subordination (3.4) will hold true if the sequence{

1 + αβ

1 + 3αβ + 2β
an

}∞

n=1

(a1 = 1)

is a subordinating factor sequence which by virtue of Lemma 3.1 is equivalent to
the inequality

ℜ

{
1 + 2

∞∑
n=1

(1 + αβ)

1 + 3αβ + 2β
anz

n

}
> 0 (z ∈ U). (3.6)

Now for |z| = r(0 < r < 1), we obtain

ℜ

{
1 +

∞∑
n=1

2(1 + αβ)

1 + 3αβ + 2β
anz

n

}
= ℜ

{
1 +

2(1 + αβ)

1 + 3αβ + 2β
+

∞∑
n=2

2(1 + αβ)

1 + 3αβ + 2β
anz

n

}

≥ 1− 2(1 + αβ)

1 + 3αβ + 2β
r −

∞∑
n=2

n(1 + αβ) + (β − 1)[1− (−1)n]

1 + 3αβ + 2β
|an|rn

≥ 1− 2(1 + αβ)

1 + 3αβ + 2β
r − β(α+ 2)− 1

1 + 3αβ + 2β
r.

This evidently establishes the inequality (3.6) and consequently the subordination
result (3.4) of Theorem 3.1 is proved. The assertion (3.5) follows readily from (3.4)
when the function g(z) is selected as

g(z) =
z

1− z
= z +

∞∑
n=2

zn. (3.7)

The sharpness of the multiplying factor in (3.4) can be established by considering
a functions h(z) defined by

h(z) = z − β(α+ 2)− 1

1 + 3αβ + 2β
z2, (3.8)

which belongs to the class T S∗
s(α, β). Using (3.4), we infer that

1 + αβ

1 + 3αβ + 2β
h(z) ≺ z

1− z
,

and it follows that

min
|z| ≤ 1

{
Re

(
1 + αβ

1 + 3αβ + 2β
h(z)

)}
= −1

2
.

This completes the proof. �
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4. Partial Sums

In this section we investigate the ratio of real parts of functions involving (1.1)
and its sequence of partial sums defined by

f1(z) = z and fN (z) = z −
N∑
n=2

anz
n ( for all n ∈ N {1}), (4.1)

and determine sharp lower bounds for ℜ{f(z)/fN (z)}, ℜ{fN (z)/f(z)}, ℜ{f ′(z)/f ′N (z)}
and ℜ{f ′N (z)/f ′(z)}.

Theorem 4.1. Let f(z) of the form (1.1) satisfy the coefficient inequality (1.7),
then

ℜ
(
f(z)

fN (z)

)
≥ 1− 1

ψ (N + 1;α, β)
, (4.2)

and

ℜ
(
fN (z)

f(z)

)
≥ ψ (N + 1;α, β)

ψ (N + 1;α, β + 1)
(4.3)

where ψ (N + 1;α, β) is given by (1.8). The results are sharp for every N , with the
extremal functions given by

f(z) = z +
1

ψ (N + 1;α, β)
zN+1 (N ∈ N\ {1}) (4.4)

Proof. We prove (4.2) by setting

g(z) = ψ (N + 1;α, β)

{
f(z)

fN (z)
−
(
1− 1

ψ (N + 1;α, β)

)}

= 1 +

ψ (N + 1;α, β)
∞∑

n=N+1

anz
n−1

1 +
N∑
n=2

anzn−1

,

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤ ψ (N + 1;α, β)
∞∑

n=N+1

|an|

2− 2
N∑
n=2

|an| − ψ (N + 1;α, β)
∞∑

n=N+1

|an|

Now
∣∣∣ g(z)−1
g(z)+1

∣∣∣ ≤ 1, if

N∑
n=2

|an|+ ψ (N + 1;α, β)
∞∑

n=N+1

|an| ≤ 1

In view of (1.7), this is equivalent to showing that

N∑
n=2

(ψ (n;α, β)− 1) |an|+
∞∑

n=N+1

(ψ (n;α, β)− ψ (N + 1;α, β)) |an| ≥ 0

Which is true in view of (1.10) and (1.11). Finally it can be verified that equality
in (4.2) is attained for the function given by (4.4), when z = reiπ/N and r → 1−.
The proof of (4.3) is similar hence omitted here. �
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Theorem 4.2. Let f(z) of the form (1.1) satisfy the coefficient inequality (1.7),
then (

f ′(z)

f ′N (z)

)
≥ 1− N + 1

ψ (N + 1;α, β)
, (4.5)

and

ℜ
(
f ′N (z)

f ′(z)

)
≥ ψ (N + 1;α, β)

N + 1 + ψ (N + 1;α, β)
(4.6)

where ψ (N + 1;α, β) is given by (1.8) . The results are sharp for every N , with
the extremal functions given by (4.4).

Proof. We prove (4.5) by setting

g(z) =
ψ (N + 1;α, β)

N + 1

{
f ′(z)

f ′N (z)
−
(
1− N + 1

ψ (N + 1;α, β)

)}
(4.7)

= 1 +

ψ(N+1;α,β)
N+1

∞∑
n=N+1

nanz
n−1

1 +
N∑
n=2

nanzn−1

, (4.8)

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤
ψ(N+1;α,β)

N+1

∞∑
n=N+1

n|an|

2− 2
N∑
n=2

n |an| − ψ(N+1;α,β)
N+1

∞∑
n=N+1

n |an|
. (4.9)

Now
∣∣∣ g(z)−1
g(z)+1

∣∣∣ ≤ 1, if

N∑
n=2

n |an|+
ψ (N + 1;α, β)

N + 1

∞∑
n=N+1

n |an| ≤ 1

In view of (1.7), this is equivalent to showing that

N∑
n=2

(ψ (n;α, β)− n) |an|+
∞∑

n=N+1

(
ψ (n;α, β)− ψ (N + 1;α, β)

N + 1
n

)
|an| ≥ 0 (4.10)

Which is true in view of (1.10) and (1.11). This completes the proof of (4.5). The
proof of (4.6) is similar, hence omitted. �
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