INEQUALITIES FOR A CLASS OF FUNCTIONS STARLIKE WITH RESPECT TO SYMMETRIC POINTS

DEEPAK BANSAL

Abstract

The purpose of the present paper is to investigate a subordination theorem, boundedness properties associated with partial sums and an integral mean inequality for a class of functions starlike with respect to symmetric points.

1. Introduction

Let \mathcal{S} denote the class of functions $f(z)$ normalized by $f(0)=f^{\prime}(0)-1=0$, analytic and univalent in the open unit disk $\mathbb{U}=\{z ; z \in \mathbb{C}:|z|<1\}$, then $f(z)$ can be expressed as:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Consider the subclass \mathcal{T} of the class \mathcal{S} consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \tag{1.2}
\end{equation*}
$$

If the functions $g(z)$ and $h(z)$ belonging to the class \mathcal{S} are, respectively, given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ and $h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}$ then the Hadamard product (or convolution) denoted by $(g * h)(z)$ of the two functions $g(z)$ and $h(z)$ is defined by

$$
\begin{equation*}
(g * h)(z)=z+\sum_{n=2}^{\infty} b_{n} c_{n} z^{n}=(h * g)(z) \tag{1.3}
\end{equation*}
$$

A domain $D \subset \mathbb{C}$ is convex if the line segment joining any two points in D lies entirely in D, while a domain is starlike with respect to a point $w_{0} \in D$ if the line segment joining any point of D to w_{0} lies inside D . A function $f \in \mathcal{S}$ is starlike if $f(\mathbb{U})$ is a starlike domain with respect to origin, and convex if $f(\mathbb{U})$ is convex. Analytically, $f \in \mathcal{S}$ if and only if $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0$, whereas $f \in \mathcal{S}$ is convex if and

[^0]only if $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0$. The classes consisting of starlike and convex functions are denoted by \mathcal{S}^{*} and \mathcal{K} respectively. The classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha, 0 \leq \alpha<1$, are respectively characterized by $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha$ and $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha$.

Let \mathcal{S}_{s}^{*} be the subclass of \mathcal{S} consisting of functions given by (1.1), satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

Function $f(z) \in \mathcal{S}_{s}^{*}$ are called starlike with respect to symmetric points and were introduced by Sakaguchi [2]. A subclass $\mathcal{S}_{s}^{*}(\alpha, \beta)$ of \mathcal{S}_{s}^{*} of functions $f(z)$, regular and univalent in \mathbb{U} given by (1.1) and satisfying the condition

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right| \quad(z \in \mathbb{U}, 0 \leq \alpha \leq 1,1 / 2<\beta \leq 1) \tag{1.5}
\end{equation*}
$$

was introduced in [4]. Further, we let

$$
\begin{equation*}
\mathcal{T} \mathcal{S}_{s}^{*}(\alpha, \beta)=\mathcal{S}_{s}^{*}(\alpha, \beta) \cap \mathcal{T} \tag{1.6}
\end{equation*}
$$

The objective of the present paper is to investigate the integral means inequality, a subordination theorem and partial sums for the class $\mathcal{S}_{s}^{*}(\alpha, \beta)$. For this we need the following results:
Lemma 1.1. A function of the form (1.1) is in

$$
\begin{equation*}
\sum_{n=2}^{\infty} \psi(n ; \alpha, \beta)\left|a_{n}\right| \leq 1 \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(n ; \alpha, \beta)=\frac{n(1+\alpha \beta)+(\beta-1)\left[1-(-1)^{n}\right]}{\beta(2+\alpha)-1}(0 \leq \alpha \leq 1,1 / 2<\beta \leq 1) \tag{1.8}
\end{equation*}
$$

then $f(z) \in \mathcal{S}_{s}^{*}(\alpha, \beta)$.
Lemma 1.2. A function of the form (1.2) is in $\mathcal{T}_{s}^{*}(\alpha, \beta)(0 \leq \alpha \leq 1,1 / 2<\beta \leq 1)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \psi(n ; \alpha, \beta)\left|a_{n}\right| \leq 1 \tag{1.9}
\end{equation*}
$$

where $\psi(n ; \alpha, \beta)$ is given by (1.8).
Lemma 1.1 and Lemma 1.2 were earlier proved by Rosy et al. [4].
From (1.8) it is easy to check that

$$
\psi(n+1 ; \alpha, \beta)-\psi(n ; \alpha, \beta)=\left\{\begin{array}{c}
\frac{\alpha \beta+2 \beta-1}{\beta(2+\alpha)-1}, n \text { even } \tag{1.10}\\
\frac{1+\alpha \beta+2(1-\beta)}{\beta(2+\alpha)-1}, n \text { odd }
\end{array}\right.
$$

which is positive for $0 \leq \alpha \leq 1,1 / 2<\beta \leq 1$. Hence sequence (1.8) is non-decreasing sequence. Again $\psi(2 ; \alpha, \beta)=\frac{2(1+\alpha \beta)}{(\beta(2+\alpha)-1)}$ which is positive for $0 \leq \alpha \leq 1,1 / 2<\beta \leq$ 1 , hence all the terms of sequence $\psi(n ; \alpha, \beta)$ are positive. Similarly

$$
\psi(n ; \alpha, \beta)-n=\left\{\begin{array}{c}
\frac{2 n(1-\beta)}{\beta(2+\alpha)-1}, n \text { even } \tag{1.11}\\
\frac{2(n-1)(1-\beta)}{\beta(2+\alpha)-1}, n \text { odd }
\end{array}\right.
$$

which is positive for $0 \leq \alpha \leq 1,1 / 2<\beta \leq 1$. Hence all the terms of the sequence $\langle\psi(n ; \alpha, \beta)-n\rangle_{n=2}^{\infty}$ are positive.

2. Integral Means Inequalities

The following subordination result due to Littlewood [1] will be required in our investigation.

Lemma 2.1. If $f(z)$ and $g(z)$ are analytic in \mathbb{U} with $f(z) \prec g(z)$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\mu} d \theta \tag{2.1}
\end{equation*}
$$

where $\mu>0, z=r e^{i \theta}(0<r<1)$.
Theorem 2.1. Let $\mu>0$. If $f(z) \in \mathcal{T} \mathcal{S}_{s}^{*}(\alpha, \beta)(0 \leq \alpha \leq 1,1 / 2<\beta \leq 1)$ is given by (1.2) then for $z=r e^{i \theta}(0<r<1)$:

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|f_{1}\left(r e^{i \theta}\right)\right|^{\mu} d \theta \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(z)=z-\frac{\beta(2+\alpha)-1}{2(1+\alpha \beta)} z^{2} . \tag{2.3}
\end{equation*}
$$

The proof of the above theorem is simple so we leave it here.

3. Subordination Theorem

Before stating and proving our subordination theorem, we need the following definition and a lemma due to Wilf [6].

Definition 3.1. If $f, g \in \mathcal{H}$ where \mathcal{H} denote the class of all holomorphic functions, then the function f is said to be subordinate to g, written as $f(z) \prec g(z)(z \in \mathbb{U})$, if there exists a Schwarz function $w \in \mathcal{H}$ with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ such that $f(z)=g(w(z))$. In particular, if g is univalent in \mathbb{U}, then we have the following equivalence:

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Definition 3.2. An infinite sequence $\left\{b_{n}\right\}_{1}^{\infty}$ of complex numbers will be called a subordinating factor sequence if whenever

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \tag{3.1}
\end{equation*}
$$

is analytic, univalent and convex in \mathbb{U}, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} b_{n} z^{n} \subseteq f(z)\left(z \in \mathbb{U}, a_{1}=0\right) \tag{3.2}
\end{equation*}
$$

Lemma 3.1. The sequence $\left\{b_{n}\right\}_{1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\Re\left\{1+2 \sum_{k=1}^{\infty} b_{k} z^{k}\right\}>0(z \in \mathbb{U}) \tag{3.3}
\end{equation*}
$$

Theorem 3.1. Let $f(z)$ of the form (1.1) satisfy the coefficient inequality (1.7), then

$$
\begin{equation*}
\frac{1+\alpha \beta}{1+3 \alpha \beta+2 \beta}(f * g)(z) \prec g(z) \tag{3.4}
\end{equation*}
$$

for every function $g(z) \in \mathcal{K}$ (Class of convex functions). In particular:

$$
\begin{equation*}
\Re\{f(z)\}>-\frac{1+3 \alpha \beta+2 \beta}{2(1+\alpha \beta)}(z \in \mathbb{U}) \tag{3.5}
\end{equation*}
$$

The constant factor $\frac{1+\alpha \beta}{1+3 \alpha \beta+2 \beta}$ in the subordination result (3.4) cannot be replaced by any larger one.
Proof. Let $f(z)$ defined by (1.1) satisfy the coefficient inequality (1.7). In view of Definition 3.2, the subordination (3.4) will hold true if the sequence

$$
\left\{\frac{1+\alpha \beta}{1+3 \alpha \beta+2 \beta} a_{n}\right\}_{n=1}^{\infty}\left(a_{1}=1\right)
$$

is a subordinating factor sequence which by virtue of Lemma 3.1 is equivalent to the inequality

$$
\begin{equation*}
\Re\left\{1+2 \sum_{n=1}^{\infty} \frac{(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta} a_{n} z^{n}\right\}>0(z \in \mathbb{U}) \tag{3.6}
\end{equation*}
$$

Now for $|z|=r(0<r<1)$, we obtain

$$
\begin{gathered}
\Re\left\{1+\sum_{n=1}^{\infty} \frac{2(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta} a_{n} z^{n}\right\}=\Re\left\{1+\frac{2(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta}+\sum_{n=2}^{\infty} \frac{2(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta} a_{n} z^{n}\right\} \\
\geq 1-\frac{2(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta} r-\sum_{n=2}^{\infty} \frac{n(1+\alpha \beta)+(\beta-1)\left[1-(-1)^{n}\right]}{1+3 \alpha \beta+2 \beta}\left|a_{n}\right| r^{n} \\
\geq 1-\frac{2(1+\alpha \beta)}{1+3 \alpha \beta+2 \beta} r-\frac{\beta(\alpha+2)-1}{1+3 \alpha \beta+2 \beta} r .
\end{gathered}
$$

This evidently establishes the inequality (3.6) and consequently the subordination result (3.4) of Theorem 3.1 is proved. The assertion (3.5) follows readily from (3.4) when the function $g(z)$ is selected as

$$
\begin{equation*}
g(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n} \tag{3.7}
\end{equation*}
$$

The sharpness of the multiplying factor in (3.4) can be established by considering a functions $h(z)$ defined by

$$
\begin{equation*}
h(z)=z-\frac{\beta(\alpha+2)-1}{1+3 \alpha \beta+2 \beta} z^{2} \tag{3.8}
\end{equation*}
$$

which belongs to the class $\mathcal{T} \mathcal{S}_{s}^{*}(\alpha, \beta)$. Using (3.4), we infer that

$$
\frac{1+\alpha \beta}{1+3 \alpha \beta+2 \beta} h(z) \prec \frac{z}{1-z},
$$

and it follows that

$$
\min _{|z| \leq 1}\left\{\operatorname{Re}\left(\frac{1+\alpha \beta}{1+3 \alpha \beta+2 \beta} h(z)\right)\right\}=-\frac{1}{2}
$$

This completes the proof.

4. Partial Sums

In this section we investigate the ratio of real parts of functions involving (1.1) and its sequence of partial sums defined by

$$
\begin{equation*}
f_{1}(z)=z \text { and } f_{N}(z)=z-\sum_{n=2}^{N} a_{n} z^{n}(\text { for all } n \in \mathbb{N}\{1\}) \tag{4.1}
\end{equation*}
$$

and determine sharp lower bounds for $\Re\left\{f(z) / f_{N}(z)\right\}, \Re\left\{f_{N}(z) / f(z)\right\}, \Re\left\{f^{\prime}(z) / f_{N}^{\prime}(z)\right\}$ and $\Re\left\{f_{N}^{\prime}(z) / f^{\prime}(z)\right\}$.

Theorem 4.1. Let $f(z)$ of the form (1.1) satisfy the coefficient inequality (1.7), then

$$
\begin{equation*}
\Re\left(\frac{f(z)}{f_{N}(z)}\right) \geq 1-\frac{1}{\psi(N+1 ; \alpha, \beta)} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{f_{N}(z)}{f(z)}\right) \geq \frac{\psi(N+1 ; \alpha, \beta)}{\psi(N+1 ; \alpha, \beta+1)} \tag{4.3}
\end{equation*}
$$

where $\psi(N+1 ; \alpha, \beta)$ is given by (1.8). The results are sharp for every N, with the extremal functions given by

$$
\begin{equation*}
f(z)=z+\frac{1}{\psi(N+1 ; \alpha, \beta)} z^{N+1}(N \in \mathbb{N} \backslash\{1\}) \tag{4.4}
\end{equation*}
$$

Proof. We prove (4.2) by setting

$$
\begin{gathered}
g(z)=\psi(N+1 ; \alpha, \beta)\left\{\frac{f(z)}{f_{N}(z)}-\left(1-\frac{1}{\psi(N+1 ; \alpha, \beta)}\right)\right\} \\
=1+\frac{\psi(N+1 ; \alpha, \beta) \sum_{n=N+1}^{\infty} a_{n} z^{n-1}}{1+\sum_{n=2}^{N} a_{n} z^{n-1}}, \\
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\psi(N+1 ; \alpha, \beta) \sum_{n=N+1}^{\infty}\left|a_{n}\right|}{2-2 \sum_{n=2}^{N}\left|a_{n}\right|-\psi(N+1 ; \alpha, \beta) \sum_{n=N+1}^{\infty}\left|a_{n}\right|}
\end{gathered}
$$

Now $\left|\frac{g(z)-1}{g(z)+1}\right| \leq 1$, if

$$
\sum_{n=2}^{N}\left|a_{n}\right|+\psi(N+1 ; \alpha, \beta) \sum_{n=N+1}^{\infty}\left|a_{n}\right| \leq 1
$$

In view of (1.7), this is equivalent to showing that

$$
\sum_{n=2}^{N}(\psi(n ; \alpha, \beta)-1)\left|a_{n}\right|+\sum_{n=N+1}^{\infty}(\psi(n ; \alpha, \beta)-\psi(N+1 ; \alpha, \beta))\left|a_{n}\right| \geq 0
$$

Which is true in view of (1.10) and (1.11). Finally it can be verified that equality in (4.2) is attained for the function given by (4.4), when $z=r e^{i \pi / N}$ and $r \rightarrow 1^{-}$. The proof of (4.3) is similar hence omitted here.

Theorem 4.2. Let $f(z)$ of the form (1.1) satisfy the coefficient inequality (1.7), then

$$
\begin{equation*}
\left(\frac{f^{\prime}(z)}{f_{N}^{\prime}(z)}\right) \geq 1-\frac{N+1}{\psi(N+1 ; \alpha, \beta)} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{f_{N}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{\psi(N+1 ; \alpha, \beta)}{N+1+\psi(N+1 ; \alpha, \beta)} \tag{4.6}
\end{equation*}
$$

where $\psi(N+1 ; \alpha, \beta)$ is given by (1.8) . The results are sharp for every N, with the extremal functions given by (4.4).

Proof. We prove (4.5) by setting

$$
\begin{gather*}
g(z)=\frac{\psi(N+1 ; \alpha, \beta)}{N+1}\left\{\frac{f^{\prime}(z)}{f_{N}^{\prime}(z)}-\left(1-\frac{N+1}{\psi(N+1 ; \alpha, \beta)}\right)\right\} \tag{4.7}\\
=1+\frac{\frac{\psi(N+1 ; \alpha, \beta)}{N+1} \sum_{n=N+1}^{\infty} n a_{n} z^{n-1}}{1+\sum_{n=2}^{N} n a_{n} z^{n-1}} \tag{4.8}\\
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\frac{\psi(N+1 ; \alpha, \beta)}{N+1} \sum_{n=N+1}^{\infty} n\left|a_{n}\right|}{2-2 \sum_{n=2}^{N} n\left|a_{n}\right|-\frac{\psi(N+1 ; \alpha, \beta)}{N+1} \sum_{n=N+1}^{\infty} n\left|a_{n}\right|} \tag{4.9}
\end{gather*}
$$

Now $\left|\frac{g(z)-1}{g(z)+1}\right| \leq 1$, if

$$
\sum_{n=2}^{N} n\left|a_{n}\right|+\frac{\psi(N+1 ; \alpha, \beta)}{N+1} \sum_{n=N+1}^{\infty} n\left|a_{n}\right| \leq 1
$$

In view of (1.7), this is equivalent to showing that

$$
\begin{equation*}
\sum_{n=2}^{N}(\psi(n ; \alpha, \beta)-n)\left|a_{n}\right|+\sum_{n=N+1}^{\infty}\left(\psi(n ; \alpha, \beta)-\frac{\psi(N+1 ; \alpha, \beta)}{N+1} n\right)\left|a_{n}\right| \geq 0 \tag{4.10}
\end{equation*}
$$

Which is true in view of (1.10) and (1.11). This completes the proof of (4.5). The proof of (4.6) is similar, hence omitted.

References

[1] J.E. LITTLEWOOD, On in inequalities in the theory of functions, Proc. London Math. Soc., 23(1925), 481-519.
[2] K. SAKAGUCHI, On certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
[3] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
[4] THOMAS ROSY, K.G. SUBRAMANIAN AND T.V. SUDHARSAN, On fixed coefficients for a class of functions starlike with respect to symmetric points, Proceedings of the International Conference on Analysis and its Applications.
[5] T.V. SUDHARSAN, P. BALASUBRAHMANYAM AND K.G. SUBRAMANIAN, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math., 2(1)(1998), 57-68.
[6] H. S., WILF, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12(1961), 689-693.

Deepak Bansal
Department of Mathematics, Govt. College of Engineering and Technology, Bikaner334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Starlike function, Convex function, Subordination factor sequence, Subordination, Integral means inequalities, Schwarz function.

 Submitted. Sep. 19, 2016 .

