# HARDY'S-SOBOLEV'S-TYPE INEQUALITIES ON TIME SCALE VIA ALPHA CONFORMABLE FRACTIONAL INTEGRAL 

A. BENAISSA CHERIF, F. Z. LADRANI


#### Abstract

In this paper, we obtain some new generalizations of the Hardy's inequality on time scale for function $\alpha$-fractional integral. Other integral inequalities are established as well, which have as special cases some recent proved Hardy-type inequalities on time scales.


## 1. Introduction

The classical Hardy inequality states that for $f \geq 0$ and integrable over any finite interval $(0, x)$ and $f^{p}$ is integrable and convergent over $(0, \infty)$ and $p>1$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(t) d t \tag{1}
\end{equation*}
$$

holds and the constant $(p / p-1)^{p}$ is the best possible. Inequality (1) which is usually referred to in the literature as the classical Hardy inequality, was proved in 1925 by Hardy [1]. In 2005, Řehàk [5] stated that if $a>0, p>1$, and $f$ be a nonnegative function such that the delta integral $\int_{a}^{\infty} f^{p}(s) \Delta s$ exists as a finite number, then

$$
\begin{equation*}
\int_{a}^{\infty}\left(\frac{1}{\sigma(t)-a} \int_{a}^{\sigma(t)} f(s) \Delta s\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \int_{a}^{\infty} f^{p}(t) \Delta t \tag{2}
\end{equation*}
$$

unless $f \equiv 0$. If, in addition, $\mu(t) / t \rightarrow 0$ as $t \rightarrow \infty$, then the constant $(p / p-1)^{p}$ is the best possible. A family of inequalities that interpolate between Hardy and Sobolev inequalities is given by the Hardy-Sobolev inequality,

$$
\begin{equation*}
\int_{I} \frac{|f(x)|^{p}}{x^{p}} d x \leq C_{p} \int_{I}\left|f^{\prime}(x)\right|^{p} d x \tag{3}
\end{equation*}
$$

which holds for any function $f \in W_{0}^{1, p}(I)$, with $I=(0,1)$, where $C_{p}$ is a positive constant. This inequality plays an important role in analysis and its applications.

The main aim of this paper is to prove a generalized versions of Hardy-Sobolev inequality on time scales via conformable calculus.

[^0]
## 2. Preliminaries

A time scale $\mathbb{T}$ is an arbitrary nonempty closed subset of the real numbers. For $t \in \mathbb{T}$, we define the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ by $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$, and the backward jump operator $\rho(t)=\sup \{s \in \mathbb{T}: s<t\}$. If $\sigma(t)>t$ we say that $t$ is right-scattered, while if $\rho(t)<t$ we say that $t$ is left-scattered. Points that are simultaneously right-scattered and left-scattered are said to be isolated. If $\sigma(t)=t$, then $t$ is called right-dense; if $\rho(t)=t$, then $t$ is called left-dense. Points that are right-dense and left-dense at the same time are called dense. If $\mathbb{T}$ has a left-scattered maximum $M$, define $\mathbb{T}^{k}:=\mathbb{T}-\{M\}$; otherwise, set $\mathbb{T}^{k}:=\mathbb{T}$.

The graininess function for a time scale $\mathbb{T}$ is defined by $\mu(t)=\sigma(t)-t$, and for any function $f: \mathbb{T} \rightarrow \mathbb{R}$ the notation $f^{\sigma}(t)$ denotes $f(\sigma(t))$. For more on the calculus on time scales, we refer the reader to [2, 4]. We review now the conformable fractional derivative and integral [11].

Definition 2.1. [11, Definition 1] Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a real valued function on $a$ time scale $\mathbb{T}$ and $\alpha \in(0,1], t \in \mathbb{T}^{k}$. Then, for $t>0$, we define $T_{\alpha}(f)(t)$ to be the number, if one exists, such that for all $\varepsilon>0$, there is a neighborhood $\mathcal{U}$ of $t$ such that for all $s \in \mathcal{U}$,

$$
\left|\left[f^{\sigma}(t)-f(s)\right] t^{1-\alpha}-T_{\alpha}(f)(t)(\sigma(t)-s)\right| \leq \varepsilon|\sigma(t)-s|
$$

We call $T_{\alpha}(f)(t)$ the conformable fractional derivative of $f$ of order $\alpha$ at $t$, and we define the conformable fractional derivative at 0 as $T_{\alpha}(f)(0)=\lim _{t \rightarrow 0} T_{\alpha}(f)(t)$.

Theorem 2.2. [11, Theorem 15] Let $f, g: \mathbb{T} \rightarrow \mathbb{R}$ are conformable fractional differentiable of order $\alpha$. Then, the following properties hold:
(a) The sum $f+g: \mathbb{T} \rightarrow \mathbb{R}$ is conformable fractional differentiable with

$$
T_{\alpha}(f+g)=T_{\alpha}(f)+T_{\alpha}(g)
$$

(b) For any $\lambda \in \mathbb{R}, \lambda f: \mathbb{T} \rightarrow \mathbb{R}$ is conformable fractional differentiable with

$$
T_{\alpha}(\lambda f)=\lambda T_{\alpha}(f)
$$

(c) If $f$ and $g$ are rd-continuous, then the product $f g: \mathbb{T} \rightarrow \mathbb{R}$ is conformable fractional differentiable with

$$
\begin{align*}
T_{\alpha}(f g) & =g T_{\alpha}(f)+(f \circ \sigma) T_{\alpha}(g) \\
& =T_{\alpha}(g) f+(g \circ \sigma) T_{\alpha}(f) \tag{4}
\end{align*}
$$

(d) If $f$ is rd-continuous, then $1 / f$ is conformable fractional differentiable with

$$
T_{\alpha}\left(\frac{1}{f}\right)=\frac{T_{\alpha}(f)}{f(f \circ \sigma)},
$$

valid at all points $t \in \mathbb{T}^{k}$ for which $f(t) f(\sigma(t)) \neq 0$,
(e) If $f$ and $g$ are rd-continuous, then $f / g$ is conformable fractional differentiable with

$$
T_{\alpha}\left(\frac{g}{f}\right)=\frac{T_{\alpha}(f) g-T_{\alpha}(g) f}{g(g \circ \sigma)}
$$

valid at all points $t \in \mathbb{T}^{k}$ for which $g(t) g(\sigma(t)) \neq 0$.

Definition 2.3. [11, Definition 26] Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a regulated function. Then the $\alpha$-fractional integral of $f$ is defined by

$$
\int f(t) \Delta^{\alpha} t=\int f(t) t^{\alpha-1} \Delta t
$$

Theorem 2.4. [11, Theorem 31] Let $a, b, c \in \mathbb{T}, \lambda \in \mathbb{R}$ and let $f ; g: \mathbb{T} \rightarrow \mathbb{R}$ be two rd-continuous functions. Then, the following properties hold:
(1) $\int_{a}^{b}[f(t)+g(t)] \Delta^{\alpha} t=\int_{a}^{b} f(t) \Delta^{\alpha} t+\int_{a}^{b} g(t) \Delta^{\alpha} t$,
(2) $\int_{a}^{b} \lambda f(t) \Delta^{\alpha} t=\lambda \int_{a}^{b} f(t) \Delta^{\alpha} t$,
(3) $\int_{a}^{b} f(t) \Delta^{\alpha} t=-\int_{b}^{a} f(t) \Delta^{\alpha} t$,
(4) $\int_{a}^{b} f(t) \Delta^{\alpha} t=\int_{a}^{c} f(t) \Delta^{\alpha} t+\int_{a}^{c} f(t) \Delta^{\alpha} t$,
(5) $\int_{a}^{a} f(t) \Delta^{\alpha} t=0$.

Theorem 2.5 (Chain rule). [11, Theorem 21] Let $\alpha \in(0,1]$. Assume $g: \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous and conformable fractional differentiable of order $\alpha$ at $t \in \mathbb{T}^{k}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Then there exists $c$ in the real interval $[t, \sigma(t)]$ with

$$
\begin{equation*}
T_{\alpha}(f \circ g)(t)=f^{\prime}(g(s)) T_{\alpha}(g)(t) \tag{5}
\end{equation*}
$$

## 3. Main Results

Before stating the main results, we begin with the following lemma.
Lemma 3.1. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $a<b$, and let $f, g$ are conformal fractional differentiable of order $\alpha$. Then the integration by parts formula is given by

$$
\int_{a}^{b} T_{\alpha}(f)(t) g(t) \Delta^{\alpha} t=[f(t) g(t)]_{a}^{b}-\int_{a}^{b} f^{\sigma}(t) T(g)(t) \Delta^{\alpha} t
$$

Lemma 3.2. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $\eta_{p}:(a, b] \cap \mathbb{T} \longrightarrow \mathbb{R}$ is a function defined by:

$$
\eta_{p}(t):=\frac{1}{(t-a)^{p}}, \quad \text { for all } t \in(a, b]_{\mathbb{T}}
$$

Then the inequality

$$
\begin{equation*}
\eta_{p+1}^{\sigma}(t) \leq-\frac{t^{\alpha-1}}{p} T_{\alpha}\left(\eta_{p}\right)(t) \leq \eta_{p+1}(t), \quad \text { for all } t \in(a, b]_{\mathbb{T}} \tag{6}
\end{equation*}
$$

Definition 3.3. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $f: \mathbb{T} \rightarrow \mathbb{R}$, we said that $f$ belongs to $L_{\Delta}^{\alpha, p}([a, b] \cap \mathbb{T})$ provided that

$$
\int_{a}^{b}|f(t)|^{p} \Delta^{\alpha} t<\infty
$$

Remark 3.4. Let $\mathbb{T}$ be a time scale, $a, t \in \mathbb{T}, \beta \in \mathbb{R}$ with $\beta>0$, and let $f: \mathbb{T} \rightarrow \mathbb{R}$, for simplification, we note

$$
L_{f}^{\beta}(t):=\lim _{s \rightarrow t} \frac{f(s)}{(s-a)^{\beta}} .
$$

Now, we are ready to state and prove the main results in this paper. We generalize the Hardy-Sobolev inequality the $\alpha$-conformable fractional integral on time scales. As particular case we get $\Delta$-inequalities on time scales for $\alpha=1$. In the sequel we use $[a, b]_{\mathbb{T}}$ to denote $[a, b] \cap \mathbb{T}$.

Theorem 3.5. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $0<a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$ is conformal fractional differentiable of order $\alpha$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$,

$$
\begin{equation*}
L_{f}^{\alpha}(a)<+\infty \quad \text { and } \quad L_{f}^{\alpha}(b)=0 \tag{7}
\end{equation*}
$$

If $(\sigma(t)-a)^{1-\alpha} T_{\alpha}(f) \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$. Then $(\sigma(t)-a)^{\alpha} f \in L_{\Delta^{\alpha}}^{p}\left([a, b]_{\mathbb{T}}\right)$, there exist a constant $C_{1}(p, \alpha, a)>0$ such that

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \leq C_{1}(p, \alpha, a) \int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t \tag{8}
\end{equation*}
$$

with the constant

$$
\begin{equation*}
C_{1}(p, \alpha, a)=\left(\frac{a^{\alpha-1} p}{\alpha p-1}\right)^{p} \tag{9}
\end{equation*}
$$

Proof. By definition the $L_{f}^{\alpha}$ in the points $a, b$ and by $L_{f}^{\alpha}(a)<+\infty$ and $L_{f}^{\alpha}(b)=0$, which implies

$$
\begin{equation*}
\lim _{t \rightarrow a} \eta_{\alpha p-1}(t)|f(t)|^{p}=\lim _{t \rightarrow b} \eta_{\alpha p-1}(t)|f(t)|^{p}=0 \tag{10}
\end{equation*}
$$

From Lemma 3.1 and 10, we obtain

$$
\int_{a}^{b} \eta_{\alpha p-1}(\sigma(t)) T_{\alpha}\left(|f(t)|^{p}\right) \Delta^{\alpha} t=-\int_{a}^{b} T_{\alpha}\left(\eta_{\alpha p-1}\right)(t)|f(t)|^{p} \Delta^{\alpha} t
$$

By inequality the (6), we find that

$$
\begin{equation*}
\int_{a}^{b} \frac{t^{1-\alpha}|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \leq \frac{1}{\alpha p-1} \int_{a}^{b} \eta_{\alpha p-1}(\sigma(t))\left|T_{\alpha}\left(|f(t)|^{p}\right)\right| \Delta^{\alpha} t \tag{11}
\end{equation*}
$$

By using the (5), we obtain

$$
T_{\alpha}\left(|f|^{p}\right)(t)=p|f(s)|^{p-2} f(s) T_{\alpha}(f)(t), \quad \text { for all } t \in[a, b]_{\mathbb{T}}, \text { where } s \in[t, \sigma(t)],
$$ which implies that

$$
\begin{equation*}
\left|T_{\alpha}\left(|f|^{p}\right)(t)\right| \leq p|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|, \quad \text { for all } t \in[a, b] \tag{12}
\end{equation*}
$$

Substituting 12 into (11), we have

$$
\begin{equation*}
\int_{a}^{b} \frac{t^{1-\alpha}|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \leq \frac{p}{\alpha p-1} \int_{a}^{b} \frac{|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{\alpha p-1}} \Delta^{\alpha} t \tag{13}
\end{equation*}
$$

Applying Hölder's inequality on time scale, on the term

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{\alpha p-1}} \Delta^{\alpha} t=\int_{a}^{b} \frac{|f(t)|^{p-1} t^{\frac{(\alpha-1)(p-1)}{p}}}{(\sigma(t)-a)^{\alpha(p-1)}} \frac{\left|T_{\alpha}(f)(t)\right| t^{\frac{\alpha-1}{p}}}{(\sigma(t)-a)^{\alpha-1}} \Delta t \tag{14}
\end{equation*}
$$

with indices $p / p-1$ and $p$, we see that

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{\alpha p-1}} \Delta^{\alpha} t \leq\left(\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t\right)^{\frac{p-1}{p}}\left(\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t\right)^{\frac{1}{p}} \tag{15}
\end{equation*}
$$

Substituting (15) into (14), we have

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{\alpha p-1}} \Delta^{\alpha} t \leq\left(\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t\right)^{\frac{p-1}{p}}\left(\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t\right)^{\frac{1}{p}} \tag{16}
\end{equation*}
$$

From (13) and (16), we have

$$
\left(\int_{a}^{b} \frac{t^{1-\alpha}|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t\right)^{p}\left(\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t\right)^{1-p} \leq\left(\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t\right)
$$

Since $a>0$, we obtain

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \leq\left(\frac{a^{\alpha-1} p}{\alpha p-1}\right)^{p} \int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t
$$

Which is the desired inequality (8). This proves the Theorem.
Remark 3.6. Let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$, such that $f(b)=f(a)=0$ and $f^{\Delta}(a)<\infty$, then $L_{f}^{1}(a)<\infty$ and $L_{f}^{1}(b)=0$.

The next results provides some useful relationships concerning the space's Sobolev on time scales $W_{0, \Delta}^{1, p}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ and $W_{0, \Delta}^{2, p}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ initiated in [6]. As a special case of Theorem 3.5 when $\alpha=1$, we have the following Hardy-Sobolev inequality on time scales be the generalization the inequality (3).

Remark 3.7. Assume that $\alpha=1$ in Theorem 3.5, $a, b \in \mathbb{T}$ such that $0<a<$ $b<\infty$ and let $f \in W_{0, \Delta}^{1, p}\left([a, b]_{\mathbb{T}}\right)$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$. Then $L_{f}^{1}(b)=0$ and $L_{f}^{1}(a)=f^{\Delta}(a)$. It is easy to see that the conditions the Theorem 3.5 are satisfied. Substituting $\alpha=1$ into (9), we have the following Hardy inequality

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{p}} \Delta t \leq\left(\frac{p}{p-1}\right)^{p} \int_{a}^{b}\left|f^{\Delta}(t)\right|^{p} \Delta t
$$

We show some examples of application of Theorem 3.5
Example 1. Assume that $\mathbb{T}=\mathbb{R}$ in Theorem 3.5, $\alpha=1, a=\varepsilon$ and $b=\infty$, such that $\varepsilon>0$. Let $f \in W_{0}^{1, p}([\varepsilon,+\infty))$, then $L_{f}^{1}(\varepsilon)=f^{\prime}(\varepsilon)$ and $L_{f}^{1}(\infty)=0$. It is easy to see that the conditions the Theorem 3.5 are satisfied. Then the Hardy inequality

$$
\begin{equation*}
\int_{\varepsilon}^{\infty} \frac{|f(t)|^{p}}{(t-\varepsilon)^{p}} d t \leq\left(\frac{p}{p-1}\right)^{p} \int_{\varepsilon}^{\infty}\left|f^{\prime}(t)\right|^{p} d t, \quad \text { for all } \varepsilon>0 \tag{17}
\end{equation*}
$$

Example 2. By Example 1, we have formula (17) holds for all $\varepsilon>0$ and $f \in$ $W_{0}^{1, p}([\varepsilon,+\infty))$. If $\varepsilon \rightarrow 0$, we have the following Hardy inequality

$$
\int_{0}^{\infty} \frac{|f(t)|^{p}}{t^{p}} d t \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|f^{\prime}(t)\right|^{p} d t
$$

hold for all $f \in W_{0}^{1, p}([0,+\infty))$.

Remark 3.8. Along the work, we give the main results and for simplification, we note

$$
\gamma(\alpha, p):=\inf _{t \in[a, b] \cap \mathbb{T}}\left\{1-\left(\frac{1-\alpha}{p}\right) \frac{\sigma(t)}{t}\right\} .
$$

Theorem 3.9. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $0<a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$ is conformal fractional differentiable of order $\alpha$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$,

$$
L_{f}^{\alpha+1}(a)<+\infty, \quad L_{f}^{\alpha+1}(b)=0, \quad \text { and } \quad \gamma(\alpha, p)>0
$$

If $(\sigma(t)-a)^{\alpha} T_{\alpha}(f) \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$. Then $(\sigma(t)-a)^{-\alpha-1} f \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$, there exist a constant $C_{2}(p, \alpha, a)>0$ such that

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \leq C_{2}(p, \alpha, a) \int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \tag{18}
\end{equation*}
$$

with the constant

$$
\begin{equation*}
C_{2}(p, \alpha, a)=\left(\frac{a^{\alpha-1}}{\gamma(\alpha, p)}\right)^{p} \tag{19}
\end{equation*}
$$

Proof. By definition the $L_{f}^{\alpha}$ in the points $a, b$ and by $L_{f}^{\alpha+1}(a)<+\infty$ and $L_{f}^{\alpha+1}(b)=$ 0, which implies

$$
\begin{equation*}
\lim _{t \rightarrow a} \eta_{(\alpha+1) p-1}(t)|f(t)|^{p}=\lim _{t \rightarrow b} \eta_{(\alpha+1) p-1}(t)|f(t)|^{p}=0 \tag{20}
\end{equation*}
$$

From Lemma 3.1 and 20), we obtain

$$
\begin{align*}
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t & =\int_{a}^{b} \eta_{(\alpha+1) p}^{\sigma}(t)|f(t)|^{p} \Delta^{\alpha} t \\
& \leq-\frac{1}{p} \int_{a}^{b} T_{\alpha}\left(\eta_{(\alpha+1) p-1}\right)(t) t^{\alpha-1}|f(t)|^{p} \Delta^{\alpha} t \\
& \leq \frac{1}{p} \int_{a}^{b} \eta_{(\alpha+1) p-1}^{\sigma}(t) T_{\alpha}\left(t^{\alpha-1}|f(t)|^{p}\right) \Delta^{\alpha} t \tag{21}
\end{align*}
$$

Using the product rule the conformable fractional differentiable of order $\alpha$, we have

$$
\begin{align*}
\left|T_{\alpha}\left(t^{\alpha-1}|f(t)|^{p}\right)\right| & =\left.\left|T_{\alpha}\left(t^{\alpha-1}\right)\right| f(t)\right|^{p}+(\sigma(t))^{\alpha-1} T_{\alpha}\left(|f(t)|^{p}\right) \mid \\
& \leq\left|T_{\alpha}\left(t^{\alpha-1}\right)\right||f(t)|^{p}+t^{\alpha-1}\left|T_{\alpha}\left(|f(t)|^{p}\right)\right| \tag{22}
\end{align*}
$$

From (12) and 22), we see that

$$
\begin{equation*}
\left|T_{\alpha}\left(t^{\alpha-1}|f(t)|^{p}\right)\right| \leq(1-\alpha) \frac{|f(t)|^{p}}{t}+p t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right| \tag{23}
\end{equation*}
$$

Substituting (23) into (21), we have

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \leq \frac{1-\alpha}{p} \int_{a}^{b} \frac{|f(t)|^{p}}{t(\sigma(t)-a)^{(\alpha+1) p-1}}+\int_{a}^{b} \frac{t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t \tag{24}
\end{equation*}
$$

Applying Hölder's inequality on time scale, on the term

$$
\int_{a}^{b} \frac{t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t=\int_{a}^{b} \frac{|f(t)|^{p-1} t^{\frac{(2 \alpha-2)(p-1)}{p}}}{(\sigma(t)-a)^{(\alpha+1)(p-1)}} \frac{\left|T_{\alpha}(f)(t)\right| t^{\frac{2 \alpha-2}{p}}}{(\sigma(t)-a)^{\alpha}} \Delta t
$$

with indices $p / p-1$ and $p$, we see that

$$
\begin{align*}
\int_{a}^{b} \frac{t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t & \leq\left(\int_{a}^{b} \frac{|f(t)|^{p} t^{2 \alpha-2}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta t\right)^{\frac{p-1}{p}}\left(\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p} t^{2 \alpha-2}}{(\sigma(t)-a)^{\alpha p}} \Delta t\right)^{\frac{1}{p}} \\
& \leq a^{\alpha-1}\left(\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t\right)^{\frac{p-1}{p}}\left(\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t\right)^{\frac{1}{p}} \tag{25}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\int_{a}^{b} \frac{|f(t)|^{p}}{t(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t \leq \int_{a}^{b} \frac{\sigma(t)}{t} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t . \tag{26}
\end{equation*}
$$

Substituting (26) into (24), we have

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \leq \frac{1-\alpha}{p} \int_{a}^{b} \frac{\sigma(t)}{t} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t+\int_{a}^{b} \frac{t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t .
$$

Then

$$
\begin{align*}
\gamma(\alpha, p) \int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t & \leq \int_{a}^{b}\left(1-\frac{(1-\alpha) \sigma(t)}{p t}\right) \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \\
& \leq \int_{a}^{b} \frac{t^{\alpha-1}|f(t)|^{p-1}\left|T_{\alpha}(f)(t)\right|}{(\sigma(t)-a)^{(\alpha+1) p-1}} \Delta^{\alpha} t . \tag{27}
\end{align*}
$$

Substituting (27) into (25), we have

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \leq\left(\frac{a^{\alpha-1}}{\gamma(\alpha, p)}\right)^{p} \int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t,
$$

which is the desired inequality 18 ). This proves the Theorem.
We show some example of application of Theorem 3.9.
Example 3. Assume that $\mathbb{T}=\mathbb{N}$ in Theorem 3.9, $\alpha=\frac{1}{2}, a=1, b=\infty, p \in \mathbb{R}$ with $p>1$, and let $f: \mathbb{N} \rightarrow \mathbb{R}$, such that $\lim _{n \rightarrow \infty} n^{-\frac{1}{2}} f(n)=0,|f(n+1)| \leq|f(n)|$, for $n \in \mathbb{N}$ and $f(1)=0$. Then

$$
\gamma\left(\frac{1}{2}, p\right)=\frac{p-1}{p}, \quad T_{\frac{1}{2}}(f)(n)=\sqrt{n} \Delta f(n), \quad \text { for all } n \in \mathbb{N} \text {. }
$$

It is easy to see that the conditions the Theorem 3.9 are satisfied. Furthermore assume that $\sum_{n=1}^{\infty} \frac{|\Delta f(n)|^{p}}{\sqrt{n}}$ is convergent. In this case, we have the following discrete Hardy inequality

$$
\sum_{n=1}^{\infty} \frac{|f(n)|^{p}}{\sqrt{n}^{3 p+1}} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} \frac{|\Delta f(n)|^{p}}{\sqrt{n}},
$$

where $C_{2}\left(p, \frac{1}{2}, 1\right)=(p / p-1)^{p}$ is defined as in Theorem 3.9.
Remark 3.10. Let $\mathbb{T}$ be a time scale, $\alpha \in(0,1]$, and let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$. The following notation

$$
\left(T_{\alpha} \circ T_{\alpha}\right)(f)=T_{\alpha}^{2}(f) .
$$

Theorem 3.11. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $0<a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$ is conformal fractional differentiable of order $2 \alpha$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$,

$$
L_{f}^{\alpha+1}(a)<+\infty, \quad L_{f}^{\alpha+1}(b)=0, \quad \text { and } \quad \gamma(\alpha, p)>0
$$

If $(\sigma(t)-a)^{1-\alpha} T_{2 \alpha}(f) \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$. Then $(\sigma(t)-a)^{-(\alpha+1)} f \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$, there exist a constant $C_{3}(p, \alpha, a)>0$ such that

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t \leq C_{3}(p, \alpha, a) \int_{a}^{b} \frac{\left|T_{\alpha}^{2}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t
$$

with the constant

$$
\begin{equation*}
C_{3}(p, \alpha, a)=\left(\frac{p a^{2 \alpha-2}}{\gamma(\alpha, p)(\alpha p-1)}\right)^{p} \tag{28}
\end{equation*}
$$

Proof. This is similar to the proof of the Theorem 3.5 and Theorem 3.9 .
As a special case of Theorem 3.11 when $\alpha=1$, we have the following Hardy-type inequality.

Remark 3.12. Let $\mathbb{T}$ be a time scale, assume that $\alpha=1$ in Theorem 3.11, $a, b \in \mathbb{T}$ such that $a<b<\infty$ and let $f \in W_{0, \Delta}^{2, p}\left([a, b]_{\mathbb{T}}\right)$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$. Then $\gamma(1, p)=1, L_{f}^{2}(b)=0$ and

$$
L_{f}^{2}(a)= \begin{cases}\frac{f^{\Delta}(a)}{\mu(a)}, & \text { if } \mu(a)>0 \\ \frac{1}{2} f^{\Delta^{2}}(a), & \text { if } \mu(a)=0\end{cases}
$$

It is easy to see that the conditions the Theorem 3.11 are satisfied, therefore, we have

$$
\begin{equation*}
C_{p}:=C_{3}(p, 1, a)=\left(\frac{p}{p-1}\right)^{p} \tag{29}
\end{equation*}
$$

where $C_{3}$ is defined as in Theorem 3.11, we have the Hardy inequality

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{2 p}} \Delta t \leq C_{p} \int_{a}^{b}\left|f^{\Delta^{2}}(t)\right|^{p} \Delta t
$$

We show some examples of application of Theorem 3.5
Example 4. Assume that $\mathbb{T}=\mathbb{R}$ in Theorem 3.11, $\alpha=1, a=\varepsilon$ and $b=\infty$, such that $\varepsilon>0$. Let $f \in W_{0}^{2, p}([\varepsilon,+\infty))$, then

$$
\gamma(1, p)=1>0, \quad L_{f}^{2}(\varepsilon)=f^{\prime \prime}(\varepsilon) \quad \text { and } \quad L_{f}^{2}(\infty)=0
$$

It is easy to see that the conditions the Theorem 3.11 are satisfied. Then the Hardy inequality

$$
\begin{equation*}
\int_{\varepsilon}^{\infty} \frac{|f(t)|^{p}}{(t-\varepsilon)^{2 p}} d t \leq C_{P} \int_{\varepsilon}^{\infty}\left|f^{\prime \prime}(t)\right|^{p} d t, \quad \text { for all } \varepsilon>0 \tag{30}
\end{equation*}
$$

where $C_{p}$ is defined as in 29.

Example 5. By Example 4, we have formula 30 holds for all $\varepsilon>0$ and $f \in$ $W_{0}^{2, p}([\varepsilon,+\infty))$. If $\varepsilon \rightarrow 0$, we have the following Hardy inequality

$$
\int_{0}^{\infty} \frac{|f(t)|^{p}}{t^{2 p}} d t \leq C_{P} \int_{0}^{\infty}\left|f^{\prime \prime}(t)\right|^{p} d t, \quad \text { hold for all } f \in W_{0}^{2, p}([0,+\infty))
$$

where $C_{p}$ is defined as in 29).
Corollary 3.13. Let $\mathbb{T}$ be a time scale, $a, b \in \mathbb{T}$ with $0<a<b, \alpha \in(0,1], p \in \mathbb{R}$ with $p>1$, and let $f:[a, b]_{\mathbb{T}} \rightarrow \mathbb{R}$ is conformal fractional differentiable of order $2 \alpha$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$,

$$
L_{f}^{\alpha+1}(a)<+\infty, \quad L_{f}^{\alpha+1}(b)=0, \quad \text { and } \quad \gamma(\alpha, p)>0
$$

If $(\sigma(t)-a)^{1-\alpha} T_{2 \alpha}(f) \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$. Then $(\sigma(t)-a)^{-(\alpha+1)} f \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$ and $(\sigma(t)-a)^{-\alpha} T_{\alpha}(f) \in L_{\Delta}^{\alpha, p}\left([a, b]_{\mathbb{T}}\right)$, there exist a constant $C_{4}(p, \alpha, a)>0$ such that
$\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{(\alpha+1) p}} \Delta^{\alpha} t+\int_{a}^{b} \frac{\left|T_{\alpha}(f)(t)\right|^{p}}{(\sigma(t)-a)^{\alpha p}} \Delta^{\alpha} t \leq C_{4}(p, \alpha, a) \int_{a}^{b} \frac{\left|T_{\alpha}^{2}(f)(t)\right|^{p}}{(\sigma(t)-a)^{(\alpha-1) p}} \Delta^{\alpha} t$.
Remark 3.14. Let $\mathbb{T}$ be a time scale, assume that $\alpha=1$ in Corollary 3.13, $a, b \in \mathbb{T}$ such that $0<a<b<\infty$ and let $f \in W_{0, \Delta}^{2, p}\left([a, b]_{\mathbb{T}}\right)$, such that $\left|f^{\sigma}(t)\right| \leq|f(t)|$, for $t \in[a, b]_{\mathbb{T}}$. Then, we have the Hardy inequality

$$
\int_{a}^{b} \frac{|f(t)|^{p}}{(\sigma(t)-a)^{2 p}} \Delta t+\int_{a}^{b} \frac{\left|f^{\Delta}(t)\right|^{p}}{(\sigma(t)-a)^{p}} \Delta t \leq C_{p} \int_{a}^{b}\left|f^{\Delta^{2}}(t)\right|^{p} \Delta t
$$

where $C_{p}$ is constant.

## 4. Conclusion

The study of integral inequalities on time scales via the $\alpha$-fractional integral. In this paper we generalize integral inequalities on time scales to $\alpha$-fractional integral. As special cases, one obtains previous Hardy's-sobolev's inequalities.

## References

[1] G.H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger of Math. 54 (1925), 150-156.
[2] M. Bohner, A. C. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications. Birkäuser Boston, Inc., Boston, MA, 2001.
[3] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (2001), no. 4, 535-557.
[4] M. Bohner, A.C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Inc., Boston, MA, 2003.
[5] P. Řehàk, Hardy inequality on time scales and its application to Half-linear dynamic equations. Journal of Inequalities and Applications 2005:5 (2005) 495-507.
[6] R. Agarwal, v. Espinar, k. Perera, D. R. Vivero, Basic properties of sobolev's spaces on time scales. Advances in Difference Equations. Volume 2006.
[7] M. R. Sidi Ammi, R. A. C. Ferreira, D. F. M. Torres, Diamond-Jensen's inequality on time scales, J. Inequal. Appl. 2008, Art. ID 576876.
[8] A. Tuna, S. Kutukcu, Some integral inequalities on time scales, Appl. Math. Mech. (Engl. Ed.) 29 (2008), no. 1, 23-29.
[9] U. M. Ozkan, H. Yildirm, Hardy-Knopp-type inequalities on time scales, Dynamic Systems and Applications 17 (2008) 477-486.
[10] M. R. Sidi Ammi, D. F. M. Torres, Combined dynamic Grüss inequalities on time scales, J. Math. Sci. 161 (2009), no. 6, 792-802.
[11] N. Benkhettou, S. Hassani, D. F.M. Torres, A conformable fractional calculus on arbitrary time scales, Journal of King Saud University - Science (2015).
[12] L. E. Persson, S. Shaimardan, Some new Hardy-type inequalities for Riemann-Liouville fractional $q$-integral operator, Persson and Shaimardan Journal of Inequalities and Applications (2015).
[13] R. Agarwal, D. O'Regan, S. Saker, Hardy Type Inequalities on Time Scales, Springer 2016.

Amine Benaissa Cherif
Department of Mathematics, University of Ain Temouchent, BP 284, 46000 Ain Temouchent, Algeria.

E-mail address: amine.banche@gmail.com
Fatima Zohra Ladrani
Department of Mathematics, Higher normal school of Oran, BP 1523, 31000 Oran, Algeria.

E-mail address: f.z.ladrani@gmail.com


[^0]:    2010 Mathematics Subject Classification. 26D05.
    Key words and phrases. Time scale, Hardy's inequality, Fractional calculus.
    Submitted Jan. 17, 2016.

