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A FRACTIONAL BLOCK PULSE OPERATIONAL METHOD FOR

SOLVING A CLASS OF FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS

S. MOMTAHAN, H.SAEEDI, M. MOHSENI MOGHADAM

Abstract. In this article, we present a solution method for fractional partial

differential equations. The proposed technique utilizes Block Pulse Functions
(BPFs) operational matrices method in conjunction with Tau technique. The
error analysis includes the error in the approximation of BPFs, the estimation
of the error bound and the estimation of the error function for the proposed

method. Numerical examples are provided to illustrate the efficiency and ac-
curacy of the applying technique.

1. Introduction

Fractional differential equations are generalized from integer ordered ones. The
order of such equations is fractional. These equations are more accurate in the
case of natural physical processes and dynamical systems [3, 12]. It is noticeable
that many researchers in diverse fields of science and engineering study the frac-
tional calculus and employ the fractional equations in order to tackle the problems
of modeling and controlling of many dynamical systems [2, 24]. As a remarkable
example, the fractional calculus is applied to the fluid-dynamic traffic, the con-
tinuum and statistical mechanics, the frequency dependent damping behavior of
many viscoelastic materials, the colored noise, the economics, the control theory
and the signal processing [28]. There are a wide variety of approaches for solving
fractional differential equations. The most commonly used ones are Variational
Iteration Method [21], Adomian Decomposition Method [5, 8], Generalized Differ-
ential Transform Method [14, 15, 16], Operational Matrix Method [19, 20], Finite
Difference Method [27] and Wavelet Method [4, 6, 22, 23].
During this article, we study a class of fractional partial differential equations in
the form of Eq. (1).

∂αu

∂tα
= −∂βu

∂xβ
+ λu(x, t) + g(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (1)
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subject to the initial conditions

u(0, t) = p(t), u(x, 0) = v(x), (2)

where ∂αu(x,t)
∂xα and ∂βu(x,t)

∂tβ
are the fractional derivative in Caputo sense, g(x, t) is

the known continuous function, u(x, t) is the unknown function, 0 < α and β ≤ 1.
In recent years, a wide range of basic functions have been employed so as to

estimate the solutions of fractional partial differential equations such as orthogonal
functions and wavelets. The orthogonal functions are classified as

(1) Piecewise Constant Orthogonal Functions (PCOF) such as Walsh, Block-
Pulse and Haar,

(2) Orthogonal polynomials such as Legendre, Laguerre and Chebyshev,
(3) Sine-Cosin functions in the Fourier series.

For more information on this classification, see [1, 9]. Here, we solve Eq. (1) by
using BPFs.

The present article is organized as follows. In section 2, we conduct a review of
the fractional calculus theory that is fundamental to our work. In section 3, Block
pulse functions and their properties are studied. Furthermore, the operational
matrix of the fractional integration of the block pulse functions are presented. The
mathematical formulation of a fractional partial differential equation is described in
Section 4. In section 5, the error analysis is discussed. Additionally, the numerical
solutions are studied in Section 6. Finally, the article is concluded in Section 7.

2. Fractional calculus

In this section, we undertake a review of requiste definitions and preliminaries of
the fractional calculus theory that are essential to study the present subject. For
further details, see [10, 13, 17].
Definition 2.1 The Riemann-Liouville fractional integral operator Iα of order α,
α ≥ 0, for function u(t) is given by

Iαu(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds α > 0, (3)

I0u(t) := u(t). (4)

Definition 2.2 The Caputo fractional derivative operator Dα of order α, α ≥ 0,
for function u(t) is defined as

Dα
⋆ u(t) :=

{
dru(t)
dtr α = r ∈ N,
1

Γ(r−α)

∫ t

0
ur(s)

(t−s)α−r+1 ds 0 ≤ r − 1 < α < r.
(5)

The relation between the Riemann-Liouville operator and Caputo fractional deriv-
ative is given by the following expressions

Dα
⋆ I

αu(t) = u(t), (6)

IαDα
⋆ u(t) = u(t)−

r−1∑
k=0

u(k)(0+)
(t)k

k!
t > 0. (7)
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3. Block pulse functions (BPFs)

Definition 3.1 For a given positive integer m, BPFs are defined as

bi(t) =

{
1 (i− 1)h ≤ t < ih,
0 otherwise,

(8)

where i = 1, 2, · · · ,m and h = 1
m . Some properties of BPFs are given in Proposition

3.1.
Proposition 3.1([7]). For i = 1, 2, · · · ,m and j = 1, 2, · · · ,m we have the

following statements.
supp{bi(x)} = [ i−1

m , i
m ].

Disjointness:

bi(t)bj(t) =

{
bi(t) i = j,
0 i ̸= j.

(9)

Orthogonality: ∫ 1

0

bi(t)bj(t) =

{
h i = j,
0 i ̸= j.

(10)

Completeness: For every f ∈ L2([0, 1)) whenever m escapes to the infinity, Parse-
val’s identity holds. ∫ 1

0

f2(x) dx =
∞∑
i=0

f2
i ∥bi(x)∥2, (11)

where

fi =
1

h

∫ 1

0

f(x)bi(x) dx. (12)

Every function f(x) ∈ L2([0, 1)) can be expressed as

f(x) ∼=
m∑
i=1

fibi(x) = fTBm(x), (13)

where f = [f1, f2, · · · , fm]T and Bm(x) = [b1(x), b2(x), · · · , bm(x)]T such that fi
are defined as in (12) for i = 1, 2, · · · ,m.
Remark 3.1 Every two dimensional function u(x, t) ∈ L2([0, 1) × [0, 1)) can be
expressed as

u(x, t) ∼=
m∑

i1=1

m∑
i2=1

ui1,i2bi1(x)bi2(t) = BT (x)UB(t), (14)

where U = [ui1,i2 ], h1 = 1
m1

, h2 = 1
m2

and we have

ui1,i2 =
1

h1h2

∫ 1

0

∫ 1

0

u(x, t)bi1(x)bi2(t) dxdt, (15)

B(x) = [b1(x), · · · , bm1(x)]
T and B(t) = [b1(t), · · · , bm2(t)]

T . (16)

3.1. BPFs-operational matrix of the fractional integration.
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In this part, we introduce the operational matrix of the fractional integration of
the block pulse functions.
Definition 3.2([11]). α-Fractional integration order of the BPFs-vector can be
expressed by themselve as

IαB(x) ∼= PαB(x),

where

Pα =

(
1

m

)α
1

Γ(α+ 2)


1 ϵ1 ϵ2 · · · ϵm−1

0 1 ϵ1 · · · ϵm−2

0 0 1 · · · ϵm−3

...
...

...
. . .

...
0 0 0 · · · 1

 ,

and ϵk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1. Here, Pα is called the block pulse
operational matrix of the fractional integration.

4. The solution of the fractional partial differential equation

In this section, we assume that m1 = m2 = m. Consider the fractional partial

differential equation given by Eq. (1). We approximate the function ∂βu
∂xβ by the

BPFs as
∂βu

∂xβ
∼= BT (x)UB(t). (17)

By applying the operator Iβx on Eq. (17) and using Eq. (7), we have

Iβx (
∂βu

∂xβ
) ∼= Iβx [B

T (x)UB(t)] = u(x, t)− u(0, t). (18)

Making use of operational matrix Pα, we get

u(x, t) ∼= p(t) +BT (x)PT
β UB(t). (19)

Now, approximating p(t) by BT (x)XB(t) results that

u(x, t) ∼= BT (x)[X + PT
β U ]B(t). (20)

Hence, by substituting Eqs. (17) and (20) in Eq. (1), we have

∂αu

∂tα
∼= −BT (x)UB(t) + λBT (x)[X + PT

β U ]B(t) +BT (x)GB(t), (21)

where
g(x, t) ∼= BT (x)GB(t).

By applying the operator Iαt and considering Eq. (7), we have

u(x, t) ∼= BT (x)[−U +G+ λ(X + PT
β U)]PαB(t)− v(x). (22)

Perceiving Eqs. (20) and (22) and utilizing the orthogonal property of BPFs, we
have

[X + PT
β U ] = [−U +G+ λ(X + PT

β U)]Pα − V

= [(−I + λPT
β )U + λX +G]Pα − V

= (−I + λPT
β )UPα + (λX +G)Pα − V,

(23)

where v(x) ∼= BT (x)V B(t). Finally, from Eq. (23), we obtain

(I − λPT
β )−1PT

β U + UPα + (I − λPT
β )−1[X + V − (G+ λ X)Pα] = 0, (24)
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that is a system of equations called Sylvester equation.
By solving Sylvester equation (24) for unknown matrix U , we have an approxi-

mate function as Eq. (19).

5. Error Analysis

5.1. Error in BPFs approximation. Theorem 5.1 Let D ⊂ R2 be an open
convex set, u : D −→ R be a differentiable function and there exists a real number
M such that

∥∂u(x, t)
∂x

∥ ≤ M.

then

|u(b, t)− u(a, t)| ≤ M |b− a|, ∀(a, t) ∈ D, (b, t) ∈ D.

Proof. See [18].
Here, we obtain the representation of error when a differentiable function u(x, t)

is represented in a series of 2D-BPFs over the region D = [0, 1)× [0, 1) as Eq. (14).
We put m1 = m2 = m, so h1 = h2 = 1

m . We define the representation of error
between u(x, t) and its 2D-BPFs expansion, um(x, t), over every subregion Di1,i2

as follows

ei1,i2 = ui1,i2bi1,i2(x, t)− u(x, t) = ui1,i2 − u(x, t), (x, t) ∈ Di1,i2 ,

where

Di1,i2 = {(x, t)
∣∣ i1 − 1

m
≤ x <

i1
m
,
i2 − 1

m
≤ t <

i2
m
}.

Thus, we have

∥ei1,i2∥2 =

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

e2i1,i2(x, t) dxdt =

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

(ui1,i2 − u(x, t))2 dxdt.

By using integral mean value theorem, there exist η1 and η2 such that

∥ei1,i2∥2 =
1

m2
(ui1,i2 − u(η1, η2))

2, (η1, η2) ∈ Di1,i2 . (25)

Now, by Eq. (15) and using the mean value theorem, we have

ui1,i2 = m2

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

u(x, t) dxdt = m2 1

m2
u(ξ1, ξ2) = u(ξ1, ξ2), (ξ1, ξ2) ∈ Di1,i2 .

(26)
By substituting Eq. (26) into Eq. (25) and by Theorem 5.1, we have

∥ei1,i2∥2 =
1

m2
(u(ξ1, ξ2)− u(η1, η2))

2 ≤ 1

m2
M2((ξ1 − ξ2)− (η1 − η2))

2 ≤ 2
M2

m2
.

Therefore,

∥e(x, t)∥2 =

∫ 1

0

∫ 1

0

e2(x, t) dxdt =

∫ 1

0

∫ 1

0

(
m∑

i1=1

m∑
i2=1

ei1,i2(x, t))
2 dxdt

=

∫ 1

0

∫ 1

0

m∑
i1=1

m∑
i2=1

e2i1,i2(x, t) dxdt+ 2
∑
i1<j1

∑
i2<j2

∫ 1

0

∫ 1

0

ei1,i2(x, t)ej1,j2(x, t) dxdt.

(27)
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Since i1 < j1, i2 < j2, it follows that

Di1,i2 ∩Dj1,j2 = ⊘,

so in Eq. (27) we can write

∥e(x, t)∥2 =

∫ 1

0

∫ 1

0

m∑
i1=1

m∑
i2=1

e2i1,i2(x, t) dxdt =
m∑

i1=1

m∑
i2=1

∥e2i1,i2∥ ≤ m2(
2M2

m4
). (28)

So ∥e(x, t)∥ = O( 1
m ), where e(x, t) = u(x, t)− um(x, t).

5.2. Estimation of the error bound. In this section, we assume that ∂u(x,t)
∂x is

continuous and bounded on (0, 1], this means that

∃M > 0,∀x, t ∈ (0, 1], |∂u(x, t)
∂x

| ≤ M. (29)

Theorem 5.2 Suppose that the functionDα
xum(x, t) is the approximation ofDα

xu(x, t) :=
∂αu(x,t)

∂xα that is obtained by using 2D-BPFs, then we have an exact upper bound as
follows:

∥Dα
xu(x, t)−Dα

xum(x, t)∥2 ≤ 2M

Γ(1− α).(1− α)

1

m(1−α)
,

where

∥u(x, t)∥2 =

(∫ 1

0

∫ 1

0

u2(x, t)dxdt

) 1
2

.

Proof. By using Caputo fractional definition and with Eq. (29), we have

|Dα
xu(ξ1, ξ2)−Dα

xum(η1, η2)| =
1

Γ(1− α)
|
∫ ξ1

0

∂τu(τ, ξ2)

(ξ1 − τ)α
dτ −

∫ η1

0

∂τu(τ, η2)

(η1 − τ)α
dτ |

=
1

Γ(1− α)
|
∫ ξ1

0

∂τu(τ, ξ2)

(ξ1 − τ)α
dτ −

∫ ξ1

0

∂τu(τ, η2)

(η1 − τ)α
dτ −

∫ η1

ξ1

∂τu(τ, η2)

(η1 − τ)α
dτ |

≤ 1

Γ(1− α)

(
|
∫ ξ1

0

∂τu(τ, ξ2)

(ξ1 − τ)α
dτ −

∫ ξ1

0

∂τu(τ, η2)

(η1 − τ)α
dτ | + |

∫ η1

ξ1

∂τu(τ, η2)

(η1 − τ)α
dτ |

)

≤ 1

Γ(1− α)

(∫ ξ1

0

| ∂τu(τ, ξ2)
(ξ1 − τ)α

| dτ −
∫ ξ1

0

| ∂uτ (τ, η2)

(η1 − τ)α
| dτ +

∫ η1

ξ1

| ∂τu(τ, η2)
(η1 − τ)α

| dτ

)

≤ 1

Γ(1− α)

(∫ ξ1

0

| ∂τu(τ, ξ2) |
(ξ1 − τ)α

dτ −
∫ ξ1

0

| ∂τu(τ, η2) |
(η1 − τ)α

dτ +

∫ η1

ξ1

| ∂τu(τ, η2) |
(η1 − τ)α

dτ

)

≤ M

Γ(1− α)

(∫ ξ1

0

1

(ξ1 − τ)α
dτ −

∫ ξ1

0

1

(η1 − τ)α
dτ +

∫ η1

ξ1

1

(η1 − τ)α
dτ

)

=
M

Γ(1− α).(1− α)

(
[ξ1−α

1 + (η1 − ξ1)
1−α − η1−α

1 ] + (η1 − ξ1)
1−α

)
.
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Since ξ1 < η1, hence ξ1−α
1 − η1−α

1 < 0. Therefore

|Dα
xu(ξ1, ξ2)−Dα

xum(η1, η2)| ≤
2M

Γ(1− α).(1− α)
.(η1−ξ1)

1−α ≤ 2M

Γ(1− α).(1− α)

1

m(1−α)
.

Thus we have

(Dα
xu(ξ1, ξ2)−Dα

xum(η1, η2))
2 ≤ 4M2

Γ2(1− α).(1− α)2
1

m2(1−α)
.

Similar to the method presented in Subsection 5.1 we have

∥(Dα
xu(ξ1, ξ2)−Dα

xum(η1, η2))∥22 ≤ 1

m2

4M2

Γ2(1− α).(1− α)2
1

m2(1−α)
.

So that

∥(Dα
xu(x, t)−Dα

xum(x, t))∥22 =

∫ 1

0

∫ 1

0

(Dα
xu(x, t)−Dα

xum(x, t))2 dxdt

=
m∑

i1=1

m∑
i2=1

∫ ∫
Di1,i2

(Dα
xu(x, t)−Dα

xum(x, t))2 dxdt

≤
m∑

i1=1

m∑
i2=1

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

4M2

Γ2(1− α).(1− α)2
1

m2(1−α)
dxdt.

Hence we have

∥(Dα
xu(x, t)−Dα

xum(x, t))∥2 ≤ 2M

Γ(1− α).(1− α)

1

m(1−α)
.

The following process presents an approach for estimating the value of M.
We know ∂xu(x, t) is continuous and bounded on (0, 1], therefore we can approxi-
mate ∂xu(x, t) by

∂xu(x, t) ∼=
m∑

i1=1

m∑
i2=1

ui1,i2bi1,i2(x, t) = BT (x)UB(t). (30)

By integrating Eq. (30), we have

u(x, t) =

∫ x

0

∂xu(s, t) ds+ u(0, t) =

∫ x

0

∂xu(s, t) ds ∼= BT (x)PTUB(t) (31)

So we have

u(x, t) ∼= BT (x)(P1)
TUB(t). (32)

Now, we determine the points xi1 = i1−1
m , ti2 = i2−1

m , i1, i2 = 1, · · · ,m. By evaluat-
ing Eq. (32) at the points xi1 , ti2 , we have

u(xi1 , ti2)
∼= BT (xi1)(P1)

TUB(ti2). (33)

We write Eq. (33) in matrix form, then we have

u = BT
x (P1)

TUBt. (34)

where

u = [u(xi1 , ti2)], Bx := [B(xi1), · · · , B(xim)].

From Eq. (34), we can find U and from Eq. (30), we find the value of ∂u(x,t)
∂x for

x, t ∈ (0, 1].
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Theorem 5.3 Suppose that the function Dα
xum(x, t) obtained by using 2D-BPFs

are the approximation of Dα
xu(x, t), then we have an exact upper bound as follows:

∥u(x, t)− um(x, t)∥2 ≤ 2M

Γ(α)Γ(1− α).α(1− α)

1

m(1−α)
(35)

where

∥u(x, t)∥2 =

(∫ 1

0

∫ 1

0

u2(x, t)dxdt

) 1
2

.

We can prove Theorem 5.2 by using of Theorem 5.2.
From Eq. (35), we can see clearly that ∥u(x, t)−um(x, t)∥2 −→ 0 as m −→ ∞. We
can conclude that BPFs method is convergent when it is used to solve the numerical
solution of fractional differential equations.

5.3. Estimation of the error function. Consider Eq. (1). Let e(x, t) = u(x, t)−
um(x, t) be the error function, where um(x, t) is the estimation of the exact solution
u(x, t). Then we consider

rm(x, t) = −∂αum

∂tα
− ∂βum

∂xβ
+ λum(x, t) + g(x, t), (36)

where rm(x, t) is the perturbation function that depends only on um(x, t). By
substituting Eqs. (1) and (36), we get

rm(x, t) =

(
∂αu

∂tα
− ∂αum

∂tα

)
+

(
∂βu

∂xβ
− ∂βum

∂xβ

)
− λe(x, t),

or

rm(x, t) =
∂αe

∂tα
+

∂βe

∂xβ
− λe(x, t).

The above equation is a fractional order partial differential equation which is similar
to the main Eq. (1). We can apply the mentioned method for solving the above
equation to obtain an approximate solution for the error function.

6. The numerical solution

Example 6.1 Consider the following nonhomogeneous partial differential equa-
tion, where are the fractional orders α, β [25, 26]

∂u

∂x
+

∂u

∂t
= sin(x+ t), 0 ≤ x, t < 1,

with the initial conditions u(0, t) = u(x, 0) = 0.
The exact solution of the above initial value problem for α = β = 1 is

u(x, t) = sinx sin t.

The corresponding absolute errors for m = 8, 16, 32, 64 in some points are shown in
Table 1.

Also, Figures 1 and 2, present graphs of the exact solution as well as the numer-
ical solution for m = 32.

Figure 1. Numerical solution for m = 32, (Example (6.1)).
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Table 1. Error values

(x, t) e8(x, t) e16(x, t) e32(x, t) e64(x, t)

(0, 0) 0 0 0 0

(1/8, 1/8) 1.1600e− 02 6.7000e− 03 3.6000e− 03 1.8000e− 03
(2/8, 2/8) 2.6500e− 02 1.4100e− 02 7.3000e− 03 3.7000e− 03
(3/8, 3/8) 3.9900e− 02 2.0700e− 02 1.0500e− 02 5.3000e− 03
(4/8, 4/8) 5.0800e− 02 2.5800e− 02 1.3000e− 02 6.5000e− 03

(5/8, 5/8) 5.8600e− 02 2.9500e− 02 1.4800e− 02 7.4000e− 03
(6/8, 6/8) 6.2900e− 02 3.1300e− 02 1.5600e− 02 7.8000e− 03
(7/8, 7/8) 6.3400e− 02 3.1200e− 02 1.5500e− 02 7.7000e− 03

Figure 2. Exact solution for m = 32, (Example (6.1)).

Figure 3 shows the numerical results for m = 32, t = 1 and various 0 < α ≤ 1.
The comparisons show that as α −→ 1 the approximate solutions tend to the exact
solution of the equation in the case of α = 1.

Figure 3. The approximate solution for m = 32, t = 1 and some
0 < α ≤ 1, (Example (6.1)).
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Example 6.2 Consider the following nonhomogeneous partial differential equation[25,
26]

∂βu

∂xβ
+

∂αu

∂tα
= 1, 0 ≤ x, t < 1,

with the initial conditions u(0, t) = u(x, 0) = 0.
The exact solution of the above initial value problem, for α = β = 1, is

u(x, t) =

{
t x ≥ t,
x x < t.

The corresponding absolute errors for m = 8, 16, 32, 64 in some points are shown in
Table 2.

Table 2. Error values

(x, t) e8(x, t) e16(x, t) e32(x, t) e64(x, t)

(0, 0) 0 0 0 0

(1/8, 1/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02
(2/8, 2/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02
(3/8, 3/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02
(4/8, 4/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02

(5/8, 5/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02
(6/8, 6/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02
(7/8, 7/8) 9.3700e− 02 4.6900e− 02 2.3400e− 02 1.1700e− 02

Also, Figures 4 and 5, present graphs of the exact solution as well as the numerical
solution for m = 16.

Figure 4. Numerical solution for m = 16, (Example (6.2)).

Figure 5. Exact solution for m = 16, (Example (6.2)).
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Figure 6 shows the numerical results for m = 16, t = 0.9 and various 0 < α ≤ 1.
The comparisons show that as α −→ 1 the approximate solutions tend to the exact
solution of the equation in the case of α = 1.
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Figure 6. The approximate solution for m = 16, t = 0.9 and
some 0 < α ≤ 1, (Example (6.2)).

Example 6.3 Consider the following nonhomogeneous partial differential equation[25,
26]

∂1/4u

∂x1/4
+

∂1/4u

∂t1/4
= g(x, t), 0 ≤ x, t < 1,

with the initial conditions u(0, t) = u(x, 0) = 0 and g(x, t) = 4(x3/4t+xt3/4)
3Γ(3/4) .

The exact solution of the above initial value problem is u(x, t) = xt.
The corresponding absolute errors for m = 8, 16, 32, 64 in some points are shown in
Table 3. Also, the Figure 7, presents the graph of the error for m = 16.

Table 3. Error values

(x, t) e8(x, t) e16(x, t) e32(x, t) e64(x, t)

(0, 0) 0 0 0 0

(1/8, 1/8) 1.1300e− 02 6.8000e− 03 3.6000e− 03 1.9000e− 03
(2/8, 2/8) 2.7400e− 02 1.4700e− 02 7.6000e− 03 3.8000e− 03
(3/8, 3/8) 4.3000e− 02 2.2400e− 02 1.1500e− 02 5.8000e− 03
(4/8, 4/8) 5.8600e− 02 3.0300e− 02 1.5400e− 02 7.8000e− 03

(5/8, 5/8) 7.4200e− 02 3.8100e− 02 1.9300e− 02 9.7000e− 03
(6/8, 6/8) 8.9900e− 02 4.5900e− 02 2.3200e− 02 1.1700e− 02
(7/8, 7/8) 1.0550e− 01 5.3700e− 02 2.7100e− 02 1.3600e− 02

Figure 7. Error for m = 16, Example (6.3)).
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Example 6.4 Consider the following nonhomogeneous partial differential equation[25,
26]

∂1/3u

∂x1/3
+

∂1/2u

∂t1/2
= g(x, t), 0 ≤ x, t < 1,

with the initial conditions u(0, t) = u(x, 0) = 0 and g(x, t) = 9x2t5/3

5Γ(2/3) +
8x3/2t2

3Γ(1/2) .

The exact solution of the above initial value problem is u(x, t) = x2t2.
The corresponding absolute errors for m = 16, 32, 64, 128 in some points are shown
in Table 4.

Table 4. Error values

(x, t) e16(x, t) e32(x, t) e64(x, t) e128(x, t)

(0, 0) 0 0 0 0

(1/8, 1/8) 1.0003e+ 00 9.9850e− 01 5.7440e− 01 3.2090e− 01
(2/8, 2/8) 1.6000e− 03 9.0000e− 04 5.0000e− 04 3.0000e− 04
(3/8, 3/8) 5.8000e− 03 3.2000e− 03 1.8000e− 03 1.0000e− 04
(4/8, 4/8) 1.4400e− 02 7.9000e− 03 4.3000e− 03 2.4000e− 03

(5/8, 5/8) 2.8900e− 02 1.5700e− 02 8.6000e− 03 4.9000e− 03
(6/8, 6/8) 5.0900e− 02 2.7400e− 02 1.5100e− 02 8.7000e− 03
(7/8, 7/8) 8.1900e− 02 4.4100e− 02 2.4300e− 02 1.4100e− 03

Also, Figures 8 and 9, present graphs of the exact solution as well as the numer-
ical solution for m = 32.

Figure 8. Numerical solution form = 32, (Example (6.4)).

Figure 9. Exact solution form = 32, (Example (6.4)).
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Now we obtain error and upper bound of error for our examples.

Table 5. Error and upper bound of error for different values of m for
Example (6.1).

m ∥u(x, t)− um(x, t)∥ upper bound of error

8 7.2778e− 04 8.3039e− 04
16 1.5736e− 04 2.0750e− 04
32 3.6588e− 05 5.1810e− 05

64 8.8209e− 06 1.2961e− 05

Table 6. Error and upper bound of error for different values of m for
Example (6.2).

m ∥u(x, t)− um(x, t)∥ upper bound of error

8 1.0900e− 02 1.7200e− 02
16 2.9000e− 03 4.5000e− 03
32 7.2696e− 04 1.2000e− 03
64 1.8257e− 04 3.0044e− 04

Table 7. Error and upper bound of error for different values of m for
Example (6.3).

m ∥u(x, t)− um(x, t)∥ upper bound of error

8 2.0600e− 02 5.3610e− 01
16 5.6000e− 03 3.1010e− 01
32 1.4000e− 03 1.8150e− 01
64 3.7264e− 04 1.0700e− 01

Table 8. Error and upper bound of error for different values of m for
Example (6.4).

m ∥u(x, t)− um(x, t)∥ upper bound of error

16 1.5050e− 01 5.6730e− 01

32 1.3840e− 01 3.9470e− 01
64 1.3270e− 01 2.7590e− 01
128 1.2980e− 01 1.9380e− 01
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7. Conclusion

This article uses block pulse operational matrix method to solve a class of frac-
tional partial differential equation. Numerical examples show that the approximate
solution has a good degree of accuracy.
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