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COMPARATIVE DYNAMICS OF FRACTIONAL HALF-LINEAR

BOUNDARY VALUE PROBLEMS VIA LIAPUNOV

INEQUALITIES

YOUSEF GHOLAMI, KAZEM GHANBARI

Abstract. In this paper, we study two classes of fractional half-linear bound-
ary value problems subject to the Dirichlet boundary conditions. The golden
aims of this paper can be summarized as follows. First, we introduce extended

theory of the conformable fractional calculus and its basic analysis. In the
next level using the Green function technique, we obtain Liapunov inequali-
ties of the under study fractional order boundary value problems. In the light
of the obtained Liapunov inequalities, qualitative behavior of the mentioned

problems such as disconjugacy, solvability, upper bound estimation for number
of zeros of the non-trivial solutions and distance between consecutive zeros of
the oscillatory solutions will be presented in a comparative manner.

1. Introduction

Consider the following fractional half-linear boundary value problems: Θβ2

(
Gα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (p(t)u) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(1.1)

 Θβ2

(
Dα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (q(t)u) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(1.2)

subject to the following general assumptions:

(A1) α ∈ (1, 2) and β1, β2 ∈ (0,+∞).
(A2) G

α
a+ and Dα

a+ denote extended conformable fractional differentiation oper-
ator and the Riemann-Liouville fractional differentiation operator of order
α, respectively, that will be defined a little later.

(A3) Θz(u) = |u|z−1u with z ∈ (0,+∞).
(A4) p, q : (a, b) → R stand for continuous and non-zero functions.
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This is well known that the concept of the Liapunov inequality turns to the deep
studies of the Russian mathematician A. M. Liapunov on stability of motion, in the
late XIX century,[13]. The cornerstone of the Liapunov inequalities can be stated
as follows:

Theorem 1.1. (cf. [5]) If the boundary value problem{
y

′′
(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0 = y(b),
(1.3)

has a nontrivial solution, where q is a real and continuous function, then∫ b

a

|q(s)|ds > 4

b− a
. (1.4)

Since then, the literature has been developed by many generalizations and re-
finements of the Liapunov inequality (1.4) by now. In this way, one may suggest for
instance the pioneering papers [4],[5]-[7],[8],[16] for detailed consultation. One of
the greatest advantages of the Liapunov inequalities in comparison with other ones
turns to their ability in establishing dynamics of the related differential or difference
equations in frame of their qualitative behavior such as stability, disconjugacy, solv-
ability and spectral properties. Further more, applying these inequalities one may
estimate maximum number of zeros for nontrivial solutions of considered problems
and distance between consecutive zeros of the oscillatory solutions. In addition, the
Liapunov inequalities have been played a crucial role in the literature for study-
ing linear and quasi-linear partial differential equations. For instance, Liapunov
inequalities can be applied to find minimizers of the given minimization problem
and one may derive a lower bound for the first eigenvalue of mentioned problems
beside on some another applications. See [2],[3],[9],[10].
So, now it clears that why we interested in the study of these inequalities for frac-
tional order differential equations. To the best of our knowledge, investigation
about Liapunov inequalities for differential and difference equations of fractional
order introduced for fist time in literature by the Portuguese mathematician R. A.
C. Ferreira. We briefly state his works as follows.
The author in [5], in the late 2013, studied the following two-point fractional bound-
ary value problem{

(aD
αy) (t) + q(t)y(t) = 0, a < t < b, 1 < α ≤ 2,

y(a) = 0, y(b) = 0,
(1.5)

where aD
α stands for the left sided Riemann-Liouville fractional derivative of order

α and q : [a, b] → R is a continuous function. The author using properties of the
corresponding Green function to the (1.5) obtained a Liapunov inequality of the
form ∫ b

a

|q(s)|ds > Γ(α)

(
4

b− a

)α−1

. (1.6)

The Liapunov inequality (1.6) generalizes the classic Liapunov inequality (1.4),
(excepted α = 2). He used then the Liapunov inequality (1.6) to prove that Mittag-
Leffler function of the fractional eigenvalue problem corresponding to the (1.3) has
no real zeros on a determined interval.
Also, the author in [7], in the 2015, considered the following two-point fractional
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difference boundary value problem{
(∆αy) (t) + q(t+ α− 1)y(t+ α− 1) = 0, t ∈ Nb+1

0 ,
y(α− 2) = 0 = y(α+ b+ 1), or y(α− 2) = 0 = ∆y(α+ b),

(1.7)

and using Green function technique, achieved to the following discrete fractional
Liapunov inequality corresponding to the fist pair of boundary conditions:

b+1∑
s=0

|q(s+ α− 1)| > 4Γ(α)
Γ(b+ α+ 2)Γ2

(
b
2 + 2

)
(b+ 2α)(b+ 2)Γ2

(
b
2 + α

)
Γ(b+ 3)

, b : even,

b+1∑
s=0

|q(s+ α− 1)| > Γ(α)
Γ(b+ α+ 2)Γ2

(
b+3
2

)
Γ2
(
b+1
2 + α

)
Γ(b+ 3)

, b : odd,

(1.8)

In the second step, the author obtained for the second pair of boundary conditions,
the following Liapunov inequality:

b+1∑
s=0

|q(s+ α− 1)| > 1

(b+ 2)Γ(α− 1)
. (1.9)

In this paper, we are interested in study Liapunov inequalities of the continuous
fractional order boundary value problems (1.1) and (1.2), and their abilities to es-
tablish dynamics of the corresponding boundary value problems.
At the end of this section, we summarize the organization of the paper. In section 2,
we introduce extended theory of the conformable fractional calculus. This calculus,
acts on the extended conformable fractional differentiation operators that we will
define them a little later. Section 3, includes strategies to extract Liapunov inequal-
ities of the fractional boundary value problems (1.1) and (1.2) based on their Green
functions and applicability of these inequalities to establish qualitative behavior of
the corresponding boundary value problems as we stated above.

2. Extended Conformable Fractional Calculus

Philosophy of the conformable fractional calculus, is rooted in the some algebraic
properties of the Riemann-Liouville based fractional operators. More precisely, lack
of the well known Leibniz and Chain rules in R-L based fractional operators inap-
propriately can be observed. See [18] and [19], for instance. As addressed in these
references fractional order Leibniz and Chain rules in the R-L sense, appear as
infinite series involving the R-L fractional differentiation and integration operators
having various orders. Overcoming these problems, more recently the idea of con-
formable fractional calculus that suggests the limit approach of fractional order
differentiation operators has been presented. Here, we recall the basic elements of
the conformable fractional calculus from the basic references [11] and [1], as follows.

Definition 2.1. (Basic Conformable Fractional Differentiation Operators).
Assume that 0 < α ≤ 1 and f : [a, b] → R. Then the left and right sided conformable
fractional differentiation operators are given by

Tα
a f(t) = lim

ϵ→0

f(t+ ϵ(t− a)1−α)− f(t)

ϵ
, (2.1)

bT
αf(t) = −lim

ϵ→0

f(t+ ϵ(b− t)1−α)− f(t)

ϵ
. (2.2)
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Definition 2.2. (Conformable Fractional Integration Operators). Assume
that 0 < α ≤ 1 and f ∈ L([a, b];R). Then the left and right sided conformable
fractional integration operators are given by

Iαa f(t) =

∫ t

a

f(s)

(s− a)1−α
ds, (2.3)

bI
αf(t) =

∫ b

t

f(s)

(b− s)1−α
ds, (2.4)

Now, taking h = ϵ(t − a)1−α, immediately one may derive the following golden
identity of the conformable fractional calculus:

Tα
a f(t) = lim

ϵ→0

f(t+ ϵ(t− a)1−α)− f(t)

ϵ

= lim
h→0

f(t+ h)− f(t)

h(t− a)α−1

= (t− a)1−α lim
h→0

f(t+ h)− f(h)

h

= (t− a)1−α d

dt
f(t), 0 < α ≤ 1.

(2.5)

Relying on the golden identity Tα
a u(t) = (t − a)1−α d

dt
u(t), in a straight forward

manner, one can prove the following expected results:

Tα
a (c1f + c2g) = c1T

α
a (f) + c2T

α
a (g), for all c1, c2 ∈ R; (2.6)

Tα
a (t− a)

p
= p(t− a)p−α, for all p ∈ R; (2.7)

Tα
a (λ) = 0, for all constant function f(t) = λ; (2.8)

Tα
a (fg) = fTα

a (g) + gTα
a (f), (Leibniz rule); (2.9)

Tα
a (f ◦ g) = (Tα

a f) (g). (T
α
a g) .(g(t)− g(a))α−1, (Chain rule); (2.10)

Tα
a

(
f

g

)
=
gTα

a (f)− fTα
a (g)

g2
, g ̸≡ 0; (2.11)

Tα
a

(
1

α
(t− a)α

)
= 1; (2.12)

Tα
a

(
e

1
α (t−a)α

)
= e

1
α (t−a)α ; (2.13)

Tα
a

(
sin

1

α
(t− a)α

)
= cos

(
1

α
(t− a)α

)
; (2.14)

Tα
a

(
cos

1

α
(t− a)α

)
= − sin

(
1

α
(t− a)α

)
. (2.15)

In the sequel, fractional composition rules, Role’s theorem, mean value theorem,
conformable fractional Taylor expansion theorem and conformable Laplace trans-
forms are given.

Theorem 2.3. (Conformable Fractional Composition Rules). Assume that
0 < α ≤ 1.

1. If f ∈ L([a, b];R), then
Tα
a I

α
a f(t) = f(t), bT

α
bI

αf(t) = f(t). (2.16)
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2. If f be α-differentiable on (a, b), then

Iαa T
α
a f(t) = f(t)− f(a), bI

α
bT

αf(t) = f(t)− f(b). (2.17)

Theorem 2.4. (cf. [11]).(Rolle’s Theorem for Conformable Fractional Differen-
tiable Functions). Let a > 0 and f : [a, b] → R be a given function that satisfies

(i) f is continuous on [a, b],
(ii) f is α-differentiable for some 0 < α < 1,
(iii) f(a) = f(b).

Then, there exists c ∈ (a, b), such that (Tαf) (c) = 0.

Theorem 2.5. (cf. [11]).(Mean Value Theorem for Conformable Fractional Dif-
ferentiable Functions). Let a > 0 and f : [a, b] → R be a given function that
satisfies

(i) f is continuous on [a, b],
(ii) f is α-differentiable for some 0 < α < 1.

Then, there exists c ∈ (a, b), such that (Tαf) (c) =
f(b)− f(a)
1
αb

α − 1
αa

α
.

Theorem 2.6. (cf. [1]). Assume that f is a infinitely α-differentiable function in
the basic sense (2.1), for some 0 < α ≤ 1 at a neighborhood of a point t0. Then f
has the fractional power series expansion:

f(t) =

∞∑
k=0

(
Tα
t0f
)(k)

(t0)(t− t0)
kα

αkk!
, t0 < t < t0 +R

1
α , R > 0. (2.18)

Definition 2.7. (cf. [1]). Let a ∈ R, 0 < α ≤ 1 and f : [a,∞) → R be a real
valued function. Then fractional Laplace transform of order α starting from lower
terminal a of f is defined by

Lα
a{f(t)}(s) = Fα

a (s) =

∫ ∞

a

e−s
(t−a)α

α f(t)(t− a)α−1dt. (2.19)

Applying the golden identity Tα
a u(t) = (t − a)1−α d

dt
u(t), one may derive the

following theorem.

Theorem 2.8. Let a ∈ R, 0 < α ≤ 1 and f : (a,∞) → R be a differentiable real
valued function. Then

Lα
a {(Tα

a f) (t)} (s) = sFα
a (a)− f(a). (2.20)

In this position, using the basic theory of the conformable fractional calculus we
introduce extended theory of the conformable fractional calculus.

Definition 2.9. (Extended Conformable Fractional Derivatives). The left
sided extended conformable fractional derivative of order 0 < α ≤ 1, starting from
lower terminal a of a function f : [a,∞) → R is defined by:

(Gα
a+f) (t) = lim

ϵ→0

fR(t>a;ϵ,α)(t)− f(t)

ϵ
, (2.21)

where, the representation function R(t > a; ϵ, α) satisfies the following properties:
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(A1) R(t > a; ϵ, α) has the basic conformable fractional Taylor expansion series,
i.e.

R(t > a; ϵ, α) =

∞∑
k=0

(
T 1−α
a R(t > a; ϵ, α)

)(k)
(a)(t− a)k(1−α)

(1− α)kk!
.

(A2) fR(t>a;0,α)(t) = f(t).
(A3) Based on the basic conformable fractional Taylor expansion of the repre-

sentation function R(t > a; ϵ, α),

fR(t>a;ϵ,α)(t) = f
(
t+ ϵ(t− a)1−α(1 +O(ϵk))

)
, k ∈ Z+. (2.22)

The right sided extended conformable fractional derivative of order 0 < α ≤ 1,
starting from upper terminal b of a function f : (−∞, b] → R is defined by:

(
Gα

b−f
)
(t) = − lim

ϵ→0

fR(t<b;ϵ,α)(t)− f(t)

ϵ
, (2.23)

where, the representation function R(t < b; ϵ, α) satisfies the following properties:

(B1) R(t < b; ϵ, α) has the basic conformable fractional Taylor expansion series,
i.e.

R(t < b; ϵ, α) =

∞∑
k=0

(
bT

1−αR(t < b; ϵ, α)
)(k)

(b)(b− t)k(1−α)

(1− α)kk!
.

(B2) fR(t<b;0,α)(t) = f(t).
(B3) Based on the basic conformable fractional Taylor expansion of the repre-

sentation function R(t > a; ϵ, α),

fR(t<b;ϵ,α)(t) = f
(
t+ ϵ(b− t)1−α(1 +O(ϵk))

)
, k ∈ Z+. (2.24)

An interesting and straightaway outcome of the extended conformable fractional
derivatives can be stated as follows: extended conformable fractional derivative of
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a given function f : [a, b] → R, has infinitely many representations such as

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ ln

(
1 + ϵ(t− a)1−α

))
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+

{
exp

(
ϵ(t− a)1−α

)
− 1

})
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ sin

(
ϵ(t− a)1−α

))
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ sinh

(
ϵ(t− a)1−α

))
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ ϵ(t− a)1−α + cos

(
ϵ(t− a)1−α

)
− 1

)
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ ϵ(t− a)1−α + cosh

(
ϵ(t− a)1−α

)
− 1

)
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ tan

(
ϵ(t− a)1−α

))
− f(t)

ϵ
,

(Gα
a+f) (t) = lim

ϵ→0

f

(
t+ arctan

(
ϵ(t− a)1−α

))
− f(t)

ϵ
,

.

.

.

Because, using the conformable fractional Taylor expansion series all of the func-
tions

ln
(
1 + ϵ(t− a)1−α

)
, exp

(
ϵ(t− a)1−α

)
− 1,

sin
(
ϵ(t− a)1−α

)
, sinh

(
ϵ(t− a)1−α

)
,

ϵ(t− a)1−α + cos
(
ϵ(t− a)1−α

)
− 1, ϵ(t− a)1−α + cosh

(
ϵ(t− a)1−α

)
− 1,

tan
(
ϵ(t− a)1−α

)
, arctan

(
ϵ(t− a)1−α

)
,

can be stated as ϵ(t − a)1−α(1 + O(ϵk)), k ∈ Z+. Therefore, taking h = ϵ(t −
a)1−α(1+O(ϵk)) instead h = ϵ(t−a)1−α, with a direct calculation we can reobtain
all of basic analysis review above for the extended conformable fractional calculus.
To this aim, it suffices to prove extended golden identity corresponding to the (2.5).
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In this way, note that

(Gα
a+f) (t) = lim

ϵ→0

fR(t>a;ϵ,α)(t)− f(t)

ϵ

= lim
ϵ→0

f
(
t+ ϵ(t− a)1−α(1 +O(ϵk))

)
− f(t)

ϵ

= lim
ϵ→0

f (t+ h)− f(t)

h(t− a)α−1

1 +O(ϵk)

= (t− a)1−α lim
h→0

f(t+ h)− f(t)

h

= (t− a)1−α d

dt
f(t), 0 < α ≤ 1.

(2.25)

Now, making use of the identity (2.25), clearly one can prove all of the formulas
(2.6)-(2.15). For instance, we just prove the Leibniz and Chain rules (2.9) and
(2.10), and leave proofs of the other formulas. To prove the fractional Leibniz rule
(2.9), note that

(Gα
a+(fg)) (t) = (t− a)1−α d

dt
(fg)(t)

= (t− a)1−α

(
f(t)

d

dt
g(t) + g(t)

d

dt
f(t)

)
= f(t)

(
(t− a)1−αg

′
(t)
)
+ g(t)

(
(t− a)1−αf

′
(t)
)

= f(t) (Gα
a+g) (t) + g(t) (Gα

a+f) (t).

Also, we prove the fractional Chain rule (2.10) as follows

(Gα
a+(f ◦ g)) (t) = (t− a)1−α d

dt
(f ◦ g)(t)

= (t− a)1−α
(
f

′
(g(t)).g

′
(t)
)

= (g(t)− g(a))1−αf
′
(g(t)).(t− a)1−αg′(t).(g(t)− g(a))α−1

= (Gα
a+f) (g(t)). (Gα

a+g) (t).(g(t)− g(a))α−1.

It is time to examine the extended conformable fractional operators Gα
a+ and Gα

b−

to verify the composition rules. So, we have the following theorem.

Theorem 2.10. Assume 0 < α ≤ 1.

(C1) If f ∈ L([a, b];R), then

(Gα
a+Iαa+f) (t) = f(t), (Gα

b−I
α
b−f) (t) = f(t).

(C2) If f be α-differentiable in the sense (2.21) and (2.23), at terminals t = a
and t = b, respectively, then

(Iαa+Gα
a+f) (t) = f(t)− f(a), (Iαb−G

α
b−f) (t) = f(t)− f(b).

Proof. We just prove the left sided assertions and as a result of similarity, omit
proof of the right sided ones. Also, we point out this fact that keeping harmony
we represent the right sided conformable fractional integral bI

α with Iαb− . As we
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stated above using extended golden identity (2.25), all of these assertions can be
proved. Thus we begin as follows

(Gα
a+Iαa+f) = (t− a)1−α d

dt
(Iαa+f) (t)

= (t− a)1−α d

dt

(∫ t

a

f(s)

(s− a)1−α
ds

)
= (t− a)1−α.

f(t)

(t− a)1−α

= f(t).

So, (C1) is satisfied.
To see that (C2) holds, note that

(Iαa+Gα
a+f) (t) =

∫ t

a

(
Gα

a+f
)
(s)

(s− a)1−α
ds

=

∫ t

a

(s− a)1−αf
′
(s)

(s− a)1−α
ds

=

∫ t

a

f
′
(s)ds

= f(t)− f(a).

The proof is completed now. �

Showing that under the extended conformable fractional operators, the Rolle
and mean value theorems hold, we have the following theorems.

Theorem 2.11. (Rolle’s Theorem). Let ρ1 > 0 and f : [ρ1, ρ2] ⊂ (a, b) → R be
a given function that satisfies:

(R1) f is continuous on [ρ1, ρ2];
(R2) f is α-differentiable in the sense (2.21), for some α ∈ (0, 1);
(R3) f(ρ1) = f(ρ2).

Then, there exists an c ∈ (ρ1, ρ2) such that
(
Gα

a+f
)
(c) = 0.

Proof. The continuity of f on [ρ1, ρ2] together with the assumption f(ρ1) = f(ρ2),
ensures that there exists an c ∈ (ρ1, ρ2) at which, f has a local extrema. Then, in
accordance with the (2.22), we conclude that,

(Gα
a+f) (c) = lim

ϵ→0+

f
(
c+ ϵ(c− a)1−α

(
1 +O(ϵk)

))
− f(c)

ϵ
= lim

ϵ→0−

f
(
c+ ϵ(c− a)1−α

(
1 +O(ϵk)

))
− f(c)

ϵ
.

The opposite signs of the above limits, yields that
(
Gα

a+f
)
(c) = 0. This completes

the proof. �

Theorem 2.12. (Mean Value theorem). Let ρ1 > 0 and f : [ρ1, ρ2] ⊂ (a, b) →
R be a given function that satisfies:

(M1) f is continuous on [ρ1, ρ2];
(M2) f is α-differentiable in the sense (2.21), for some α ∈ (0, 1).

Then, there exists an c ∈ (ρ1, ρ2),
(
Gα

a+f
)
(c) =

f(ρ2)− f(ρ1)
1

α
(ρ2 − a)α − 1

α
(ρ1 − a)α

.
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Proof. We define the function g(t) : [ρ1, ρ2] ⊂ (a, b) → R as below:

g(t) = f(t)− f(ρ1)−
f(ρ2)− f(ρ1)

1

α
(ρ2 − a)α − 1

α
(ρ1 − a)α

(
1

α
(t− a)α − 1

α
(ρ1 − a)α

)
.

It is easy to check that,

1. g is continuous on [ρ1, ρ2];
2. g is α-differentiable in the sense (2.21), for some α ∈ (0, 1);
3. g(ρ1) = g(ρ2) = 0.

Therefore, the Rolle’s Theorem 2.11, implies that there exists an c ∈ (ρ1, ρ2) such
that

(
Gα

a+g
)
(c) = 0. Equivalently, using the property Gα

a+

(
1
α (t− a)α

)
= 1, one

has

(Gα
a+f) (c) =

f(ρ2)− f(ρ1)
1

α
(ρ2 − a)α − 1

α
(ρ1 − a)α

.

This completes the proof. �

As we observed above applying the identity (2.25), the basic analysis of the
basic conformable fractional calculus, can be reobtained for extended conformable
fractional calculus. At the final stage of this section we are going to present the
higher order extended conformable fractional operators.

Definition 2.13. The left sided extended conformable fractional differentiation op-
erator of order n < α ≤ n + 1, n ∈ Z+, starting from lower terminal a of an
n-differentiable function f : [a,∞) → R is defined by:

(Gα
a+f) (t) = lim

ϵ→0

f
([α]−1)
R(t>a;ϵ,α)(t)− f ([α]−1)(t)

ϵ
, (2.26)

where, the representation function R(t > a; ϵ, α) satisfies the following properties:

(HL1) R(t > a; ϵ, α) has the basic conformable fractional Taylor expansion series,
i.e.

R(t > a; ϵ, α) =

∞∑
k=0

(
T

[α]−α
a R(t > a; ϵ, α)

)(k)
(a)(t− a)k([α]−α)

([α]− α)kk!
.

(HL2) f
([α]−1)
R(t>a;0,α)(t) = f ([α]−1)(t).

(HL3) Based on the conformable fractional Taylor expansion of the representation
function R(t > a; ϵ, α),

f
([α]−1)
R(t>a;ϵ,α)(t) = f ([α]−1)

(
t+ ϵ(t− a)[α]−α(1 +O(ϵk))

)
, k ∈ Z+.

The right sided extended conformable fractional differentiation operator of order
n < α ≤ n + 1, n ∈ Z+, starting from upper terminal b of an n-differentiable
function f : (−∞, b] → R is defined by:(

Gα
b−f

)
(t) = (−1)n+1 lim

ϵ→0

f
([α]−1)
R(t<b;ϵ,α)(t)− f ([α]−1)(t)

ϵ
, (2.27)

where, the representation function R(t < b; ϵ, α) satisfies the following properties:
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(HR1) R(t < b; ϵ, α) has the basic conformable fractional Taylor expansion series,
i.e.

R(t < b; ϵ, α) =
∞∑
k=0

(
bT

[α]−αR(t < b; ϵ, α)
)(k)

(b)(b− t)k([α]−α)

([α]− α)kk!
.

(HR2) f
([α]−1)
R(t<b;0,α)(t) = f ([α]−1)(t).

(HR3) Based on the conformable fractional Taylor expansion of the representation
function R(t > a; ϵ, α),

f
([α]−1)
R(t<b;ϵ,α)(t) = f ([α]−1)

(
t+ ϵ(b− t)[α]−α(1 +O(ϵk))

)
, k ∈ Z+.

Corresponding conformable fractional integration operators are given as follows.

Definition 2.14. ([1]) Assume that n < α ≤ n+1, n ∈ Z+ and f ∈ L[a, b]. Then
the left and right sided conformable fractional integration operators are defined as :

Iαa+f(t) =
1

n!

∫ t

a

(t− s)n(s− a)α−n−1f(s)ds, (2.28)

Iαb−f(t) =
1

n!

∫ b

t

(s− t)n(b− s)α−n−1f(s)ds. (2.29)

Lemma 2.15. Let n < α ≤ n + 1, n ∈ Z+ and f : [a, b] → R be an (n + 1)-
differentiable function on (a, b). Then for each t ∈ (a, b),

(Iαa+Gα
a+f) (t) = f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
, (2.30)

(Iαb−G
α
b−f) (t) = f(t)−

n∑
k=0

(−1)k
f (k)(b)(b− t)k

k!
. (2.31)

Proof. We just prove the assertion (2.30) and omit proof of the (2.31). Considering
definition (2.28) and taking β = α− n, one has

(Iαa+Gα
a+f) (t) = In+1

a+

(
(t− a)β−1Gα

a+f (n)(t)
)
.

Making use of the golden identity (2.25) on the Gα
a+f (n)(t), it follows that

(Iαa+Gα
a+f) (t) = In+1

a+

(
(t− a)β−1(t− a)1−βf (n+1)(t)

)
.

Equivalently, we have

(Iαa+Gα
a+f) (t) =

(
In+1
a+ f (n+1)

)
(t).

Imposing n + 1 times the integration by parts on the recent integration formula
gives us the desired result (2.30). This completes the proof. �

Now, we are ready to apply the extended conformable fractional differentiation
operators Gα

a+ defined by (2.21) and Gα
b− defined by (2.23) in theory of the frac-

tional differential equations and examine their abilities to verify dynamics of the
related fractional differential equations in comparison with other fractional order
differential operators such as Riemann-Liouville ones.
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3. Liapunov Inequalities and Applications

We begin the applied aspect of our work with recalling the conformable fractional
half-linear boundary value problem Θβ2

(
Gα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (p(t)u) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(3.1)

where 1 < α < 2 and Gα
a+ denotes the left sided extended conformable fractional

derivative of order α defined by (2.21). The first step to obtain Liapunov inequality
of the boundary value problem (3.1), is to characterization of the Green function
of the (3.1). Thereby, we have the following.

Lemma 3.1. Assume that 1 < α < 2 and h ∈ L([a, b];R). Then each nontrivial
solution u(t) of the conformable fractional half-linear boundary value problem Θβ2

(
Gα

a+ (Θβ1
(u))

)
+ (Θβ2

(t− a)) .h(t) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(3.2)

uniquely solves the integral equation

u(t) = Θβ−1
1

(∫ b

a

G(t, s)Θβ−1
2

(h(s))ds

)
, (3.3)

where

G(t, s) = 1

b− a

 [(t− a)(b− s)− (b− a)(t− s)](s− a)α−1 ; a < s ≤ t < b,

(t− a)(b− s)(s− a)α−1 ; a < s ≤ t < b.
(3.4)

Proof. First let us point out that the half-linear operator Θp(u) is invertible with
the inversion Θp−1(u). Therefore, taking the inversion Θβ−1

2
and then conformable

fractional integration on both sides of the governing equation

Θβ2

(
Gα

a+ (Θβ1(u))

)
+ (Θβ2(t− a)) .h(t) = 0,

and then making use of the composition rule (2.30), it follows that

(Θβ1u) (t) = c0 + c1(t− a)−
∫ t

a

(t− s)(s− a)α−1Θβ−1
2

(h(s))ds. (3.5)

Imposing the first boundary condition u(a) = 0, it follows that c0 = 0. On the
other hand, the second boundary condition u(b) = 0, gives us the constant c1as
follows

c1 =
1

b− a

∫ b

a

(b− s)(s− a)α−1Θβ−1
2

(h(s))ds. (3.6)
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Now, using the substitution (3.6) into the (3.5), we conclude that

(Θβ1u) (t) =
t− a

b− a

∫ b

a

(b− s)(s− a)α−1Θβ−1
2

(h(s))ds

−
∫ t

a

(t− s)(s− a)α−1Θβ−1
2

(h(s))ds

=
1

b− a

∫ t

a

[(t− a)(b− s)− (b− a)(t− s)](s− a)α−1Θβ−1
2

(h(s))ds

+
1

b− a

∫ b

t

(t− a)(b− s)(s− a)α−1Θβ−1
2

(h(s))ds

=

∫ b

a

G(t, s)Θβ−1
2

(h(s))ds.

At the end, applying the inversion Θβ−1
1

on both sides of the resulting equation, it

follows that

u(t) = Θβ−1
1

(∫ b

a

G(t, s)Θβ−1
2

(h(s))ds

)
,

in which the Green function G(t, s) is defined by (3.4). This completes the proof. �

The second step to obtain the Liapunov inequality of the boundary value problem
(3.1), turns to analyze of the Green function G(t, s) defined by (3.4). To this aim,
we present the following technical lemma.

Lemma 3.2. The Green function G(t, s) defined by (3.4), satisfies the following
assertions:

(i) G(t, s) is continuous on (a, b)× (a, b);

(ii) sup
t,s∈(a,b)

G(t, s) = G
(
b,
a+ (α− 1)b

α

)
=

(α− 1)α−1

αα
(b− a)

α
.

Proof. The assertion (i) is immediate. So, we prove the property (ii). Let us recall
once again the Green function G(t, s) as follows

G(t, s) = 1

b− a

 G1(t, s); a < s ≤ t < b,

G2(t, s); a < t ≤ s < b,

where

G1(t, s) = [(t− a)(b− s)− (b− a)(t− s)](s− a)α−1, (3.7)

G2(t, s) = (t− a)(b− s)(s− a)α−1. (3.8)

As can be observed,

sup
t,s∈(a,b)

G(t, s) = sup
t,s∈(a,b)

G2(t, s).

In one hand
∂

∂t
G2(t, s) =

(b− s)(s− a)α−1

b− a
> 0, (3.9)

and on the other hand,

∂

∂s
G2(t, s) =

(t− a)(s− a)α−2

b− a
{a+ (α− 1)b− αs}.
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Therefore,

∂

∂s
G2(t, s)


> 0; s <

a+ (α− 1)b

α
,

< 0; s >
a+ (α− 1)b

α
.

Hence, we conclude that

sup
s∈(a,b)

G2(t, s) = G
(
t,
a+ (α− 1)b

α

)
. (3.10)

As a result, gathering (3.9) and (3.10) we conclude that

sup
t,s∈(a,b)

G(t, s) = G
(
b,
a+ (α− 1)b

α

)
=

(α− 1)α−1

αα
(b− a)

α
.

This completes the proof. �

In what follows everywhere needed by ∥.∥, we mean the standard sup-norm.
Now, we can extract Liapunov inequality of the conformable fractional half-linear
boundary value problem (3.1). To this aim, we present the following theorem.

Theorem 3.3. Suppose that u(t) is a nontrivial solution of the conformable frac-
tional half-linear boundary value problem Θβ2

(
Gα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (p(t)u) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(3.11)

Then the Liapunov inequality∫ b

a

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(b− a)

)α

, (3.12)

holds.

Proof. In the light of Lemma 3.1, we can transform the boundary value problem
(3.11) into the integral equation

u(t) = Θβ−1
1

(∫ b

a

G(t, s) (Θβ1pu) (s)ds

)
,

where G(t, s) is defined by (3.4). Since u(t) is a nontrivial solution of the boundary
value problem (3.11), making use of the property (ii) in Lemma 3.2, it follows that

∥u∥ < ∥u∥
(
(α− 1)α−1

αα
(b− a)

α

) 1

β1

(∫ b

a

|p(s)|β1ds

) 1

β1
.

Equivalently, one has∫ b

a

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(b− a)

)α

.

This completes the proof. �
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In this position, we shall consider the fractional boundary value problem (1.2)
and repeat the above steps to obtain its Liapunov inequality. To this aim, first
we present some standard definitions and lemmas form fractional calculus. For
more discussion and detailed consultation, we refer interested followers to the basic
references [12],[14],[15],[17].

Definition 3.4. [12] The left and right sided Riemann-Liouville fractional integrals
of order ρ ≥ 0 for function x ∈ L1(a, b) are defined as below:

Jρ
a+(b−)x(t) =


Jρ
a+x(t) =

1

Γ(ρ)

∫ t

a

(t− s)ρ−1x(s)ds; ρ > 0,

Jρ
b−
x(t) =

1

Γ(ρ)

∫ b

t

(s− t)ρ−1x(s)ds; ρ > 0,

x(t) ; ρ = 0.

(3.13)

Definition 3.5. [12] The left and right sided Riemann-Liouville fractional deriva-
tives of order ρ ≥ 0 for function x ∈ L1(a, b) are defined as below:

Dρ
a+(b−)x(t) =


Dρ

a+x(t) =
1

Γ(n− ρ)

(
dn

dtn

)∫ t

a

(t− s)n−ρ−1x(s)ds; ρ > 0,

Dρ
b−
x(t) =

(−1)n

Γ(n− ρ)

(
dn

dtn

)∫ b

t

(s− t)n−ρ−1x(s)ds; ρ > 0,

x(t) ; ρ = 0.
(3.14)

where n = [ρ] + 1.

Lemma 3.6. [12] Let xn−ρ,a(t) = Jn−ρ
a+ x(t) and xn−ρ,b(t) = Jn−ρ

b−
x(t) be the left

and right sided Riemann-Liouville fractional integrals of order n − ρ, respectively.
If x(t) ∈ L1([a, b];R) and xn−ρ,.(t) ∈ ACn([a, b];R), then the following equalities
hold:

Dρ
a+J

ρ
a+x(t) = x(t), Jρ

a+D
ρ
a+x(t) = x(t) +

n∑
k=1

x
(n−k)
n−ρ,a(a)

Γ(ρ− k + 1)
(t− a)ρ−k, (3.15)

Dρ
b−
Jρ
b−
x(t) = x(t), Jρ

b−
Dρ

b−
x(t) = x(t) +

n∑
k=1

(−1)(n−k)x
(n−k)
n−ρ,b(b)

Γ(ρ− k + 1)
(b− t)ρ−k,

(3.16)

where ρ > 0, n = [ρ] + 1.

Lemma 3.7. Suppose that 1 < α < 2, and h ∈ L([a, b];R). Then each nontrivial
solution u(t) of the fractional half-linear boundary value problem Θβ2

(
Dα

a+ (Θβ1(u))

)
+ (Θβ2(t− a)) .h(t) = 0, a < t < b,

u(a) = 0, u(b) = 0,
(3.17)

uniquely solves the integral equation

u(t) = Θβ−1
1

(∫ b

a

K(t, s)
(
Θβ−1

2
h
)
(s)ds

)
, (3.18)



JFCA-2017/8(2) COMPARATIVE DYNAMICS VIA LIAPUNOV INEQUALITIES 205

where

K(t, s) =


[(t− a)α−1(b− s)α−1 − (t− s)α−1(b− a)α−1](s− a)

(b− a)α−1Γ(α)
; a < s ≤ t < b,

(t− a)α−1(b− s)α−1(s− a)

(b− a)α−1Γ(α)
; a < s ≤ t < b.

(3.19)

Proof. Making use of the composition rule (3.15), an argument similar to that of
the Lemma 3.1 gives us the desired result (3.19). So, we omit details of the proof
here. �
Lemma 3.8. The Green function K(t, s) defined by (3.19), satisfies the following
properties:

(i) K(t, s) is continuous on (a, b)× (a, b);

(ii) sup
t,s∈(a,b)

K(t, s) = K
(
b,
b+ (α− 1)a

α

)
=

1

Γ(α)

(α− 1)α−1

αα
(b− a)

α
.

Proof. The proof process is similar to the proof of Lemma 3.2. So, we omit it
here. �

Now, we are ready to obtain the Liapunov inequality of the fractional half-linear
boundary value problem (1.2). In the light of the technical lemmas 3.7 and 3.8, we
give the following theorem without proof.

Theorem 3.9. Suppose that u(t) is a nontrivial solution of the fractional half-linear
boundary value problem Θβ2

(
Dα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (q(t)u) = 0, a < t < b,

u(a) = 0, u(b) = 0.
(3.20)

Then the Liapunov inequality∫ b

a

|q(s)|β1ds > (α− 1)Γ(α)

(
α

(α− 1)(b− a)

)α

, (3.21)

holds.

Remark 3.10. Let

A := (α− 1)

(
α

(α− 1)(b− a)

)α

.

Hence, the Liapunov inequalities (3.12) and (3.21) imply that∫ b

a

|p(s)|β1ds >A,∫ b

a

|q(s)|β1ds >Γ(α)A.

On the other hand, since 1 < α < 2, then 0 < Γ(α) < 1. Therefore, in view point of
optimality we conclude that if we take p ≡ q, the conformable Liapunov inequality
(3.12) is better than the Riemann-Liouville Liapunov inequality (3.21).

Having the Liapunov inequalities (3.12) and (3.21) in hand, it is time to examine
their abilities to establish dynamics of the fractional half-linear boundary value
problems (1.1) and (1.2). To this aim, first we need the following definition.
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Definition 3.11. Let 1 < α < 2. Then for each X ∈ {G,D}, the fractional
differential equation

Θβ2

(
Xα

a+ (Θβ1(u))

)
+Θβ2(t− a)Θβ1β2 (q(t)u) = 0, a < t < b,

is said to be disconjugate, if and only if each nontrivial solution u(t) has less than
[α] + 1 zeros on interval [a, b].

Here, we classify applications of the Liapunov inequalities (3.12) and (3.21) as
follows.

◃ Disconjugacy.

Theorem 3.12. Assume that∫ b

a

|p(s)|β1ds ≤ (α− 1)

(
α

(α− 1)(b− a)

)α

. (3.22)

Then, the conformable fractional half-linear boundary value problem (1.1)
is disconjugate on [a, b].

Proof. Suppose on the contrary that, the boundary value problem (1.1)
is not disconjugate on [a, b]. So, in accordance with definition 3.11 there
exists a nontrivial solution u(t) having at least two zeros t1, t2 ∈ [a, b].
Thus, Theorem 3.3 implies that∫ t2

t1

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(t2 − t1)

)α

.

Consequently, we can deduce the Liapunov inequality∫ b

a

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(b− a)

)α

.

But this inequality contradicts the inequality (3.22). Thus, the fractional
boundary value problem (1.1) is disconjugate on [a, b]. The proof is com-
pleted. �

Lemma 3.13. Assume that∫ b

a

|q(s)|β1ds ≤ (α− 1)Γ(α)

(
α

(α− 1)(b− a)

)α

.

Then, the fractional half-linear boundary value problem (1.2) is disconjugate
on [a, b].

◃ Non-existence. As we observed above, disconjugacy of the boundary
value problems (1.1) and (1.2) can be considered as a nonexistence criterion
for nontrivial solutions of these boundary value problems. This criterion is
given by the following theorem.

Theorem 3.14. Assume that∫ b

a

|p(s)|β1ds ≤ (α− 1)

(
α

(α− 1)(b− a)

)α

. (3.23)

Then, the conformable fractional half-linear boundary value problem (1.1)
has no nontrivial solution.
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Proof. Suppose on the contrary that, the boundary value problem (1.1)
has at least one nontrivial solution u(t). So, u(t) satisfies the boundary
conditions u(a) = 0 and u(b) = 0. Therefore, Theorem 3.3 implies that∫ b

a

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(b− a)

)α

.

The recent Liapunov inequality makes contradiction with the assumption
(3.23). Hence, the fractional boundary value problem (1.1) has no nontrivial
solution. This completes the proof. �

Lemma 3.15. Assume that∫ b

a

|q(s)|β1ds ≤ (α− 1)Γ(α)

(
α

(α− 1)(b− a)

)α

.

Then, the fractional half-linear boundary value problem (1.2) has no non-
trivial solution.

◃ Upper bound estimation for maximum number of zeros of the
nontrivial solutions.

Theorem 3.16. Let u(t) be a nontrivial solution of the conformable frac-

tional half-linear boundary value problem (1.1). If {tk}2N+1
k=1 , N ∈ N, be an

increasing sequence of zeros of the u(t) in a compact interval I with length
l(I), then

N <


(α− 1)α−1(

α

l(I)

)α

N∑
k=1

∫ t2k+1

t2k−1

|p(s)|β1ds


1

α+ 1

. (3.24)

Proof. For each k = 1, 2, ..., N , one may apply Theorem 3.3 to the interval
[t2k−1, t2k+1] ⊂ I. Hence the Liapunov inequality (3.12) implies that∫ t2k+1

t2k−1

|p(s)|β1ds >
αα

(α− 1)α−1
(t2k+1 − t2k−1)

−α.

Taking the sum on both sides of the recent inequality for k, from 1 to N ,
one has

N∑
k=1

∫ t2k+1

t2k−1

|p(s)|β1ds >
αα

(α− 1)α−1

N∑
k=1

(t2k+1 − t2k−1)
−α. (3.25)

It is clear by assumption that for each k = 1, 2, ..., N, ak = t2k+1− t2k−1 >
0. So, the concave-up function ψ(x) := x−α for α > 0 on (0,∞), yields the
following inequality

1

N

N∑
k=1

ψ(ak) ≥ ψ

(
1

N

N∑
k=1

ak

)
, (see Theorem 2.3, [4]).
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Applying this inequality on the right-side of (3.25), we conclude that

N∑
k=1

∫ t2k+1

t2k−1

|p(s)|β1ds >
αα

(α− 1)α−1
N

(
1

N

N∑
k=1

(t2k+1 − t2k−1)

)−α

=
αα

(α− 1)α−1
Nα+1(t2N+1 − t1)

−α

≥

(
α

l(I)

)α

(α− 1)α−1
Nα+1.

This completes the proof. �
Lemma 3.17. Let u(t) be a nontrivial solution of the fractional half-linear

boundary value problem (1.2). If {tk}2N+1
k=1 , N ∈ N, be an increasing se-

quence of zeros of the u(t) in a compact interval I with length l(I), then

N <


(α− 1)α−1

Γ(α)

(
α

l(I)

)α

N∑
k=1

∫ t2k+1

t2k−1

|p(s)|β1ds


1

α+ 1

. (3.26)

◃ Distence between consecutive zeros of an oscillatory solution.

Theorem 3.18. Let u(t) be an oscillatory solution of the conformable frac-
tional half-linear boundary value problem (1.1) with {tn}∞n=1 its increasing
sequence of zeros in [0,∞). Assume for any positive constant M , we have∫ t+M

t

|p(s)|β1ds→ 0, as t→ ∞. (3.27)

Then, tn+2 − tn → ∞, as n→ ∞.

Proof. Suppose on the contrary that, there exists a positive constant M
and a subsequence {tnk

}∞k=1 of the {tn}∞n=1 such that tnk+2 − tnk
≤M for

all large k. So, in the light of the assumption (3.27), it follows that∫ tnk+2

tnk

|p(s)|β1ds ≤
∫ tnk+M

tnk

|p(s)|β1ds→ 0, as k → ∞.

Implementing Theorem 3.3 to the interval [tnk
, tnk+2], we reach to the fol-

lowing Liapunov inequality∫ tnk+2

tnk

|p(s)|β1ds > (α− 1)

(
α

(α− 1)(tnk+2 − tnk
)

)α

.

Equivalently, we have

1 <
(α− 1)α−1

αα
(tnk+2 − tnk

)α
∫ tnk+2

tnk

|p(s)|β1ds

≤ (α− 1)α−1

αα
Mα

∫ tnk+2

tnk

|p(s)|β1ds︸ ︷︷ ︸
→0

→ 0, as k → ∞.

Resulting contradiction completes the proof. �
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Lemma 3.19. Let u(t) be an oscillatory solution of the fractional half-
linear boundary value problem (1.2) with {tn}∞n=1 its increasing sequence of
zeros in [0,∞). Assume that for any positive constant M , we have∫ t+M

t

|q(s)|β1ds→ 0, as t→ ∞. (3.28)

Then, tn+2 − tn → ∞, as n→ ∞.
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