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SOME REMARKS ON THE SOLUTIONS OF A FRACTIONAL

INTEGRO-DIFFERENTIAL INCLUSION OF STURM-LIOUVILLE

TYPE

AURELIAN CERNEA

Abstract. We consider a Sturm-Liouville type integro-differential inclusion

of fractional order and we establish some Filippov type existence existence
results.

1. Introduction

In this paper we consider the following problem

Dq
Cy(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]), x(0) = x0, y(0) = y0, (1.1)

where y(t) ≡ p(t)x′(t), F (., ., .) : [0, T ] ×R ×R → P(R) is a set-valued map, V :
C(I,R) → C(I,R) is a nonlinear Volterra integral operator, p(.) : [0, T ] → (0,∞)
is a continuous function, x0, y0 ∈ R and Dq

C denotes Caputo’s fractional derivative
of order q ∈ (0, 1).

In the theory of ordinary differential equations it is wellknown that any linear
real second-order differential equation may be written in the self adjoint form

−(r(t)x′)′ + q(t)x = 0. (1.2)

Equation (1.2) together with boundary conditions of the form a1x(0) − a2x
′(0) =

0, b1x(T ) − b2x
′(T ) = 0 is called the Sturm-Liouville problem. For a complete

disscusion on Sturm-Liouville problems we refer, for example, to [10]. This is the
reason why differential inclusions of the form (r(t)x′)′ ∈ F (t, x) are usually called
Sturm-Liouville type differential inclusions, even if the boundary value problems
associated are not as at the original Sturm-Liouville problem.

In the last years one may see a strong development of the theory of differential
equations and inclusions of fractional order ([6], [9], [11] etc.). The main reason is
that fractional differential equations are very useful tools in order to model many
physical phenomena. In the fractional calculus there are several fractional deriva-
tives. From them, the fractional derivative introduced by Caputo in [3], allows to
use Cauchy conditions which have physical meanings.
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The aim of our paper is to consider the extension of the Sturm-Liouville problem
to the fractional framework, given by problem (1.1), and to present several exis-
tence results for problem (1.1). On one hand, we show that Filippov’s ideas ([7])
can be suitably adapted in order to obtain the existence of solutions of problem
(1.1). We recall that for a first order differential inclusion defined by a lipschitzian
set-valued map with nonconvex values Filippov’s theorem ([7]) consists in proving
the existence of o solution starting from a given ”quasi” solution. Moreover, the
result provides an estimate between the starting ”quasi” solution and the solution
of the differential inclusion. On the other hand, we prove the existence of solutions
continuously depending on a parameter for problem (1.1). This result may be seen
as a continuous variant of Filippov’s theorem. The key tool in the proof of this theo-
rem is a result of Bressan and Colombo ([2]) concerning the existence of continuous
selections of lower semicontinuous multifunctions with decomposable values. We
note that similar results for other classes of fractional differential inclusions may be
found in our previous papers [4], [5]. We mention also that in [8], namely Theorem
2.4, it is provided a sufficient condition under which any nonoscilatory solution
of problem (1.1), with F single-valued and not depending on the last variable, is
bounded.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we use in the sequel, in Section 3 we obtain our Filippov type existence results
and in Section 4 we treat the parameterized situation.

2. Preliminaries

In what follows I = [0, T ], X is a real separable Banach space with norm |.|
and with the corresponding metric d(., .). As usual, we denote by C(I,X) the
Banach space of all continuous functions x(.) : I → X endowed with the norm
|x(.)|C = supt∈I |x(t)| and by L1(I,X) the Banach space of all (Bochner) integrable

functions x(.) : I → X endowed with the norm |x(.)|1 =
∫ T

0
|x(t)|dt.

Denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I and by
B(X) the family of all Borel subsets of X. If A ⊂ I then χA(.) : I → {0, 1} denotes
the characteristic function of A. For any subset A ⊂ X we denote by cl(A) the
closure of A.

We recall that the fractional integral of order p > 0 of a Lebesgue integrable
function f : (0,∞) → R is defined by

Ipf(t) =

∫ t

0

(t− s)p−1

Γ(p)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(p) =

∫∞
0
tp−1e−tdt.

Caputo’s fractional derivative of order p > 0 of a function f : [0,∞) → R is
defined by

Dp
cf(t) =

1

Γ(n− p)

∫ t

0

(t− s)−p+n−1f (n)(s)ds,

where n = [p] + 1. It is assumed implicitly that f is n times differentiable whose
n-th derivative is absolutely continuous.

In the sequel V : C(I,R) → C(I,R) is a nonlinear Volterra integral operator

defined by V (x)(t) =
∫ t

0
k(t, s, x(s))ds, where k(., ., .) : I ×R ×R → R is a given

function and F (., ., .) : I ×R×R → P(R) is a set-valued map.
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A continuous mapping x(.) ∈ C(I,R) is called a (mild) solution of problem
(1.1) if there exists an integrable function f(.) ∈ L1(I,R) such that

f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), (2.1)

x(t) = x0 + y0

∫ t

0

1

p(s)
ds+

∫ t

0

1

p(s)
(

∫ s

0

(s− u)q−1

Γ(q)
f(u)du)ds ∀t ∈ I. (2.2)

This definition of the solution is justified by the fact that if f(.) ∈ L1(I,R)
satisfies (2.1), then from the equality Dq

Cy(t) = f(t) it follows p(t)x′(t) = y(t) =

y0 +
∫ t

0
(t−s)q−1

Γ(q) f(s)ds and, then, integrating by parts we obtain (2.2).

We note that x(.) in (2.2) may be written as

x(t) = x0 + y0

∫ t

0

1

p(s)
ds+

1

Γ(q)

∫ t

0

(

∫ t

u

(s− u)q−1

p(s)
ds)f(u)du.

Since p(.) : [0, T ] → (0,∞) is continuous, we denote M := supt∈I
1

p(t) . We put

also

a(t) = x0 + y0

∫ t

0

1

p(s)
ds, S(t, u) =

1

Γ(q)

∫ t

u

(s− u)q−1

p(s)
ds.

Note, that for all t, u ∈ I we have

|S(t, u)| ≤ 1

MΓ(q)

∫ t

u

(s− u)q−1ds ≤ 1

MqΓ(q)
(t− u)q ≤ T q

MqΓ(q)
=:M1.

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and (2.2) are
satisfied.

We make the following notation

S(x0, y0) = {x(.); x(.) is a solution of (1.1)}.

Finally, we recall several preliminary results we shall use in the sequel.

Lemma 2.1. Let X be a separable Banach space, let H : I → P(X) be a
measurable set-valued map with nonempty closed values and g, h : I → X,L : I →
(0,∞) measurable functions. Then one has.

i) The function t→ d(h(t),H(t) is measurable.
ii) If H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e. (I) then the set-valued map t → H(t) ∩

(g(t) + L(t)B) has a measurable selection.

Its proof may be found in [1].
A subset D ⊂ L1(I,X) is said to be decomposable if for any u(·), v(·) ∈ D and

any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A. We denote by
D(I,X) the family of all decomposable closed subsets of L1(I,X).

Next (S, d) is a separable metric space; we recall that a set-valued map G(·) :
S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X,
the subset {s ∈ S;G(s) ⊂ C} is closed. The proof of the next two lemmas may be
found in [2].

Lemma 2.2. Let F ∗(., .) : I × S → P(X) be a closed-valued L(I) ⊗ B(S)
measurable set-valued map such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the set-valued map G(.) : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}
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is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p(.) : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2.3. Let G(.) : S → D(I,X) be a l.s.c. set-valued map with closed
decomposable values and let ϕ(.) : S → L1(I,X), ψ(.) : S → L1(I,R) be continuous
such that the set-valued map H(.) : S → D(I,X) defined by

H(s) = cl{v ∈ G(s); |v(t)− ϕ(s)(t)| < ψ(s)(t) a.e. (I)}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous mapping h :

S → L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

3. A Filippov type result

In order to establish our existence result for problem (1.1) we need the following
hypotheses.

Hypothesis 3.1. i) F (., ., .) : I ×R ×R → P(R) has nonempty closed values
and is L(I)⊗ B(R×R) measurable.

ii) There exists L(.) ∈ L1(I,R+) such that, for almost all t ∈ I, F (t, ., .) is
L(t)-Lipschitz in the sense that for almost t ∈ I

d(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R,

where d(A,B) is the Hausdorff distance

d(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

iii) p(.) : I → (0,∞) is continuous and k(., ., .) : I × R × R → R satisfy:
∀x ∈ R, (t, s) → k(t, s, x) is measurable and |k(t, s, x) − k(t, s, y)| ≤ L(t)|x −
y| a.e.(t, s) ∈ I × I, ∀x, y ∈ R.

We shall use next the following notations

m(t) =

∫ t

0

L(u)du, α(x) =
(x+ 1)2 − 1

2
, x ∈ R.

In what follows x1, y1 ∈ R, g(.) ∈ L1(I,R) and z(.) ∈ C(I,R) is a solution of
the Cauchy problem

Dq
Cw(t) = g(t), p(t)z′(t) ≡ w(t), z(0) = x1, w(0) = y1.

Hypothesis 3.2. i) Hypothesis 3.1 is satisfied.
ii) The function t→ q(t) := d(g(t), F (t, z(t), V (z)(t)) is integrable on I.

Theorem 3.3. Consider δ ≥ 0 and assume that Hypothesis 3.2 is satisfied.
Then for any x0, y0 ∈ R with (|x0 − y0|+MT |x1 − y1|) ≤ δ there exists (x(.), f(.))
a trajectory-selection pair of (1.1) such that

|x(t)− z(t)| ≤ ξ(t) ∀ t ∈ I,

|f(t)− g(t)| ≤ L(t)(ξ(t) +

∫ t

0

L(u)ξ(u)du) + q(t) a.e. (I),
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where

ξ(t) = δeM1α(m(t)) +

∫ t

0

q(u)eM1α(m(t)−m(u))du.

Proof. Set x0(t) ≡ z(t), f0(t) ≡ g(t), t ∈ I and for n ≥ 1

qn(t) =

∫ t

0

q(u)
(α(m(t)−m(u))n−1

(n− 1)!
du+

(α(m(t))n−1

(n− 1)!
(|x0 − y0|+MT |x1 − y1|).

We claim that is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) = a(t) +

∫ t

0

S(t, u)fn(u)du, ∀t ∈ I, (3.1)

|x1(t)− x0(t)| ≤ δ +M1

∫ t

0

q(u)du =: q0(t) ∀t ∈ I, (3.2)

|f1(t)− f0(t)| ≤ q(t) a.e. (I), (3.3)

fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
∫ t

0

L(u)|xn(u)−xn−1(u)|du) a.e., (3.5)

|xn(t)− xn−1(t)| ≤ (M1)
n−1qn(t) ∀t ∈ I. (3.6)

Indeed, from (3.6) {xn(.)} is a Cauchy sequence in the Banach space C(I,R).
Thus, from (3.5) for almost all t ∈ I, the sequence {fn(t)} is Cauchy in R. More-
over, from (3.2) and the last inequality we have

|xn(t)− z(t)| ≤
n−1∑
i=0

|xi+1(t)− xi(t)| ≤
n−1∑
i=0

(M1)
iqi+1(t) ≤ ξ(t) (3.7)

On the other hand, from (3.3), (3.5) and (3.6) we obtain for almost all t ∈ I

|fn(t)− g(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+ |f1(t)− g(t)| ≤
L(t)(ξ(t) +

∫ t

0
L(u)ξ(u)du) + q(t).

(3.8)

Let x(.) ∈ C(I,R) be the limit of the Cauchy sequence xn(.). From (3.8) the
sequence fn(.) is integrably bounded and we have already proved that for almost
all t ∈ I, the sequence {fn(t)} is Cauchy in R. Take f(.) ∈ L1(I,R) with f(t) =
limn→∞ fn(t).

Passing to the limit in (3.1) and using Lebesgue’s dominated convergence theo-
rem we get (2.2). Finally, passing to the limit in (3.7) and (3.8) we obtained the
desired estimations.

It remains to construct the sequences xn(.), fn(.) with the properties in (3.1)-
(3.6). The construction will be done by induction.

The set-valued map t→ F (t, z(t), V (z)(t)) is measurable with closed values and

F (t, z(t), V (z)(t)) ∩ {g(t) + q(t)B} ̸= ∅ a.e. (I).

From Lemma 2.1 we find f1(.) a measurable selection of the set-valued mapH1(t) :=
F (t, z(t), V (z)(t)) ∩ {g(t) + q(t)B}. Obviously, f1(.) satisfy (3.3). Define x1(.) as
in (3.1) with n = 1. Therefore, we have

|x1(t)− z(t)| ≤ |x0 − y0|+MT |x1 − y1|+ |
∫ t

0
S(t, u)(f1(u)− g(u))du|

≤ δ +M1

∫ t

0
q(s)ds = q0(t).
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Assume that for some N ≥ 1 we already constructed xn(.) ∈ C(I,R) and fn(.) ∈
L1(I,R), n = 1, 2, ...N satisfying (3.1)-(3.6). We define the set-valued map

HN+1(t) := F (t, xN (t), V (xN )(t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+∫ t

0
L(u)|xN (u)− xN−1(u)|duB}, t ∈ I.

The set-valued map t → F (t, xN (t), V (xN )(t)) is measurable and from the lip-
schitzianity of F (t, ., .) we have that for almost all t ∈ I HN+1(t) ̸= ∅. We apply
Lemma 2.1 and find a measurable selection fN+1(.) of F (., xN (.),
V (xN )(.)) such that for almost t ∈ I

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0

L(u)|xN (u)− xN−1(u)|du).

We define xN+1(.) as in (3.1) with n = N + 1 and we get

|xN+1(t)− xN (t)| ≤M1

∫ t

0
|fN+1(u)− fN (u)|du ≤M1

∫ t

0
L(u)(|xN (u)−

xN−1(u)|+
∫ u

0
L(s)|xN (s)− xN−1(s)|ds)du ≤M1

∫ t

0
L(u)(MN−1

1 qN (u)+∫ u

0
L(s)MN−1

1 qN (r)dr)du.

We shall prove next that∫ t

0

L(u)(qn(u) +

∫ u

0

L(r)qn(r)dr)du ≤ qn+1(t) (3.9)

and therefore (3.6) holds true with n = N + 1 which completes the proof.
One has∫ t

0

L(u)(qn(u) +

∫ u

0

L(r)qn(r)dr)du =

∫ t

0

(1 +m(t)−m(u))L(u)qn(u)du

=

∫ t

0

(1 +m(t)−m(u))L(u)
(α(m(u))n−1

(n− 1)!
|x0 − u0|du+∫ t

0

(1 +m(t)−m(u))L(u)(

∫ u

0

p(r)
(α(m(t)−m(r))n−1

(n− 1)!
dr)du ≤

|x0 − u0|
∫ t

0

(1 +m(t)−m(u))L(u)
(α(m(u)))n−1

(n− 1)!
+∫ t

0

(

∫ t

r

(α(m(u)−m(r)))n−1

(n− 1)!
(1 +m(t)−m(u))L(u))p(r)drdu.

According to the definition of α(.) we have∫ t

0

(1 +m(t)−m(u))L(u)
α(m(u)))n−1

(n− 1)!
du =

∫ t

0

(2 +m(t))L(u)
(α(m(u))n−1

(n− 1)!
du−

(α(m(t))n

n!
≤ (m(t) + 2)

(m(t)/2 + 1)n−1

(n− 1)!

∫ t

0

(m(u))n−1L(u)du− (α(m(t)))n

n!

=
(α(m(t)))n

n!
.

As above we deduce that∫ t

r

(α(m(u)−m(r))))n−1

(n− 1)!
(1 +m(t)−m(u))L(u)du ≤ (α(m(t)−m(r)))n

n!

and inequality (3.9) is proved.
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4. Continuous family of solutions

In order to establish our continuous version of Filippov theorem for problem
(1.1) we need the following hypotheses.

Hypothesis 4.1. i) S is a separable metric space and a(.) : S → R, b(.) : S →
R, c(.) : S → (0,∞) are continuous mappings.

(ii) There exists the continuous mappings g(.) : S → L1(I,R), q(.) : S → R,
z(.) : S → C(I,R), w(.) : S → C(I,R) such that

Dq
C(w(s))(t) = g(s)(t), p(t)(z(s))′(t) ≡ w(s)(t), ∀s ∈ S, t ∈ I

and

d(g(s)(t), F (t, y(s)(t), V (y(s))(t)) ≤ q(s)(t) a.e. (I), ∀ s ∈ S.

Theorem 4.2. Assume that Hypotheses 3.1 and 4.1 are satisfied.
Then there exist the continuous mappings x(.) : S → C(I,R), f(.) : S →

L1(I,R) such that for any s ∈ S, (x(s)(.), f(s)(.)) is a trajectory-selection pair of
problem

Dq
Cy(t) ∈ F (t, x(t), V (x)(t)), p(t)x′(t) ≡ y(t), x(0) = a(s), x′(0) = b(s)

and

|x(s)(t)− z(s)(t)| ≤ ξ(s)(t) ∀(t, s) ∈ I × S, (4.1)

|f(s)(t)− g(s)(t)| ≤ L(t)(ξ(s, t) +

∫ t

0

L(u)ξ(s, u)du) + q(s)(t) + c(s) a.e. (I), (4.2)

∀s ∈ S, where

ξ(s, t) = eM1α(m(t))[M1tc(s) + |a(s)− y(s)(0)|+MT |b(s)−
(y(s))′(0)|)] +M1

∫ t

0
q(s)(u)eM1α(m(t)−m(u))du.

Proof. We denote εn(s) = c(s)n+1
n+2 , n = 0, 1, ..., d(s) = |a(s) − z(s)(0)| +

MT |b(s)− (z(s))′(0)|,

qn(s)(t) = (M1)
n
∫ t

0
q(s)(u) (α(m(t)−m(u)))n−1

(n−1)! du

+(M1)
n−1 (α(m(t)))n−1

(n−1)! (M1tεn(s) + d(s)), n ≥ 1.

Set also x0(s)(t) = z(s)(t), f0(s)(t) = g(s)(t), ∀s ∈ S.
We consider the set-valued maps G0(.),H0(.) defined, respectively, by

G0(s) = {v ∈ L1(I,R); v(t) ∈ F (t, z(s)(t), V (z(s))(t)) a.e. (I)},

H0(s) = cl{v ∈ G0(s); |v(t)− g(s)(t)| < q(s)(t) + ε0(s)}.
Since d(g(s)(t), F (t, z(s)(t), V (z(s))(t)) ≤ q(s)(t) < q(s)(t) + ε0(s), according with
Lemma 2.1, the set H0(s) is not empty.

Set F ∗
0 (t, s) = F (t, z(s)(t), V (z(s))(t)) and note that

d(0, F ∗
0 (t, s)) ≤ |g(s)(t)|+ q(s)(t) = q∗(s)(t)

and q∗(.) : S → L1(I,R) is continuous.
Applying now Lemmas 2.2 and 2.3 we obtain the existence of a continuous se-

lection f0 of H0, i.e. such that

f0(s)(t) ∈ F (t, z(s)(t), V (z(s))(t)) a.e. (I), ∀s ∈ S,

|f0(s)(t)− g(s)(t)| ≤ q0(s)(t) = q(s)(t) + ε0(s) ∀s ∈ S, t ∈ I.
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We define x1(s)(t) = a(s) + b(s)
∫ t

0
1

p(u)du+
∫ t

0
S(t, u)f0(s)(u)du and one has

|x1(s)(t)− x0(s)(t)| ≤ |a(s)− z(s)(0)|+MT |b(s)− (z(s))′(0)|+M1·∫ t

0
|f0(s)(u)− g(s)(u)|du ≤ d(s) +M1

∫ t

0
(q(s)(u) + ε0(s))du = q1(s)(t).

We shall construct two sequences of approximations fn(.) : S → L1(I,R), xn(.) :
S → C(I,R) with the following properties

a) fn(.) : S → L1(I,R), xn(.) : S → C(I,R) are continuous.
b) fn(s)(t) ∈ F (t, xn(s)(t), V (xn(s))(t)), a.e. (I), s ∈ S.

c) |fn(s)(t)− fn−1(s)(t)| ≤ L(t)(qn(s)(t) +
∫ t

0
L(u)qn(s)(u)du), a.e. (I), s ∈ S.

d) xn+1(s)(t) = a(s) + b(s)
∫ t

0
1

p(u)du+
∫ t

0
S(t, u)fn(s)(u)du, ∀t ∈ I, s ∈ S.

Suppose we have already constructed fi(.), xi(.), i = 1, ..., n satisfying a)-c) and
define xn+1(.) as in d). As in the proof of inequality (3.9) we have∫ t

0

L(u)(qn(s)(u) +

∫ u

0

L(r)qn(s)(r)dr)du ≤ qn+1(s)(t)−
c(s)(α(m(t)))nt

(n+ 2)(n+ 3)n!
. (4.3)

From c) and d) one has

|xn+1(s)(t)− xn(s)(t)| ≤M1

∫ t

0
|fn(s)(u)− fn−1(s)(u)|du ≤

M1

∫ t

0
L(u)(qn(s)(u) +

∫ u

0
L(r)qn(s)(r)dr)du < qn+1(s)(t).

(4.4)

Consider the following set-valued maps, for any s ∈ S,

Gn+1(s) = {v ∈ L1(I,R); v(t) ∈ F (t, xn+1(s)(t), V (xn+1(s))(t)) a.e. (I)},

Hn+1(s) = cl{v ∈ Gn+1(s); |v(t)− fn(s)(t)| < L(t)(qn(s)(t)+∫ t

0
L(u)qn(s)(u)du) a.e. (I)}.

To prove that Hn+1(s) is nonempty we note first that the real function t →
rn(s)(t) = c(s) (M1)

n+1tL(t)(m(t))n

(n+2)(n+3)n! is measurable and strictly positive for any s. From

(4.3) we get

d(fn(s)(t), F (t, xn+1(s)(t), V (xn+1(s))(t)) ≤ L(t)(|xn(s)(t)− xn+1(s)(t)|
+
∫ t

0
L(u)|xn(s)(u)− xn+1(s)(u)|du) ≤ L(t)(qn(s)(t) +

∫ t

0
L(u)qn(s)(u)du)

−rn(s)(t)

and therefore according to Lemma 2.1 there exists v(.) ∈ L1(I,R) such that v(t) ∈
F (t, xn+1(s)(t), V (xn+1(s))(t)) a.e. (I) and

|v(t)− fn(s)(t)| < d(fn(s)(t), F (t, xn+1(s)(t), V (xn+1(s))(t)) + rn(s)(t)

and hence Hn+1(s) is not empty.
Set F ∗

n+1(t, s) = F (t, xn+1(s)(t), V (xn+1(s))(t)) and note that we may write

d(0, F ∗
n+1(t, s)) ≤ |fn(s)(t)|+ L(t)(qn+1(s)(t) +

∫ t

0
L(u)qn+1(s)(u)du) =

q∗n+1(s)(t) a.e. (I)

and q∗n+1(.) : S → L1(I,R) is continuous.
By Lemmas 2.2 and 2.3 there exists a continuous map fn+1(.) : S → L1(I,R)

such that for any s ∈ S

fn+1(s)(t) ∈ F (t, xn+1(s)(t), V (xn+1(s))(t)) a.e. (I),

|fn+1(s)(t)− fn(s)(t)| ≤ L(t)(qn+1(s)(t) +

∫ t

0

L(u)qn+1(s)(u)du) a.e. (I).
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From (4.4) and d) we obtain

|xn+1(s)(.)− xn(s)(.)|C ≤M1|fn+1(s)(.)− fn(s)(.)|1 ≤
(M1α(m(T )))n

n! (M1|q(s)(.)|1 +M1Tc(s) + d(s)).
(4.5)

Therefore fn(s)(.), xn(s)(.) are Cauchy sequences in the Banach space L1(I,R)
and C(I,R), respectively. Let f(.) : S → L1(I,R), x(.) : S → C(I,R) be their
limits. The function s→M1|q(s)(.)|1+M1Tc(s)+d(s) is continuous, hence locally
bounded. Therefore (4.5) implies that for every s′ ∈ S the sequence fn(s

′)(.)
satisfies the Cauchy condition uniformly with respect to s′ on some neighborhood
of s. Hence, s→ f(s)(.) is continuous from S into L1(I,R).

From (4.5), as before, xn(s)(.) is Cauchy in C(I,R) locally uniformly with re-
spect to s. So, s → x(s)(.) is continuous from S into C(I,R). On the other hand,
since xn(s)(.) converges uniformly to x(s)(.) and

d(fn(s)(t), F (t, x(s)(t), V (x(s))(t)) ≤ L(t)(|xn(s)(t)− x(s)(t)|+∫ t

0
L(u)|xn(s)(u)− x(s)(u)|du) a.e. (I), ∀s ∈ S

passing to the limit along a subsequence of fn(.) converging pointwise to f(.) we
obtain

f(s)(t) ∈ F (t, x(s)(t), V (x(s))(t)) a.e. (I), ∀s ∈ S.

Passing to the limit in d) we obtain

x(s)(t) = a(s) + b(s)

∫ t

0

1

p(u)
du+

∫ t

0

S(t, u)f(s)(u)du.

By adding inequalities c) for all n and using the fact that
∑

i≥1 qi(s)(t) ≤ ξ(s)(t)
we obtain

|fn+1(s)(t)− g(s)(t)| ≤
∑n

l=0 |fl+1(s)(u)− fl(s)(u)|+
|f0(s)(t)− g(s)(t)| ≤

∑n
l=0 L(t)ql+1(s)(t) + q(s)(t) + ε0(s)

≤ L(t)ξ(s)(t) + q(s)(t) + c(s).
(4.6)

Similarly, by adding (4.4) we get

|xn+1(s)(t)− z(s)(t)| ≤
n∑

l=0

ql(s)(t) ≤ ξ(s)(t). (4.7)

By passing to the limit in (4.6) and (4.7) we obtain (4.1) and (4.2), respectively.

Theorem 4.2 allows to obtain the next corollary which is a general result con-
cerning continuous selections of the solution set of problem (1.1).

Hypothesis 4.3 Hypothesis 3.1 is satisfied and there exists q0(.) ∈ L1(I,
R+) such that d(0, F (t, 0, V (0)(t))) ≤ q0(t) a.e. (I).

Theorem 4.4. Assume that Hypothesis 4.3 is satisfied.
Then there exists a function x(., .) : I ×R2 → R such that
a) x(., (ξ, η)) ∈ S(ξ, η), ∀(ξ, η) ∈ R2.
b) (ξ, η) → x(., (ξ, η)) is continuous from R2 into C(I,R).

Proof. We take S = R×R, a(ξ, η) = ξ, b(ξ, η) = η ∀(ξ, η) ∈ R×R, c(.) : R×
R → (0,∞) an arbitrary continuous function, g(.) = 0, z(.) = 0, q(ξ, η)(t) = q0(t)
∀(ξ, η) ∈ R×R, t ∈ I and we apply Theorem 4.2 in order to obtain the conclusion
of the theorem.
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