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FEKETE-SZEGÖ PROBLEM FOR CERTAIN ANALYTIC

FUNCTIONS DEFINED BY HYPERGEOMETRIC FUNCTIONS

AND JACOBI POLYNOMIALS

J. M. JAHANGIRI, C. RAMACHANDRAN, S. ANNAMALAI

Abstract. In this paper we study the relationships between classes of Ja-
cobi polynomials, hypergeometric and analytic univalent functions and obtain
bounds for their respected Fekete-Szegö body of coefficients.

1. Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +
∞∑

n=2

anz
n (1)

which are analytic in the open unit disk U = {z : |z| < 1} and let S be the subclass
of A consisting of univalent functions in U. For complex numbers αi (i = 1, 2, . . . , p)
and βj (j = 1, 2, . . . , q) where βj ̸= 0,−1,−2, . . . ; j = 1, 2, . . . , q, the generalized
hypergeometric function pFq(z) is defined by

pFq(z) =p Fq(α1, . . . , αp;β1, . . . , βq; z) =
∞∑

n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

.
zn

n!
(2)

where p ≤ q+1, (λ)0 = 1 and (λ)n = Γ(λ+n)
Γ(n) = λ(λ+1) . . . (λ+n−1) if n = 1, 2, . . .

The series given by (2) converges absolutely for |z| < ∞ if p < q + 1 and for z in
the open unit disk U = {z : |z| < 1} if p = q + 1. For suitable values αi and
βj the class of hypergeometric functions pFq is closely related to classes of ana-
lytic and univalent functions. It is well-known that hypergeometric and univalent
functions play important roles in a large variety of problems encountered in applied
mathematics, probability and statistics, operations research, signal theory, moment
problems, and other areas of science (e.g. see Exton [3, 4], Miller and Mocanu [11]
and Rönning [12]). In this paper we introduce a new approach for studying the re-
lationships between classes of hypergeometric and analytic univalent functions and
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will derive some new bounds for their respected Fekete-Szegö body of coefficients.
We hope this new approach can motivate further research in this direction.

2. PRELIMINARIES

For p = q + 1 = 2, the series defined by (2) gives rise to the Gaussian hyper-
geometric series 2F1(a, b; c; z). This reduces to the elementary Gaussian geometric
series 1+z+z2+ . . . if (i) a = c and b = 1 or (ii) a = 1 and b = c. For ℜc > ℜb > 0,
we obtain

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt.

As a special case, we observe that

2F1(1, 1; a; z) = (a− 1)

∫ 1

0

tb−1(1− t)a−2

1− tz
dt

and

2F1(a, 1; 1; z) =
1

(1− z)
a

so that

2F1(a, 1; 1; z) ∗2 F1(a, 1; 1; z) =
1

1− z
=2 F1(1, 1; 1; z).

Here, the operator ∗ stands for the Hadamard product or convolution of two

power series f(z) =
∞∑

n=0
anz

n and g(z) =
∞∑

n=0
bnz

n, that is

(f ∗ g)(z) = f(z) ∗ g(z) =
∞∑

n=0

anbnz
n.

If f and g are analytic in U then their Hadamard product f ∗ g is also analytic
in U. An alternative representation for the Hadamard product is the convolution
integral

(f ∗ g)(z) = 1

2πi

∫
|ζ|=1

ζ−1f(
z

ζ
)g (ζ) dζ, |z| < 1.

We shall need the following three definitions for stating and proving our theorems
in the next section.

Definition 1. For t > − 1
2 , k > −1

2 and | x |≤ 1 define F (t, k, x) by

R(t,k)
n (x) ≡ F (t, k, x) =

∞∑
n=0

P
(t,k)
n (x)

P
(t,k)
n (1)

zn+1,

=
∞∑

n=0

2F1

(
−n, t+ k + n+ 1; t+ 1;

1− x

2

)
zn+1

=
∞∑

n=0

Fnz
n+1

where Fn =2 F1

(
−n, t+ k + n+ 1; t+ 1; 1−x

2

)
, z ∈ U, and P

(t,k)
n (x) is (also see

Lewis [9]) the Jacobi polynomial

P (t,k)
n (x) =

(1 + t)n
n! 2

F1

(
−n, t+ k + n+ 1; t+ 1;

1− x

2

)
.
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To note the significance of the class P
(t,k)
n (x) ≡ F (t, k, x), we list the following

six special cases of the Jacobi polynomials

(1) Ct
i (x) = R

(t− 1
2 ,k−

1
2 )

i (x), called the ultra spherical polynomial,

(2) Ti(x) = R
(− 1

2 ,−
1
2 )

i (x), called the Chebyshev first polynomial,

(3) Ui(x) = (i+ 1)R
( 1
2 ,

1
2 )

i (x), called the Chebyshev second polynomial,

(4) Vi(x) = R
(− 1

2 ,
1
2 )

i (x), called the Chebyshev third polynomial,

(5) Wi(x) = (2i+ 1)R
( 1
2 ,−

1
2 )

i (x), called the Chebyshev fourth polynomial,

(6) Pi(x) = R
(0,0)
i (x), called the Legendre polynomial.

Using the convolution operator ∗, we define

F :=

{
F : F (z) = (f ∗ F (t, k, x))(z) = z +

∞∑
n=2

Fnanz
n, f ∈ A

}
.

Let f be the class of analytic functions w, normalized by w(0) = 0, satisfying the
condition |w(z)| < 1. For analytic functions f and g, we say that f is subordinate to
g in U, denoted by f ≺ g, if there exists a function w ∈ f so that f(z) = g(w(z)) in
U. In particular, if g is univalent in U, then f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For 0 < q < 1, the Jackson’s q-derivative ([5, 6]) of a function f ∈ A is given by

Dqf(z) =


f(z)− f(qz)

(1− q)z
for z ̸= 0,

f ′(0) for z = 0,
(3)

where D2
qf(z) = Dq(Dqf(z)). It follows from (3) that

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1, where [n]q =

1− qn

1− q

is sometimes called the basic number n. If q → 1− then [n]q → n.
Moreover, as a consequence of (3), for F ∈ F we obtain

DqF (z) = 1 +
∞∑

n=2

[n]qFnanz
n−1.

Definition 2. Let P denote the well known class of Carathèodory functions with
positive real part in U. We let P(pk) (0 ≤ k < ∞) denote the family of functions
p, such that p ∈ P, and p ≺ pk in U, where the function pk maps the unit disk
conformally onto the region Ωk such that 1 ∈ Ωk and

∂Ωk = {u+ iv : u2 = k2(u− 1)2 + k2v2}.

We remark that, the domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1,
parabolic for k = 1 and covers the right half plane when k = 0. We note that the
class P(pk) and their extremal functions were presented and investigated by Kanas
([7], [8]). Evidently, for k = 0 we have

p0(z) =
1 + z

1− z
= 1 + 2z + 2z2 + 2z3 + 2z4 + . . . ,
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for k = 1 we have

p1(z) = 1 +
2

π2
log2

(
1 +

√
z

1−
√
z

)
= 1 +

8

π2
z +

16

3π2
z2 +

184

45π2
z3 + . . . .,

for 0 < k < 1 and A = A(k) = (2/π) arccos k we obtain

pk(z) = 1 +
2

1− k2
sinh2

(
A(k) arc tanh

√
z
)

=
1

1− k2
cos

{
A(k)i log

1 +
√
z

1−
√
z

}
− k2

1− k2
.

= 1 +
1

1− k2

∞∑
n=1

[
2n∑
l=1

2l
(
A

l

)(
2n− 1

2n− l

)]
zn

= 1 +
2A2

1− k2
z +

4A2 + 2A4

3(1− k2)
z2 +

46A2

15
+

8A4

3
+

4A6

15
3(1− k2)

z3 + . . .

and for k > 1 and u(z) =
z −

√
κ

1−
√
κz

we have

pk(z) =
1

k2 − 1
sin

(
π

2K(κ)

∫ u(z)√
k

0

dt√
1− t2

√
1− κ2t2

)

= 1 +
π2

4
√

(κ)(k2 − 1)K2(κ)(1 + κ)

{
z +

4K2(κ)(κ2 + 6κ+ 1)− π2

4
√
(κ)K2(κ)(1 + κ)

z2 + . . .

}
where K(κ) denotes the Legendre’s complete elliptic integral of the first kind, and
K ′(κ) is the complementary integrand of K(κ) with k ∈ (0, 1) is chosen such that
k = cosh [(πK ′(κ)) / (4K(κ))]. By virtue of

p(z) =
zf ′(z)

f(z)
≺ pk(z) or p(z) = 1 +

zf ′′(z)

f ′(z)
≺ pk(z)

and the properties of the domains, we have

ℜ(p(z)) > ℜ(pk(z)) >
k

k + 1

Definition 3. For the real numbers 0 ≤ k < ∞, 0 ≤ α < 1, 0 < q < 1 and b ̸= 0
and for pk(z) as in the Definition 2, we say that a function f ∈ A is in the class

FSb
q(pk) if

1 +
1

b

(
zDqF (z)

F (z)
− 1

)
≺ pk(z) (z ∈ U)

and is in the class FCb
q(pk) if

1 +
1

b

(
Dq(zDqF (z))

Dq(F (z))

)
≺ pk(z) (z ∈ U).

Finally, prior to the start of the next section, we state the following lemma,
which can be found in [1] or [2] and is a reformulation of the corresponding result
for functions with positive real part due to Ma and Minda [10].
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Lemma 1. Let w(z) = w1z + w2z
2 + ... ∈ f be so that |w(z)| < 1 in U. If t is a

complex number, then ∣∣w2 + tw2
1

∣∣ ≤ max{1, |t|}.

The inequality is sharp for the functions w(z) = z or w(z) = z2.

3. The Main Results

In this section we determine the Fekete-Szegö functional related to the conical
domains.

Theorem 1. Let 0 ≤ k < ∞, 0 ≤ α < 1, 0 < q < 1, b ̸= 0 and let pk(z) =
1 + p1z + p2z

2 + · · · be defined as in the Definition 2. If f given by (1) belongs to

FSb
q(pk) then we have

∣∣a3 − µa22
∣∣ ≤ |b|p1

([3]q − 1)F3
max

{
1,

∣∣∣∣∣p2p1 +
p1b ([2]q − 1)F 2

2 − µp1b ([3]q − 1)F3

([2]q − 1)
2
F 2
2

∣∣∣∣∣
}
.

(4)
Actually, (4) holds for any complex number µ.

Proof. If f ∈ FSb
q(pk), then there is a Schwarz function w = w1z +w2z

2 + · · · ∈ f
such that

1 +
1

b

(
zDqF (z)

F (z)
− 1

)
= pk(w(z)). (5)

We note that

zDqF (z)

F (z)
= 1 + ([2]q − 1)a2F2z +

(
([3]q − 1)a3F3 − ([2]q − 1)F 2

2 a
2
2

)
z2 + . . . (6)

and

pk(w(z)) = 1+ p1w1z+(p1w2 + p2w
2
1)z

2 + (p1w3 +2p2w1w2 + p3w
3
1)z

3 + · · · . (7)

Applying (5), (6) and (7), we obtain

a2 =
bp1w1

([2]q − 1)F2
, (8)

and

a3 =
bp1w2

([3]q − 1)F3
+

w2
1p2b

F3([3]q − 1)
+

p21w
2
1b

2

([2]q − 1)([3]q − 1)F3
. (9)

Hence, by (8), (9), we get the following

a3 − µa22 =
bp1

([3]q − 1)F3

(
w2 + tw2

1

)
,

where

t =
p2
p1

+

[
p1b ([2]q − 1)F 2

2 − µp1b ([3]q − 1)F3

([2]q − 1)2F 2
2

]
. (10)

The result (4) now follows by an application of Lemma 1 to the equation (10). �

For the class of functions FCβ
q,b(pk) we can prove the following
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Theorem 2. Let 0 ≤ k < ∞, 0 ≤ α < 1, 0 < q < 1, b ̸= 0, and let pk(z) =
1 + p1z + p2z

2 + · · · be defined as in Definition 2. If f given by (1) belongs to

FCβ
q,b(pk), then we have

∣∣a3 − µa22
∣∣ ≤ |b|p1

[2]q[3]qF3
max

{
1,

∣∣∣∣∣p2p1 +

(
p1b[2]qF

2
2 − µp1b[3]qF3

)
[2]qF 2

2

∣∣∣∣∣
}

(11)

Actually, (11) holds for any complex number µ.

Proof. If f ∈ FCβ
q,b(pk), then there is a Schwarz function w = w1 + w2 + · · · ∈ f

such that

1 +
1

b

(
Dq(zDqF (z))

DqF (z)

)
= pk(w(z)). (12)

We note that

Dq(zDqF (z))

Dq(F (z))
= [2]qa2F2z +

(
[2]q[3]qa3F3 − [2]2qF

2
2 a

2
2

)
z2 + . . . (13)

and

pk(w(z)) = 1+p1w1z+(p1w2+p2w
2
1)z

2+(p1w3+2p2w1w2+p3w
3
1)z

3+ · · · . (14)

Applying (12), (13) and (14), we obtain

a2 =
bp1w1

F2[2]q
, (15)

and

a3 =
bp1w2

[2]q[3]qF3
+

w2
1p2b

[2]q[3]qF3
+

p21w
2
1b

2

[2]q[3]qF3
. (16)

Hence, by (15), (16), we get the following

a3 − µa22 =
bp1

[2]qF3[3]q

(
w2 + tw2

1

)
,

where

t =
p2
p1

+

[
p1bF

2
2 [2]q − µp1bF3[3]q

F 2
2 [2]q

]
. (17)

The result (11) now follows by an application of Lemma 1 to the equation (17). �
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