FEKETE-SZEGÖ PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS DEFINED BY HYPERGEOMETRIC FUNCTIONS AND JACOBI POLYNOMIALS

J. M. JAHANGIRI, C. RAMACHANDRAN, S. ANNAMALAI

Abstract

In this paper we study the relationships between classes of Jacobi polynomials, hypergeometric and analytic univalent functions and obtain bounds for their respected Fekete-Szegö body of coefficients.

1. Introduction

Let \mathcal{A} denote the class of all functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ and let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}. For complex numbers $\alpha_{i}(i=1,2, \ldots, p)$ and $\beta_{j}(j=1,2, \ldots, q)$ where $\beta_{j} \neq 0,-1,-2, \ldots ; j=1,2, \ldots, q$, the generalized hypergeometric function ${ }_{p} F_{q}(z)$ is defined by

$$
\begin{equation*}
{ }_{p} F_{q}(z)={ }_{p} F_{q}\left(\alpha_{1}, \ldots, \alpha_{p} ; \beta_{1}, \ldots, \beta_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{q}\right)_{n}} \cdot \frac{z^{n}}{n!} \tag{2}
\end{equation*}
$$

where $p \leq q+1,(\lambda)_{0}=1$ and $(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(n)}=\lambda(\lambda+1) \ldots(\lambda+n-1)$ if $n=1,2, \ldots$ The series given by (2) converges absolutely for $|z|<\infty$ if $p<q+1$ and for z in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ if $p=q+1$. For suitable values α_{i} and β_{j} the class of hypergeometric functions ${ }_{p} F_{q}$ is closely related to classes of analytic and univalent functions. It is well-known that hypergeometric and univalent functions play important roles in a large variety of problems encountered in applied mathematics, probability and statistics, operations research, signal theory, moment problems, and other areas of science (e.g. see Exton [3, 4], Miller and Mocanu [11] and Rönning [12]). In this paper we introduce a new approach for studying the relationships between classes of hypergeometric and analytic univalent functions and

[^0]will derive some new bounds for their respected Fekete-Szegö body of coefficients. We hope this new approach can motivate further research in this direction.

2. PRELIMINARIES

For $p=q+1=2$, the series defined by (2) gives rise to the Gaussian hypergeometric series ${ }_{2} F_{1}(a, b ; c ; z)$. This reduces to the elementary Gaussian geometric series $1+z+z^{2}+\ldots$ if (i) $a=c$ and $b=1$ or (ii) $a=1$ and $b=c$. For $\Re c>\Re b>0$, we obtain

$$
{ }_{2} F_{1}(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-t z)^{a}} d t
$$

As a special case, we observe that

$$
{ }_{2} F_{1}(1,1 ; a ; z)=(a-1) \int_{0}^{1} \frac{t^{b-1}(1-t)^{a-2}}{1-t z} d t
$$

and

$$
{ }_{2} F_{1}(a, 1 ; 1 ; z)=\frac{1}{(1-z)^{a}}
$$

so that

$$
{ }_{2} F_{1}(a, 1 ; 1 ; z) *_{2} F_{1}(a, 1 ; 1 ; z)=\frac{1}{1-z}={ }_{2} F_{1}(1,1 ; 1 ; z)
$$

Here, the operator * stands for the Hadamard product or convolution of two power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, that is

$$
(f * g)(z)=f(z) * g(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

If f and g are analytic in \mathbb{U} then their Hadamard product $f * g$ is also analytic in \mathbb{U}. An alternative representation for the Hadamard product is the convolution integral

$$
(f * g)(z)=\frac{1}{2 \pi i} \int_{|\zeta|=1} \zeta^{-1} f\left(\frac{z}{\zeta}\right) g(\zeta) d \zeta, \quad|z|<1
$$

We shall need the following three definitions for stating and proving our theorems in the next section.

Definition 1. For $t>-\frac{1}{2}, k>-\frac{1}{2}$ and $|x| \leq 1$ define $F(t, k, x)$ by

$$
\begin{aligned}
R_{n}^{(t, k)}(x) \equiv F(t, k, x) & =\sum_{n=0}^{\infty} \frac{P_{n}^{(t, k)}(x)}{P_{n}^{(t, k)}(1)} z^{n+1} \\
& =\sum_{n=0}^{\infty}{ }_{2} F_{1}\left(-n, t+k+n+1 ; t+1 ; \frac{1-x}{2}\right) z^{n+1} \\
& =\sum_{n=0}^{\infty} F_{n} z^{n+1}
\end{aligned}
$$

where $F_{n}={ }_{2} F_{1}\left(-n, t+k+n+1 ; t+1 ; \frac{1-x}{2}\right), z \in \mathbb{U}$, and $P_{n}^{(t, k)}(x)$ is (also see Lewis [9]) the Jacobi polynomial

$$
P_{n}^{(t, k)}(x)=\frac{(1+t)_{n}}{n!}{ }_{2} F_{1}\left(-n, t+k+n+1 ; t+1 ; \frac{1-x}{2}\right) .
$$

To note the significance of the class $P_{n}^{(t, k)}(x) \equiv F(t, k, x)$, we list the following six special cases of the Jacobi polynomials
(1) $C_{i}^{t}(x)=R_{i}^{\left(t-\frac{1}{2}, k-\frac{1}{2}\right)}(x)$, called the ultra spherical polynomial,
(2) $T_{i}(x)=R_{i}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x)$, called the Chebyshev first polynomial,
(3) $U_{i}(x)=(i+1) R_{i}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(x)$, called the Chebyshev second polynomial,
(4) $V_{i}(x)=R_{i}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)$, called the Chebyshev third polynomial,
(5) $W_{i}(x)=(2 i+1) R_{i}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)$, called the Chebyshev fourth polynomial,
(6) $P_{i}(x)=R_{i}^{(0,0)}(x)$, called the Legendre polynomial.

Using the convolution operator $*$, we define

$$
\mathcal{F}:=\left\{F: F(z)=(f * F(t, k, x))(z)=z+\sum_{n=2}^{\infty} F_{n} a_{n} z^{n}, f \in \mathcal{A}\right\}
$$

Let \mho be the class of analytic functions w, normalized by $w(0)=0$, satisfying the condition $|w(z)|<1$. For analytic functions f and g, we say that f is subordinate to g in \mathbb{U}, denoted by $f \prec g$, if there exists a function $w \in \mho$ so that $f(z)=g(w(z))$ in \mathbb{U}. In particular, if g is univalent in \mathbb{U}, then $f \prec g \Leftrightarrow f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For $0<q<1$, the Jackson's q-derivative $([5,6])$ of a function $f \in \mathcal{A}$ is given by

$$
D_{q} f(z)=\left\{\begin{array}{lll}
\frac{f(z)-f(q z)}{(1-q) z} & \text { for } & z \neq 0 \tag{3}\\
f^{\prime}(0) & \text { for } & z=0
\end{array}\right.
$$

where $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. It follows from (3) that

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}, \quad \text { where } \quad[n]_{q}=\frac{1-q^{n}}{1-q}
$$

is sometimes called the basic number n. If $q \rightarrow 1^{-}$then $[n]_{q} \rightarrow n$.
Moreover, as a consequence of (3), for $F \in \mathcal{F}$ we obtain

$$
D_{q} F(z)=1+\sum_{n=2}^{\infty}[n]_{q} F_{n} a_{n} z^{n-1}
$$

Definition 2. Let \mathcal{P} denote the well known class of Carathèodory functions with positive real part in \mathbb{U}. We let $\mathcal{P}\left(p_{k}\right)(0 \leq k<\infty)$ denote the family of functions p, such that $p \in \mathcal{P}$, and $p \prec p_{k}$ in \mathbb{U}, where the function p_{k} maps the unit disk conformally onto the region Ω_{k} such that $1 \in \Omega_{k}$ and

$$
\partial \Omega_{k}=\left\{u+i v: u^{2}=k^{2}(u-1)^{2}+k^{2} v^{2}\right\}
$$

We remark that, the domain Ω_{k} is elliptic for $k>1$, hyperbolic when $0<k<1$, parabolic for $k=1$ and covers the right half plane when $k=0$. We note that the class $\mathcal{P}\left(p_{k}\right)$ and their extremal functions were presented and investigated by Kanas ([7], [8]). Evidently, for $k=0$ we have

$$
p_{0}(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+2 z^{3}+2 z^{4}+\ldots,
$$

for $k=1$ we have

$$
\begin{aligned}
p_{1}(z) & =1+\frac{2}{\pi^{2}} \log ^{2}\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \\
& =1+\frac{8}{\pi^{2}} z+\frac{16}{3 \pi^{2}} z^{2}+\frac{184}{45 \pi^{2}} z^{3}+\ldots
\end{aligned}
$$

for $0<k<1$ and $A=A(k)=(2 / \pi) \arccos k$ we obtain

$$
\begin{aligned}
p_{k}(z) & =1+\frac{2}{1-k^{2}} \sinh ^{2}(A(k) \operatorname{arctanh} \sqrt{z}) \\
& =\frac{1}{1-k^{2}} \cos \left\{A(k) i \log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right\}-\frac{k^{2}}{1-k^{2}} \\
& =1+\frac{1}{1-k^{2}} \sum_{n=1}^{\infty}\left[\sum_{l=1}^{2 n} 2^{l}\binom{A}{l}\binom{2 n-1}{2 n-l}\right] z^{n} \\
& =1+\frac{2 A^{2}}{1-k^{2}} z+\frac{4 A^{2}+2 A^{4}}{3\left(1-k^{2}\right)} z^{2}+\frac{\frac{46 A^{2}}{15}+\frac{8 A^{4}}{3}+\frac{4 A^{6}}{15}}{3\left(1-k^{2}\right)} z^{3}+\ldots
\end{aligned}
$$

and for $k>1$ and $u(z)=\frac{z-\sqrt{\kappa}}{1-\sqrt{\kappa} z}$ we have

$$
\begin{aligned}
p_{k}(z) & =\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 K(\kappa)} \int_{0}^{\frac{u(z)}{\sqrt{k}}} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-\kappa^{2} t^{2}}}\right) \\
& =1+\frac{\pi^{2}}{4 \sqrt{(} \kappa)\left(k^{2}-1\right) K^{2}(\kappa)(1+\kappa)}\left\{z+\frac{4 K^{2}(\kappa)\left(\kappa^{2}+6 \kappa+1\right)-\pi^{2}}{4 \sqrt{(} \kappa) K^{2}(\kappa)(1+\kappa)} z^{2}+\ldots\right\}
\end{aligned}
$$

where $K(\kappa)$ denotes the Legendre's complete elliptic integral of the first kind, and $K^{\prime}(\kappa)$ is the complementary integrand of $K(\kappa)$ with $k \in(0,1)$ is chosen such that $k=\cosh \left[\left(\pi K^{\prime}(\kappa)\right) /(4 K(\kappa))\right]$. By virtue of

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)} \prec p_{k}(z) \text { or } p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec p_{k}(z)
$$

and the properties of the domains, we have

$$
\Re(p(z))>\Re\left(p_{k}(z)\right)>\frac{k}{k+1}
$$

Definition 3. For the real numbers $0 \leq k<\infty, 0 \leq \alpha<1,0<q<1$ and $b \neq 0$ and for $p_{k}(z)$ as in the Definition 2, we say that a function $f \in \mathcal{A}$ is in the class $\mathcal{F} \mathcal{S}_{q}^{b}\left(p_{k}\right)$ if

$$
1+\frac{1}{b}\left(\frac{z D_{q} F(z)}{F(z)}-1\right) \prec p_{k}(z) \quad(z \in \mathbb{U})
$$

and is in the class $\mathcal{F C}_{q}^{b}\left(p_{k}\right)$ if

$$
1+\frac{1}{b}\left(\frac{D_{q}\left(z D_{q} F(z)\right)}{D_{q}(F(z))}\right) \prec p_{k}(z) \quad(z \in \mathbb{U})
$$

Finally, prior to the start of the next section, we state the following lemma, which can be found in [1] or [2] and is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [10].

Lemma 1. Let $w(z)=w_{1} z+w_{2} z^{2}+\ldots \in \mathcal{U}$ be so that $|w(z)|<1$ in \mathbb{U}. If t is a complex number, then

$$
\left|w_{2}+t w_{1}^{2}\right| \leq \max \{1,|t|\} .
$$

The inequality is sharp for the functions $w(z)=z$ or $w(z)=z^{2}$.

3. The Main Results

In this section we determine the Fekete-Szegö functional related to the conical domains.

Theorem 1. Let $0 \leq k<\infty, 0 \leq \alpha<1,0<q<1, b \neq 0$ and let $p_{k}(z)=$ $1+p_{1} z+p_{2} z^{2}+\cdots$ be defined as in the Definition 2. If f given by (1) belongs to $\mathcal{F} \mathcal{S}_{q}^{b}\left(p_{k}\right)$ then we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b| p_{1}}{\left([3]_{q}-1\right) F_{3}} \max \left\{1,\left|\frac{p_{2}}{p_{1}}+\frac{p_{1} b\left([2]_{q}-1\right) F_{2}^{2}-\mu p_{1} b\left([3]_{q}-1\right) F_{3}}{\left([2]_{q}-1\right)^{2} F_{2}^{2}}\right|\right\} \tag{4}
\end{equation*}
$$

Actually, (4) holds for any complex number μ.
Proof. If $f \in \mathcal{F S}_{q}^{b}\left(p_{k}\right)$, then there is a Schwarz function $w=w_{1} z+w_{2} z^{2}+\cdots \in \mathcal{V}$ such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z D_{q} F(z)}{F(z)}-1\right)=p_{k}(w(z)) \tag{5}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\frac{z D_{q} F(z)}{F(z)}=1+\left([2]_{q}-1\right) a_{2} F_{2} z+\left(\left([3]_{q}-1\right) a_{3} F_{3}-\left([2]_{q}-1\right) F_{2}^{2} a_{2}^{2}\right) z^{2}+\ldots \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(w(z))=1+p_{1} w_{1} z+\left(p_{1} w_{2}+p_{2} w_{1}^{2}\right) z^{2}+\left(p_{1} w_{3}+2 p_{2} w_{1} w_{2}+p_{3} w_{1}^{3}\right) z^{3}+\cdots \tag{7}
\end{equation*}
$$

Applying (5), (6) and (7), we obtain

$$
\begin{equation*}
a_{2}=\frac{b p_{1} w_{1}}{\left([2]_{q}-1\right) F_{2}}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{b p_{1} w_{2}}{\left([3]_{q}-1\right) F_{3}}+\frac{w_{1}^{2} p_{2} b}{F_{3}\left([3]_{q}-1\right)}+\frac{p_{1}^{2} w_{1}^{2} b^{2}}{\left([2]_{q}-1\right)\left([3]_{q}-1\right) F_{3}} . \tag{9}
\end{equation*}
$$

Hence, by (8), (9), we get the following

$$
a_{3}-\mu a_{2}^{2}=\frac{b p_{1}}{\left([3]_{q}-1\right) F_{3}}\left(w_{2}+t w_{1}^{2}\right),
$$

where

$$
\begin{equation*}
t=\frac{p_{2}}{p_{1}}+\left[\frac{p_{1} b\left([2]_{q}-1\right) F_{2}^{2}-\mu p_{1} b\left([3]_{q}-1\right) F_{3}}{\left([2]_{q}-1\right)^{2} F_{2}^{2}}\right] . \tag{10}
\end{equation*}
$$

The result (4) now follows by an application of Lemma 1 to the equation (10).
For the class of functions $\mathcal{F C}_{q, b}^{\beta}\left(p_{k}\right)$ we can prove the following

Theorem 2. Let $0 \leq k<\infty, 0 \leq \alpha<1,0<q<1, b \neq 0$, and let $p_{k}(z)=$ $1+p_{1} z+p_{2} z^{2}+\cdots$ be defined as in Definition 2. If f given by (1) belongs to $\mathcal{F C}_{q, b}^{\beta}\left(p_{k}\right)$, then we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b| p_{1}}{[2]_{q}[3]_{q} F_{3}} \max \left\{1,\left|\frac{p_{2}}{p_{1}}+\frac{\left(p_{1} b[2]_{q} F_{2}^{2}-\mu p_{1} b[3]_{q} F_{3}\right)}{[2]_{q} F_{2}^{2}}\right|\right\} \tag{11}
\end{equation*}
$$

Actually, (11) holds for any complex number μ.
Proof. If $f \in \mathcal{F C}_{q, b}^{\beta}\left(p_{k}\right)$, then there is a Schwarz function $w=w_{1}+w_{2}+\cdots \in \mathcal{V}$ such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{D_{q}\left(z D_{q} F(z)\right)}{D_{q} F(z)}\right)=p_{k}(w(z)) \tag{12}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\frac{D_{q}\left(z D_{q} F(z)\right)}{D_{q}(F(z))}=[2]_{q} a_{2} F_{2} z+\left([2]_{q}[3]_{q} a_{3} F_{3}-[2]_{q}^{2} F_{2}^{2} a_{2}^{2}\right) z^{2}+\ldots \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(w(z))=1+p_{1} w_{1} z+\left(p_{1} w_{2}+p_{2} w_{1}^{2}\right) z^{2}+\left(p_{1} w_{3}+2 p_{2} w_{1} w_{2}+p_{3} w_{1}^{3}\right) z^{3}+\cdots \tag{14}
\end{equation*}
$$

Applying (12), (13) and (14), we obtain

$$
\begin{equation*}
a_{2}=\frac{b p_{1} w_{1}}{F_{2}[2]_{q}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{b p_{1} w_{2}}{[2]_{q}[3]_{q} F_{3}}+\frac{w_{1}^{2} p_{2} b}{[2]_{q}[3]_{q} F_{3}}+\frac{p_{1}^{2} w_{1}^{2} b^{2}}{[2]_{q}[3]_{q} F_{3}} \tag{16}
\end{equation*}
$$

Hence, by (15), (16), we get the following

$$
a_{3}-\mu a_{2}^{2}=\frac{b p_{1}}{[2]_{q} F_{3}[3]_{q}}\left(w_{2}+t w_{1}^{2}\right)
$$

where

$$
\begin{equation*}
t=\frac{p_{2}}{p_{1}}+\left[\frac{p_{1} b F_{2}^{2}[2]_{q}-\mu p_{1} b F_{3}[3]_{q}}{F_{2}^{2}[2]_{q}}\right] \tag{17}
\end{equation*}
$$

The result (11) now follows by an application of Lemma 1 to the equation (17).

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, The Fekete-Szegö Coefficient functional for transforms of analytic funtions, Bull. . Iran. Math. Soc. vol. 35, N0. 2, pp 119-142, 2009.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187, no. 1, 35-46, 2007.
[3] H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood Ltd. (Chichester), 1976.
[4] H. Exton, Handbook of hypergeometric integrals: theory, applications, tables, computer programs, Ellis Horwood Ltd. (Chichester), (ISBN: 0-85312-122-2), 1978.
[5] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203, 1910.
[6] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, 253-281, 1908.
[7] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, no. 1-2, 327-336, 1999.
[8] S. Kanas and A. Wiśniowska, Conic domains and starlike function, Rev. Roumanie Math. Pures Appl., 45, no. 4, 647-657, 2000.
[9] J. L. Lewis, Applications of a convolution theorem to Jacobi polynomials, SIAM J. Math. Anal. 10, no. 6, 1110-1120, 1979.
[10] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
[11] S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110, no. 2, 333-342, 1990.
[12] F. Rønning, PC-fractions and Szego polynomials associated with starlike univalent functions, Numerical Algorithms 3, no. 1-4, 383-391, 1982.
J. M. Jahangiri

Mathematical Sciences, Kent State University, Burton, Ohio, 44021-9500, U. S. A
E-mail address: jjahangi@kent.edu
C. Ramachandran,

Department of Mathematics, University College of Engineering, Villupuram, Anna University, Villupurm 605 103, Tamil Nadu, India

E-mail address: crjsp2004@yahoo.com
S. Annamalai

Department of Mathematics, University College of Engineering, Villupuram, Anna University, Villupurm 605 103, Tamil Nadu, India

E-mail address: annagopika02@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; 33C50; Secondary 30C80.
 Key words and phrases. Analytic and univalent functions, hypergeometric functions, Jacobi polynomials.

 Submitted Dec. 12, 2016.

