FABER POLYNOMIAL COEFFICIENT BOUNDS FOR ANALYTIC BI-CLOSE-TO-CONVEX FUNCTIONS DEFINED BY FRACTIONAL CALCULUS

F. MÜGE SAKAR, H. ÖZLEM GÜNEY

Abstract

In this study, we obtain coefficient expansions for analytic bi-closeto convex functions defined by fractional calculus and determine coefficients for such functions using the Faber Polynomials. Among other results, the general coefficient bound $\left|a_{n}\right|$ and the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are found in our investigation. Furthermore, we show the coefficient bound for $\left|a_{2}^{2}-a_{3}\right|$. We also show that our class is generalization class of them for some special cases.

1. Introduction

We know that a function is univalent if it never takes the same value twice. Also we know that a function is bi-univalent if both it and its inverse are univalent.

Let \mathcal{A} denote the class of functions f which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Let \mathcal{S} denote the class of functions in \mathcal{A} which are univalent in \mathbb{U} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

For $\alpha ; 0 \leq \alpha<1$, we let $S^{*}(\alpha)$ denote the class of function $g \in S$ that are starlike of order α in \mathbb{U}, namely, $\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\}>\alpha$ in \mathbb{U} and $C(\alpha)$ indicate the class of functions $f \in S$ that are close-to-convex of order α in \mathbb{U}, namely, if a function g is in $S^{*}(0)=S^{*}$ so that $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\alpha$ in \mathbb{U} (see [11] and [7]). We note that $S^{*}(\alpha) \subset C(\alpha) \subset S$ and that $\left|a_{n}\right| \leq n$ for $f \in S$ by Bieberbach Conjecture (see [4] and [7]).

The Koebe $1 / 4$ Theorem [7] asserts that the image of \mathbb{U} under each univalent function $f \in \mathcal{A}$ contains the disk of radius $1 / 4$. According to this, if $F=f^{-1}$ is the inverse of a function $f \in S$, then F has a Maclaurin series expansion in some disk about the origin. So every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z$ for $z \in \mathbb{U}$ and $f\left(f^{-1}(w)\right)=w$ for $|w|<1 / 4$.

[^0]A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and $F=f^{-1}$ are univalent in \mathbb{U}. Similarly, a function $f \in \mathcal{A}$ is said to be bi-close-to-convex of order α if both f and $F=f^{-1}$ are bi-close-to-convex of order α in \mathbb{U}. Let Σ define the class of all bi-univalent functions in \mathbb{U} represented by the Taylor-Maclaurin series expansion (1). For a short history and examples of functions in the class Σ, see [16] (see also [6],[18],[12],[14]).

Faber polynomials, which is used by us in this paper, play a considerable act in geometric function theory which was introduced by Faber [8].

Firstly, Lewin [12] considered the class of bi-univalent functions, obtaining the estimate $\left|a_{2}\right| \leq 1.51$. Subsequently, Brannan and Clunie [5] developed Lewin's result to $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$. Accordingly, Netanyahu [14] showed that $\left|a_{2}\right| \leq \frac{4}{3}$. Brannan and Taha [6] defined certain subclasses of bi-univalent function class Σ similar to the usual subclasses. In fact, the aforementioned work of Srivastava et al. [16] essentially revived the investigation of various subclasses of bi-univalent function class Σ in recent years. Lately, many mathematicians found bounds for several subclasses of bi-univalent functions (see [16],[10],[20]). Only few papers determine general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-close-to-convex functions in the associated documents. Especially, in [9] Hamidi and Jahangiri introduced the class of bi-close-to-convex functions and determined estimates for the general coefficient $\left|a_{n}\right|$ of bi-close-to-convex function under certain gap series condition by using Faber polynomials.

A detailed operation is given in the books, which have the applications of the fractional calculus, [15] by Oldham and Spanier, and [13] by Miller and Ross . For the comprehensive concept of the fractional calculus, one can be seen to [17] .
λ-fractional operator was defined by Aydogan et al. in [3] as follows,

$$
\text { If } f(z) \text { defined by as (1) then } D_{z}^{\lambda} f(z)=D_{z}^{\lambda}\left(z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots\right)
$$

$$
D^{\lambda} f(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z)=z+\sum_{n=2}^{\infty} a_{n} \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} z^{n} .
$$

From the definition of $D^{\lambda} f(z)$ some properties can be written as follows,

$$
\begin{aligned}
& \text { i. } \quad D^{1} f(z)=D f(z)=\lim _{\lambda \rightarrow 1} D^{\lambda} f(z)=z f^{\prime}(z) \\
& \text { ii. } \quad \begin{aligned}
D^{\lambda}\left(D^{\delta} f(z)\right)= & D^{\delta}\left(D^{\lambda} f(z)\right) \\
& =z+\sum_{n=2}^{\infty} a_{n} \frac{\Gamma(2-\lambda) \Gamma(2-\delta)(\Gamma(n+1))^{2}}{\Gamma(n+1-\lambda) \Gamma(n+1-\delta)} z^{n}, \\
\text { iii. } \quad D\left(D^{\delta} f(z)\right) & =z+\sum_{n=2}^{\infty} n \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} a_{n} z^{n} \\
& =z\left(D^{\delta} f(z)\right)^{\prime}=\Gamma(2-\lambda) z^{\lambda}\left(\lambda D_{z}^{\delta}+z D_{z}^{\lambda+1} f(z)\right) ;
\end{aligned}
\end{aligned}
$$

$$
\text { iv. } \begin{aligned}
\frac{D\left(D^{\lambda} f(z)\right)}{D^{\lambda} f(z)} & =z \frac{f^{\prime}(z)}{f(z)} \quad \text { for } \quad \lambda=0 \\
& =1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \quad \text { for } \quad \lambda=1
\end{aligned}
$$

Now we start by giving the function class $K_{\Sigma}(\lambda)$ as follows:
Definition 1.1 Let $f(z)$ given by (1) be an element of S. Then $f(z)$ is said to be λ-fractional close-to-convex function in \mathbb{U} if a function $g(z)$ is in S^{*} such that

$$
\begin{equation*}
\Re\left(\frac{D\left(D^{\lambda} f(z)\right)}{g(z)}\right)>0 ; \quad \text { for } \quad \text { all } \quad z \in \mathbb{U} \tag{2}
\end{equation*}
$$

The class of these functions is represented by $K_{\Sigma}(\lambda)$.
It is trivial that $K_{\Sigma}(0)=K$.
Let consider the Faber polynomial expansion of functions $f \in \mathcal{A}$ of the form (1). So, the coefficients of its inverse map $F=f^{-1}$ may be stated as, [1],

$$
\begin{equation*}
F(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) w^{n}=w+\sum_{n=2}^{\infty} A_{n} w^{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(w)=g^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) w^{n}=w+\sum_{n=2}^{\infty} B_{n} w^{n} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \\
& +\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
+ & \frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geq 7} a_{2}^{n-j} V_{j} \tag{5}
\end{align*}
$$

where V_{j} is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$ (see [1] and [2]). Especially, the first few terms of K_{n-1}^{-n} are given below:

$$
\begin{aligned}
& K_{1}^{-2}=-2 a_{2} \\
& K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right)
\end{aligned}
$$

and

$$
K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)
$$

Generally, for any $p \in \mathbb{N}$ an expansion of K_{n}^{p} is as, [1],

$$
\begin{equation*}
K_{n}^{p}=p a_{n}+\frac{p(p-1)}{2} E_{n}^{2}+\frac{p!}{(p-3)!3!} E_{n}^{3}+\cdots+\frac{p!}{(p-n)!n!} E_{n}^{n}, \quad(p \in \mathbb{Z}) \tag{6}
\end{equation*}
$$

where $\mathbb{Z}=\{0, \mp 1, \mp 2, \cdots\}$ and $E_{n}^{p}=E_{n}^{p}\left(a_{2}, a_{3}, \ldots\right)$ and by [19],

$$
\begin{equation*}
E_{n}^{m}\left(a_{1}, a_{2}, \ldots a_{n}\right)=\sum_{m=2}^{\infty} \frac{m!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n}}}{\mu_{1}!\ldots \mu_{n}!}, \quad \text { for }, m \leq n \tag{7}
\end{equation*}
$$

while $a_{1}=1$ and the sum is taken over all non-negative integers $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ satisfying

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\ldots+\mu_{n}=m \\
\mu_{1}+2 \mu_{2}+\ldots+n \mu_{n}=n
\end{array}\right.
$$

(see, for details, [1] and [2]).
It is clearly that $E_{n}^{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}$.
In this paper, we firstly, obtain general coefficient expansions of $\left|a_{n}\right|$ for analytic bi-close to convex functions defined by fractional calculus using the Faber Polynomials. Also, determine the first coefficients $\left|a_{2}\right|,\left|a_{3}\right|$, and $\left|a_{2}^{2}-a_{3}\right|$ for such functions. For some special cases, also we show that our class is generalization class of them. The bi-close to convex functions considered in this paper are largest subclass of bi-univalent functions and generalization of the results of the paper in [9].

2. Main Results

Our first theorem giving by Theorem 2.1 shows an upper bound for $\left|a_{n}\right|$ of analytic bi-univalent functions in the class $K_{\Sigma}(\lambda)$.

Theorem 2.1 Let the function f given by (1) be in the class $K_{\Sigma}(\lambda)(0 \leq \lambda<$ $1, n \in \mathbb{N}_{0}=\{0,1,2 \ldots\}$), if $a_{k}=0$ for $2 \leq k \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{(n+2) \Gamma(n+1-\lambda)}{n \Gamma(2-\lambda) \Gamma(n+1)} \quad n \geq 4 .
$$

Proof. First let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be close-to-convex in \mathbb{U}. Therefore, there exists a function $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in S^{*}$ so that $\Re\left(\frac{D\left(D^{\lambda} f(z)\right)}{g(z)}\right)>$ $0 ; \quad$ for all $z \in \mathbb{U}$.

The Faber polynomial expansion for $\frac{D\left(D^{\lambda} f(z)\right)}{g(z)}$ and the inverse map $\frac{D\left(D^{\lambda} F(w)\right)}{G(w)}$ is given by:

$$
\begin{align*}
\frac{D\left(D^{\lambda} f(z)\right)}{g(z)}= & 1+\sum_{n=2}^{\infty}\left[\left(\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} a_{n}-b_{n}\right)\right. \\
& \left.+\sum_{s=1}^{n-2} K_{s}^{-1}\left(b_{2}, b_{3}, \ldots, b_{s+1}\right)\left(\frac{(n-s) \Gamma(2-\lambda) \Gamma(n-s+1)}{\Gamma(n-s+1-\lambda)} a_{n-s}-b_{n-s}\right)\right] z^{n-1} \tag{8}
\end{align*}
$$

and for its inverse map, $F=f^{-1}$ we get

$$
\frac{D\left(D^{\lambda} F(w)\right)}{G(w)}=1+\sum_{n=2}^{\infty}\left[\left(\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} A_{n}-B_{n}\right)\right.
$$

$$
\begin{equation*}
\left.+\sum_{s=1}^{n-2} K_{s}^{-1}\left(B_{2}, B_{3}, \ldots, B_{s+1}\right)\left(\frac{(n-s) \Gamma(2-\lambda) \Gamma(n-s+1)}{\Gamma(n-s+1-\lambda)} A_{n-s}-B_{n-s}\right)\right] w^{n-1} \tag{9}
\end{equation*}
$$

On the other hand, since $\frac{D\left(D^{\lambda} f(z)\right)}{g(z)}>0$ in \mathbb{U}, there exists a positive real part function

$$
\begin{align*}
\mathrm{p}(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{A} & \text { so that }, \\
& \frac{D\left(D^{\lambda} f(z)\right)}{g(z)}=\mathrm{p}(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} . \tag{10}
\end{align*}
$$

Similarly for $\frac{D\left(D^{\lambda} F(w)\right)}{G(w)}>0$ in \mathbb{U}, there exists a positive real part function
$\mathrm{q}(w)=1+\sum_{n=1}^{\infty} d_{n} w^{n} \in \mathcal{A} \quad$ so that,

$$
\begin{equation*}
\frac{D\left(D^{\lambda} F(w)\right)}{G(w)}=\mathrm{q}(w)=1+\sum_{n=1}^{\infty} d_{n} w^{n} \tag{11}
\end{equation*}
$$

We know that the Carathéodory Lemma [7] gives $\left|c_{n}\right| \leq 2$ and $\left|d_{n}\right| \leq 2$.
Matching the corresponding coefficients of Eqs. (8) and (10) (for any $n \geq 2$) yields,

$$
\begin{align*}
& \left(\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} a_{n}-b_{n}\right) \\
& \quad \quad+\sum_{s=1}^{n-2} K_{s}^{-1}\left(b_{2}, b_{3}, \ldots, b_{s+1}\right)\left(\frac{(n-s) \Gamma(2-\lambda) \Gamma(n-s+1)}{\Gamma(n-s+1-\lambda)} a_{n-s}-b_{n-s}\right)=c_{n-1} \tag{12}
\end{align*}
$$

Similarly, from Eqs. (9) and (11), we can find

$$
\begin{align*}
& \left(\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} A_{n}-B_{n}\right) \\
& \quad+\sum_{s=1}^{n-2} K_{s}^{-1}\left(B_{2}, B_{3}, \ldots, B_{s+1}\right)\left(\frac{(n-s) \Gamma(2-\lambda) \Gamma(n-s+1)}{\Gamma(n-s+1-\lambda)} A_{n-s}-B_{n-s}\right)=d_{n-1} \tag{13}
\end{align*}
$$

For the special case $n=2$ from Eqs. (12) and (13) respectively yield,

$$
\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)} a_{2}-b_{2}=c_{1} \quad \text { and } \quad-\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)} a_{2}-B_{2}=d_{1}
$$

solving for a_{2} and taking the absolute values we can obtain $\left|a_{2}\right| \leq \frac{2 \Gamma(3-\lambda)}{\Gamma(2-\lambda) \Gamma(3)}$.
But under the assumption $a_{k}=0,2 \leq k \leq n-1$ Eqs. (12) and (13) respectively yield,

$$
\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} a_{n}-b_{n}=c_{n-1} \quad \text { and } \quad-\frac{n \Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} a_{n}-B_{n}=d_{n-1}
$$

Solving either of above equations for a_{n} and taking the moduli values, also applying the Carathéodory Lemma, we can obtain

$$
\left|a_{n}\right| \leq \frac{(n+2) \Gamma(n+1-\lambda)}{n \Gamma(2-\lambda) \Gamma(n+1)}
$$

Noticing that $\left|b_{n}\right| \leq n$ and $\left|B_{n}\right| \leq n$.
When we take $\lambda=0$ in our class $K_{\Sigma}(\lambda)$ we obtain, for $\alpha=0$ the result of Hamidi and Jahangiri [9] as follows,

Corollory 2.2 For $0 \leq \alpha<1$ let the function $f \in S$ be bi-close-to-convex of order α in \mathbb{U}. If $a_{k}=0$ for $2 \leq k \leq n-1$, then

$$
\left|a_{n}\right| \leq 1+\frac{2(1-\alpha)}{n}
$$

As a special case to Theorem 1 we derive the resulting estimates for the first coefficients a_{2}, a_{3} and $\left|a_{2}^{2}-a_{3}\right|$ of functions $f \in K_{\Sigma}(\lambda)$.

Theorem 2.3 Let the function $f \in K_{\Sigma}(\lambda)$ and $F=f^{-1} \in K_{\Sigma}(\lambda)$. Then,
$\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{2 \Gamma(3-\lambda) \Gamma(4-\lambda)}{3 \Gamma(3-\lambda) \Gamma(2-\lambda) \Gamma(4)-2 \Gamma(2-\lambda) \Gamma(3) \Gamma(4-\lambda)}}, \quad \frac{2 \Gamma(3-\lambda)}{2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)}\right\}$,
$\left|a_{3}\right| \leq \frac{[4 \Gamma(2-\lambda) \Gamma(3)+2 \Gamma(3-\lambda)] \Gamma(4-\lambda)}{[2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)][3 \Gamma(2-\lambda) \Gamma(4)-\Gamma(4-\lambda)]}$,
and
$\left|a_{2}^{2}-a_{3}\right| \leq \frac{2 \Gamma(4-\lambda)}{3 \Gamma(2-\lambda) \Gamma(4)-\Gamma(4-\lambda)}$.

Proof.

For the function $g(z)=D^{\lambda} f(z)$ in the proof of Theorem 1, we have $a_{n}=b_{n}$.
For $n=2$ Eqs. (12) and (13) respectively yield,

$$
a_{2}\left[\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)}-1\right]=c_{1} \quad \text { and } \quad a_{2}\left[\frac{-2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)}+1\right]=d_{1}
$$

Taking the absolute values of either of above two equations gives
$\left|a_{2}\right| \leq \frac{2 \Gamma(3-\lambda)}{2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)}$
For $n=3$ Eqs. (12) and (13) respectively yield,

$$
\left[\frac{3 \Gamma(2-\lambda) \Gamma(4)}{\Gamma(4-\lambda)} a_{3}-b_{3}\right]+\left[\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)} a_{2}-b_{2}\right]\left(-b_{2}\right)=c_{2}
$$

and

$$
\left[\frac{3 \Gamma(2-\lambda) \Gamma(4)}{\Gamma(4-\lambda)} A_{3}-B_{3}\right]+\left[\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)} A_{2}-B_{2}\right]\left(-B_{2}\right)=d_{2}
$$

when we make some simply arrangement we have

$$
\begin{equation*}
a_{3}\left[\frac{3 \Gamma(2-\lambda) \Gamma(4)}{\Gamma(4-\lambda)}-1\right]-a_{2}^{2}\left[\frac{2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)}-1\right]=c_{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(2 a_{2}^{2}-a_{3}\right)\left[\frac{3 \Gamma(2-\lambda) \Gamma(4)}{\Gamma(4-\lambda)}-1\right]+a_{2}^{2}\left[\frac{-2 \Gamma(2-\lambda) \Gamma(3)}{\Gamma(3-\lambda)}+1\right]=d_{2} \tag{15}
\end{equation*}
$$

Adding the above two equations and solving for $\left|a_{2}\right|$ by applying the Carathéodory Lemma we obtain

$$
\begin{aligned}
\left|2 a_{2}\right|^{2} & =\frac{\left|c_{2}+d_{2}\right||\Gamma(3-\lambda) \Gamma(4-\lambda)|}{|3 \Gamma(3-\lambda) \Gamma(2-\lambda) \Gamma(4)-2 \Gamma(2-\lambda) \Gamma(3) \Gamma(4-\lambda)|} \\
\left|a_{2}\right| & \leq \sqrt{\frac{2 \Gamma(3-\lambda) \Gamma(4-\lambda)}{3 \Gamma(3-\lambda) \Gamma(2-\lambda) \Gamma(4)-2 \Gamma(2-\lambda) \Gamma(3) \Gamma(4-\lambda)}}
\end{aligned}
$$

Substituting $a_{2}=c_{1} \frac{\Gamma(3-\lambda)}{2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)}$ in Eqs. (14) gives

$$
\begin{aligned}
& a_{3}\left[\frac{3 \Gamma(2-\lambda) \Gamma(4)}{\Gamma(4-\lambda)}-1\right]-c_{1}^{2} \frac{\Gamma(3-\lambda)}{2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)}=c_{2} \\
& \left|a_{3}\right| \leq \frac{\left|c_{2}\right||2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)|+\left|c_{1}\right|^{2} \Gamma(3-\lambda)}{|2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)|} \frac{\Gamma(4-\lambda)}{|3 \Gamma(2-\lambda) \Gamma(4)-\Gamma(4-\lambda)|} \\
& \leq \frac{[4 \Gamma(2-\lambda) \Gamma(3)+2 \Gamma(3-\lambda)] \Gamma(4-\lambda)}{[2 \Gamma(2-\lambda) \Gamma(3)-\Gamma(3-\lambda)][3 \Gamma(2-\lambda) \Gamma(4)-\Gamma(4-\lambda)]}
\end{aligned}
$$

Lastly, Subtracting Eqs. (14) from (15), we have $\left|a_{2}^{2}-a_{3}\right|$ as follows:

$$
\left|a_{2}^{2}-a_{3}\right| \leq \frac{2 \Gamma(4-\lambda)}{3 \Gamma(2-\lambda) \Gamma(4)-\Gamma(4-\lambda)}
$$

For $\lambda=0$ we have for the first initial coefficients of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (the case $\alpha=0$) of Hamidi and Jahangiri [9].

Corollory 2.4 For $0 \leq \alpha<1$ let the function $f \in S^{*}(\alpha)$ and $F=f^{-1} \in S^{*}(\alpha)$. Then,

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{2(1-\alpha)} ; & 0 \leq \alpha<\frac{1}{2} \\ 2(1-\alpha) ; & \frac{1}{2} \leq \alpha<1\end{cases}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
2(1-\alpha) ; \quad 0 \leq \alpha<\frac{1}{2} \\
(1-\alpha)(3-2 \alpha) ; \quad \frac{1}{2} \leq \alpha<1
\end{array}\right.
$$

References

[1] Airault, H., Bouali, A., (2006), Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3), pp.179-222.
[2] Airault, H., Ren, J., (2002), An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(5), pp.343-367.
[3] Aydogan, M., Kahramaner, Y., Polatoglu, Y., (2013), Close-to convex defined by fractional operator, Applied Mathematical Sciences, 7(56), pp.2769-2775.
[4] Branges, D.L., (1985), A proof of the Bieberbach conjecture, Acta Math., 154(1-2), pp.137152.
[5] Brannan, D.A, Clunie, J., (1979), Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York: Academic Press.
[6] Brannan, D.A., Taha, T.S., (1986), On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31(2), pp.70-77.
[7] Duren, P.L., (1983), Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, USA, 259p.
[8] Faber, G., (1903), Über polinomische Entwickelungen, Math. Ann., 57(3), pp.389-408, MR1511216.
[9] Hamidi, S.G., Jahangiri, J.M., (2014), Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, Comptes Rendus de l'Acadmie des Sciences, Series I, 352(1), pp.17-20.
[10] Jahangiri, J.M., Hamidi, G.S., (2013), Coefficient estimates for certain classes of bi-univalent functions, Internat. J. Math. Math. Sci., Article ID 190560, 4 p.
[11] Kaplan, W., (1952), Close-to-convex schlicht functions, Mich. Math. J., 1, pp.169-185.
[12] Lewin, M., (1967), On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, pp.63-68.
[13] Miller, K.S., Ross, B., (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sond, Inc., New York.
[14] Netanyahu, M.E., (1969), The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32, pp.100-112.
[15] Oldham, K.B., Spanier, J., (1974), The Fractional Calculus, Academic Press.
[16] Srivastava, H.M., Mishra, A.K., Gochhayat, P., (2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, pp.1188-1192.
[17] Srivastava, H.M., Owa, S., (1989), Univalent Functions, Fractional Calculus and Their Applications, Jhon Wiley and Sons, New York.
[18] Taha, T.S., (1981), Topics in Univalent Function Theory, Ph.D. Thesis, University of London, London, UK.
[19] Todorov, P.G., (1991), On the Faber polynomials of the univalent functions of class \sum, J. Math. Anal. Appl., 162(1), pp.268-276.
[20] Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., (2012), Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25(6), pp.990-994.
F. MÜGE SAKAR

Batman University, Faculty of Management and Economics, Department of Business Adminisration, Batman

E-mail address: mugesakar@hotmail.com
H. Özlem Güney

Dicle University, Science Faculty, Department of Mathematics, Diyarbakir,
E-mail address: ozlemg@dicle.edu.tr

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Bi-univalent, close-to-convex, fractional operator, starlike.
 Submitted March 26, 2017.

