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PERTURBATION RESULTS FOR ABSTRACT DEGENERATE

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

M. KOSTIĆ

Abstract. In this paper, we investigate additive perturbation theorems for

abstract Volterra integro-differential equations in sequentially complete lo-
cally convex spaces. We also provide a few instructive examples emphasizing

that certain perturbation properties of abstract degenerate Volterra integro-

differential equations can be analyzed by using the results from the perturba-
tion theory for non-degenerate equations. Basically, we follow the multivalued

linear operator approach to abstract degenerate differential equations.

1. Introduction and preliminaries

The notion of an (a, k)-regularized C-resolvent family generated by a multivalued
linear operator has been recently introduced in [19]. The main aim of this paper
is to reconsider, in a brief and concise manner, perturbation results for abstract
non-degenerate Volterra integro-differential equations ([14, Section 2.6], [17]) from
the point of view of the theory of multivalued linear operators. We provide sev-
eral illustrative applications, primarily to abstract degenerate fractional differential
equations with Caputo derivatives.

Chronologically, G. A. Sviridyuk and N. A. Manakova were the first to investigate
perturbations of a class of abstract degenerate differential equations of first order
([30], 2003). Using the perturbation theory for strongly continuous semigroups
and the theory developed by G. A. Sviridyuk in his fundamental paper [29], V. E.
Fedorov and O. A. Ruzakova have analyzed in [11] the unique solvability for the
Cauchy problem and Showalter problem for a class of perturbations of abstract
degenerate differential equations of first order (cf. [4], [7]-[11], [15], [18]-[20], [23]
and [27]-[30]) for the basic source of information on abstract degenerate differential
equations with integer order derivatives). The paper [11] contains a great number
of applications to initial boundary value problems and we can freely say that this
is the first systematic study of perturbations of abstract degenerate differential
equations. Recently, A. Favini [10] has considered inverse problems of degenerate
differential equations by using perturbation results for linear relations (cf. also M.
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A. Horani, A. Favini [7] and A. Favaron, A. Favini, H. Tanabe [9]). For some other
recent results on perturbations of various classes of abstract (non-scalar) Volterra
integro-differential equations [15], we refer the reader to [14, Proposition 2.1.12,
Theorem 2.6.7] and [18, Theorem 3.12].

The paper is essentially organized as follows. In the second section, we provide
the basic information concerning multivalued linear operators in locally convex
spaces (cf. [5], [8] and [19] for more details) and remind us of definition of an
(a, k)-regularized C-resolvent family generated by a multivalued linear operator.
Formulation and proof of our main results, as well as some examples and applica-
tions, are given in the third section of paper.

We use the standard notation throughout the paper. Unless specifed otherwise,
we shall always assume henceforth that E is a Hausdorff sequentially complete
locally convex space over the field of complex numbers, SCLCS for short; the ab-
breviation ~ stands for the fundamental system of seminorms which defines the
topology of E. By L(E) we denote the space consisting of all continuous linear
mappings from E into E. Denote by B the family which consists of all bounded
subsets of E and set pB(T ) := supx∈B p(Tx), p ∈ ~, B ∈ B, T ∈ L(E). Then pB(·)
is a seminorm on L(E) and the system (pB)(p,B)∈~×B induces the Hausdorff locally
convex topology on L(E). Let us recall that the space L(E) is sequentially complete
provided that E is barreled ([22]). If E is a Banach space, then we denote by ‖x‖
the norm of an element x ∈ E. If A is a closed linear operator acting on E, then
the domain, kernel space and range of A will be denoted by D(A), N(A) and R(A),
respectively. Since no confusion seems likely, we will identify A with its graph. Set
pA(x) := p(x)+p(Ax), x ∈ D(A), p ∈ ~. Then the calibration (pA)p∈~ induces the
Hausdorff sequentially complete locally convex topology on D(A); we denote this
space simply by [D(A)]. If F is a linear submanifold of E, then the part of A in F,
denoted by AF , is a linear operator defined by D(AF ) := {x ∈ D(A)∩F : Ax ∈ F}
and AFx := Ax, x ∈ D(AF ).

Concerning the integration of functions with values in sequentially complete
locally convex spaces, we will follow the approach of C. Martinez and M. Sanz (cf.
[21, pp. 99-102]).

If V is a general topological vector space, then a function f : Ω → V, where Ω
is an open non-empty subset of C, is said to be analytic if it is locally expressible
in a neighborhood of any point z ∈ Ω by a uniformly convergent power series
with coefficients in V. We refer the reader to [1], [14, Section 1.1] and references
cited there for the basic information about vector-valued analytic functions. In our
approach the space X is sequentially complete, so that the analyticity of a mapping
f : Ω→ X is equivalent with its weak analyticity.

Given s ∈ R in advance, set dse := inf{l ∈ Z : s ≤ l}. Define Σα := {z ∈
C \ {0} : | arg(z)| < α} (α ∈ (0, π]). The Gamma function is denoted by Γ(·)
and the principal branch is always used to take the powers; the convolution like

mapping ∗ is given by f ∗ g(t) :=
∫ t

0
f(t− s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ), 0ζ := 0

(ζ > 0, t > 0), 00 := 1 and g0(t) := the Dirac δ-distribution.
Fairly complete information about fractional calculus and fractional differential

equations can be obtained by consulting [3], [6], [12], [24] and [26]. In this paper, we
will use the Caputo fractional derivatives. Let ζ > 0. Then the Caputo fractional

derivative Dζ
tu ([3], [14]) is defined for those functions u ∈ Cdζe−1([0,∞) : E) for
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which gdζe−ζ ∗ (u−
∑dζe−1
j=0 u(j)(0)gj+1) ∈ Cdζe([0,∞) : E), by

Dζ
tu(t) :=

ddζe

dtdζe

[
gdζe−ζ ∗

(
u−

dζe−1∑
j=0

u(j)(0)gj+1

)]
.

Mittag-Leffler functions naturally occur as the solutions of fractional order dif-
ferential equations. Let α > 0 and β ∈ R. The Mittag-Leffler function Eα,β(z) is
defined by

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C.

In this place, we assume that 1/Γ(αn + β) = 0 if αn + β ∈ −N0. Set, for short,
Eα(z) := Eα,1(z), z ∈ C.

Throughout the paper, we assume that k(t) is a scalar-valued continuous function
defined on [0, τ), where 0 < τ ≤ ∞. The following condition on function k(t) will
be used occasionally:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R such that

k̃(λ) := L(k)(λ) := lim
b→∞

∫ b
0
e−λtk(t) dt :=

∫∞
0
e−λtk(t) dt exists for all λ ∈

C with <λ > β. Put abs(k) :=inf{<λ : k̃(λ) exists}.
The reader may consult [1], [19], [31] and [14] for further information concerning
the Laplace transform of functions with values in Banach and sequentially complete
locally convex spaces. In this paper, we will follow our recent approach from [19].

Let 0 < τ ≤ ∞ and F : [0, τ)→ P (E). A single-valued function f : [0, τ)→ E is
called a section of F iff f(t) ∈ F(t) for all t ∈ [0, τ). We denote the set consisting
of all continuous sections of F by secc(F).

2. Multivalued linear operators in locally convex spaces

A multivalued map (multimap) A : E → P (E) is said to be a multivalued linear
operator (MLO) in E, or simply MLO, iff the following holds:

(i) D(A) := {x ∈ E : Ax 6= ∅} is a linear subspace of E;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

An almost immediate consequence of definition is that Ax + Ay = A(x + y) for
all x, y ∈ D(A) and λAx = A(λx) for all x ∈ D(A), λ 6= 0. Furthermore, for any
x, y ∈ D(A) and λ, η ∈ C with |λ|+|η| 6= 0, we have λAx+ηAy = A(λx+ηy). If A
is an MLO, thenA0 is a linear manifold in E andAx = f+A0 for any x ∈ D(A) and
f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)}. The set A−10 = {x ∈ D(A) : 0 ∈ Ax} is
called the kernel of A and it is denoted henceforth by N(A) or Kern(A). The inverse
A−1 of an MLO is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}.
It is checked at once that A−1 is an MLO in E, as well as that N(A−1) = A0 and
(A−1)−1 = A. If N(A) = {0}, i.e., if A−1 is single-valued, then A is said to be
injective. It is worth noting that Ax = Ay for some two elements x and y ∈ D(A),
iff Ax ∩ Ay 6= ∅; moreover, if A is injective, then the equality Ax = Ay holds iff
x = y.

If A, B : E → P (E) are two MLOs, then we define its sum A+B by D(A+B) :=
D(A)∩D(B) and (A+B)x := Ax+Bx, x ∈ D(A+B). It can be simply verified that
A + B is likewise an MLO in E. We write A ⊆ B iff D(A) ⊆ D(B) and Ax ⊆ Bx
for all x ∈ D(A).
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Suppose that A and B are two MLOs in E. The product of A and B is defined
by D(BA) := {x ∈ D(A) : D(B)∩Ax 6= ∅} and BAx := B(D(B)∩Ax). Then BA is
an MLO in E and (BA)−1 = A−1B−1. The scalar multiplication of an MLO A in E
with the number z ∈ C, zA for short, is defined by D(zA) := D(A) and (zA)(x) :=
zAx, x ∈ D(A). It is clear that zA is an MLO in E and (ωz)A = ω(zA) = z(ωA),
z, ω ∈ C.

The integer powers of an MLO A are defined recursively as follows: A0 =: I; if
An−1 is defined, set

D(An) :=
{
x ∈ D(An−1) : D(A) ∩ An−1x 6= ∅

}
,

and

Anx :=
(
AAn−1

)
x =

⋃
y∈D(A)∩An−1x

Ay, x ∈ D(An).

We can prove inductively that (An)−1 = (An−1)−1A−1 = (A−1)n =: A−n, n ∈ N
and D((λ−A)n) = D(An), n ∈ N0. Moreover, if A is single-valued, then the above
definitions are consistent with the usual definition of powers of A.

We say that an MLO operator A in E is closed if for any nets (xτ ) in D(A)
and (yτ ) in E such that yτ ∈ Axτ for all τ ∈ I we have that the suppositions
limτ→∞ xτ = x and limτ→∞ yτ = y imply x ∈ D(A) and y ∈ Ax. Suppose that
A is a closed MLO in E, Ω is a locally compact, separable metric space, and µ
is a locally finite Borel measure defined on Ω. If f : Ω → E and g : Ω → E are
µ-integrable, and g(x) ∈ Af(x), x ∈ Ω, then we know that

∫
Ω
f dµ ∈ D(A) and∫

Ω
g dµ ∈ A

∫
Ω
f dµ.

Unless stated otherwise, it will be always assumed that C ∈ L(E) is injective
and CA ⊆ AC. Suppose that A is an MLO in E. Then the C-resolvent set of A,
ρC(A) for short, is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued continuous operator on E.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A)); the
resolvent set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ − A)−1 (λ ∈
ρ(A)). The basic properties of C-resolvent sets of single-valued linear operators
([13]-[14]) continue to hold in our framework (observe, however, that there exist
certain differences that we will not discuss here). For example, if ρ(A) 6= ∅, then A
is closed; it is well known that this statement does not hold if ρC(A) 6= ∅ for some
C 6= I.

We need the following important lemma from [19].
Lemma 1 We have(

λ−A
)−1

CA ⊆ λ
(
λ−A

)−1
C − C ⊆ A

(
λ−A

)−1
C, λ ∈ ρC(A).

The operator (λ − A)−1CA is single-valued on D(A) and (λ − A)−1CAx = (λ −
A)−1Cy, whenever y ∈ Ax and λ ∈ ρC(A).

The notion of an (a, k)-regularized C-resolvent family plays a crucial role in the
analysis of abstract Volterra equations in locally convex spaces. We will use the
following definition of an (a, k)-regularized C-resolvent family subgenerated by an
MLO ([19]).
Definition 1 Suppose that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1

loc([0, τ)), a 6= 0,
A : E → P (E) is an MLO, C ∈ L(E) is injective and CA ⊆ AC. Then it is said that
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a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(E) is an (a, k)-regularized
C-resolvent family with a subgenerator A iff R(t)C = CR(t) and R(t)A ⊆ AR(t)
(t ∈ [0, τ)), as well as

t∫
0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ A.

We will occasionally use the following condition:( t∫
0

a(t− s)R(s)x ds,R(t)x− k(t)Cx

)
∈ A, t ∈ [0, τ), x ∈ E. (1)

An (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) is said to be locally equicon-
tinuous iff, for every t ∈ (0, τ), the family {R(s) : s ∈ [0, t]} is equicontinuous. In
the case τ = ∞, (R(t))t≥0 is said to be exponentially equicontinuous (equicon-
tinuous) if there exists ω ∈ R (ω = 0) such that the family {e−ωtR(t) : t ≥ 0} is
equicontinuous. If k(t) = gα+1(t), where α ≥ 0, then it is also said that (R(t))t∈[0,τ)

is an α-times integrated (a,C)-resolvent family; 0-times integrated (a,C)-resolvent
family is further abbreviated to (a,C)-resolvent family.

3. Perturbations of abstract degenerate Volterra
integro-differential equations

We start this section by observing that the following simple lemma holds for
multivalued linear operators in locally convex spaces.
Lemma 2 Let A be an MLO in E, and let B ∈ L(E). If λ ∈ ρ(A) and 1 ∈
ρ(B(λ−A)−1), then λ ∈ ρ(A+B) and(

λ− (A+B)
)−1

=
(
λ−A

)−1
(

1−B(λ−A)−1
)−1

. (2)

Proof. Clearly,(
λ−A

)−1
(

1−B(λ−A)−1
)−1

=

((
1−B(λ−A)−1

)
(λ−A)

)−1

=

(
λ−A−B(λ−A)−1(λ−A)

)−1

⊇
(
λ−A−B

)−1
.

Therefore, it suffices to show that

x ∈ (λ−A−B)
(
λ−A

)−1
(

1−B(λ−A)−1
)−1

x, x ∈ E.

But, this is an immediate consequence of the fact that x = (1−B(λ−A)−1)−1x−
B(λ−A)−1(1−B(λ−A)−1)−1x, x ∈ E.

Keeping in mind Lemma 2, [19, Proposition 2.6], the identity [8, (1.2)] and the
argumentation already seen in non-degenerate case, the assertions of [14, Theorem
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2.6.18-Theorem 2.6.19] can be reformulated for (a, k)-regularized resolvent families
in Banach spaces, more or less, without some substantial difficulties. The situation
is much more simpler with the assertions of [16, Theorem 4.1, Corollary 4.5], which
can be almost straightforwardly reformulated for certain classes of K-convoluted
semigroups generated by mutivalued linear operators. Details are left to the inter-
ested reader.

The main problem in transferring [14, Theorem 2.6.3] to (a, k)-regularized re-
solvent families subgenerated by mutivalued linear operators lies in the fact that
it is not clear how one can prove that the operator I − (A + B)/λα, appearing in
the final part of the proof of this theorem, is injective for <λ > 0 suff. large and
k̃(λ)ã(λ) 6= 0 (cf. also [14, Theorem 2.6.5, Corollary 2.6.6-Corollary 2.6.9] for fur-
ther information on this type of bounded commuting perturbations). Nevertheless,
the following illustrative example shows that there exist some situations when we
can directly apply [14, Theorem 2.6.3] (here, concretely, one of its most important
consequences, [14, Corollary 2.6.6]) in the study of perturbation properties of some
well-known degenerate equations of mathematical physics and their fractional ana-
logues:
Example 1 Assume that n ∈ N and iAj , 1 ≤ j ≤ n are commuting generators
of bounded C0-groups on E = Lp(Rn), for some 1 ≤ p < ∞ (possible applications
can be given in Lp(Rn)l-type spaces, as well; cf. [31]). Set A := (A1, · · ·, An) and
Aη := Aη11 ···Aηnn for any η = (η1, ···, ηn) ∈ Nn0 . If N ∈ N, and P (x) =

∑
|η|≤N aηx

η,

x ∈ Rn is a complex polynomial, define P (A) :=
∑
|η|≤N aηA

η. Then we know that

the operator P (A) is closable; for more details about functional calculus for com-
muting generators of bounded C0-groups, cf. [14]. Suppose now that P1(x) and
P2(x) are two non-zero complex polynomials in n variables and 0 < α < 2; put
N1 := dg(P1(x)) and N2 := dg(P2(x)). Let ω ≥ 0, N ∈ N, r ∈ (0, N ], let Q(x) be
an r-coercive complex polynomial of degree N (cf. [1] for the notion), a ∈ C\Q(Rn)
and γ = n

r |
1
p −

1
2 |max(N, N1+N2

min(1,α) ). Suppose that P2(x) 6= 0, x ∈ Rn, P2(x) is an

elliptic polynomial, and

sup
x∈Rn

<

((
P1(x)

P2(x)

)1/α)
≤ ω.

Then [1, Corollary 8.3.4] yields that P2(A)
−1
∈ L(E) (the violation of this condi-

tion has some obvious unpleasant consequenes on the existence and uniqueness of

solutions of perturbed problems); hence, P1(A) P2(A)
−1

is a closed linear operator
in E. Set

Rα(t) :=

(
Eα

(
tα
P1(x)

P2(x)

)(
a−Q(x)

)−γ)
(A), t ≥ 0.

Then the analysis contained in the proof of [15, Theorem 2.1.22], combined with [19,
Remark 4.2(v)], implies that (Rα(t))t≥0 ⊆ L(E) is a global exponentially bounded

(gα, Rα(0))-regularized resolvent family generated by P1(A) P2(A)
−1
. SetDf(x) :=∫∞

−∞ ψ(x − y)f(y) dy, f ∈ E, where ψ ∈ L1(Rn). Then D ∈ L(E) and commutes

with P1(A) P2(A)
−1
. Applying [14, Corollary 2.6.6], we get that the operator

P1(A) P2(A)
−1

+ D generates an exponentially bounded (gα, Rα(0))-regularized
resolvent family, which can be applied in the study of the following perturbation of
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the abstract fractional Barenblatt-Zheltov-Kochina equation

(η∆− 1)Dα
t u(t) + ∆u =

∫ ∞
−∞

ψ(x− y)(η∆− 1)u(t, y) dy, (η > 0, cos(π/α) ≤ 0),

equipped with the usual initial conditions. We can similarly consider the following
perturbation of abstract Boussinesq equation of second order(

σ2∆− 1
)
utt + γ2∆u =

∫ ∞
−∞

ψ(x− y)
(
σ2∆− 1

)
u(t, y) dy (σ > 0, γ > 0).

We shall present one more example in support of use of perturbation theory
for abstract non-degenerate differential equations (a similar approach works in the
analysis of analytical solutions of perturbed abstract fractional Barenblatt-Zheltov-
Kochina equations in finite domains; cf. [20, Definition 4.1, Example 4.4(ii)] for
further information):
Example 2 In [19], we have recently applied some results from the theory of ab-
stract non-degenerate differential equations in the study of the following fractional
analogue of Benney-Luke equation:

(P )η,f :


(λ−∆)Dη

t u(t, x) =
(
α∆− β∆2

)
u(t, x) + f(t, x), t ≥ 0, x ∈ Ω,(

∂k

∂tk
u(t, x)

)
t=0

= uk(x), x ∈ Ω, 0 ≤ k ≤ dηe − 1,

u(t, x) = ∆u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

where ∅ 6= Ω ⊆ Rn is a bounded domain with smooth boundary, ∆ is the Dirichlet
Laplacian in E = L2(Ω), acting with domain H2(Ω)∩H1

0 (Ω), λ ∈ σ(∆), 0 < η < 2
and α, β > 0. Denote by {λk} [= σ(∆)] the eigenvalues of ∆ in L2(Ω) (recall that
0 < −λ1 ≤ −λ2 · ·· ≤ −λk ≤ ··· → +∞ as k →∞) numbered in nonascending order
with regard to multiplicities; by {φk} ⊆ C∞(Ω) we denote the corresponding set of
mutually orthogonal eigenfunctions. Let E0 be the closed subspace of E consisting
of those functions from E that are orthogonal to the eigenfunctions φk(·) for λk = λ.
Define the closed single-valued linear operator A in E0 by its graph: A = {(f, g) ∈
E0 × E0 : (λ − λk)〈g, φk〉 = (αλk − βλ2

k)〈f, φk〉 for all k ∈ N with λk 6= λ}. Then
the operator A generates an exponentially bounded, analytic (gη, I)-regularized
resolvent family of angle θ ≡ min((π/η) − (π/2), π/2). Suppose that B is a closed
linear operator in E satisfying that there exists a number a > 0 such that for all
sufficiently small numbers b > 0 we have D(A) ⊆ D(B) and ‖Bf‖ ≤ a‖f‖+b‖Af‖,
f ∈ D(A). Applying [3, Theorem 2.25] and the analysis from [19, Example 5.17],
we get that the problem (P )η,B,f , obtained by replacing the term f(t, x) on the
right-hand side of the first equation of problem (P )η,f by (λ−∆)Bu(t, x) + f(t, x),
has a unique solution provided that x0 ∈ D(∆2) ∩ E0, x1 ∈ D(∆) ∩ E0, if η > 1,∑
k|λk 6=λ

〈f(·),φk〉
λ−λk φk = h ∈W 1,1

loc ([0,∞) : E0) satisfies

t 7→
∑

k|λk 6=λ

(
αλk − βλ2

k

)〈 d
dt

(gη ∗ h)(t), φk

〉
φk ∈ L1

loc([0,∞) : E0),

Bφk = 0 for λ = λk, and the condition (Q) holds, where

(Q) : Dη
t 〈f(t), φk〉 exists in L2(Ω) for k|λ = λk, 〈x0, φk〉 = 0 for k|λ 6= λk,

〈x1, φk〉 = 0 for k|λ 6= λk, 1 < η < 2, 〈x0, φk〉 = 〈f(0),φk〉
βλ2

k−αλk
for k|λ = λk, and

〈x1, φk〉 = 〈f ′(0),φk〉
βλ2

k−αλk
for k|λ = λk, 1 < η < 2.
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Finally, we would like to observe that V. E. Fedorov and O. A. Ruzakova have
analyzed in [11, Section 5], by using a completely different method, perturbations
of degenerate differential equations of first order involving polynomials of elliptic
selfadjoint operators.

The assertion of [14, Theorem 2.6.11] admits an extension in our context. We
will give some details of the proof immediately after its formulation, when we will
be considering Theorem 2.
Theorem 1 Suppose M > 0, ω ≥ 0, the functions |a|(t) and k(t) satisfy (P1),
as well as A is a densely defined, closed subgenerator of an (a, k)-regularized C-
resolvent family (R(t))t≥0 which satisfies that, for every seminorm p ∈ ~, we have
p(R(t)x) ≤Meωtp(x), x ∈ E, t ≥ 0. Suppose, further, C−1B ∈ L(E), BCx = CBx,
x ∈ D(A), there exist a locally integrable function b(t) and a number ω0 ≥ ω such

that |b|(t) satisfies (P1) and b̃(λ) = ã(λ)

k̃(λ)
, λ > ω0, k̃(λ) 6= 0. Let µ > ω0 and

γ ∈ [0, 1) be such that

∞∫
0

e−µtp

(
C−1B

∫ t

0

b(t− s)R(s)x ds

)
dt ≤ γp(x), x ∈ D(A), p ∈ ~. (3)

Then the operatorA+B is a closed subgenerator of an (a, k)-regularized C-resolvent
family (RB(t))t≥0 which satisfies p(RB(t)x) ≤ M

1−γ e
µtp(x), x ∈ E, t ≥ 0, p ∈ ~ and

RB(t)x = R(t)x+

t∫
0

RB(t− r)C−1B

r∫
0

b(r − s)R(s)x ds dr, t ≥ 0, x ∈ D(A).

Furthermore, the equation (1) holds with R(t) replaced by RB(t) therein.

As observed in [14, Theorem 2.6.12], in many cases we do not have the existence

of a function b(t) and a complex number z such that ã(λ)/k̃(λ) = b̃(λ)+z, <λ > ω1,

k̃(λ) 6= 0. The above-mentioned theorem admits an extension in our context, as well.
Before we formulate this extension, let us only outline a few relevant details needed
for its proof. First of all, suppose that A is a subgenerator of an (a, k)-regularized
C-resolvent family (R(t))t∈[0,τ), l ∈ N and xj ∈ Axj−1 for 1 ≤ j ≤ l. Then we can
prove inductively that, for every t ∈ [0, τ),

R(t)x0 = k(t)Cx0 +

l−1∑
j=1

(
a∗,j ∗ k

)
(t)Cxj +

(
a∗,l ∗R(·)xl

)
(t).

In the case that τ = ∞ and the Laplace transform can be applied, the above
equation implies that, for certain values of complex parameter λ, we have:

k̃(λ)
(
I − ã(λ)A

)−1
x0 = k̃(λ)Cx0 +

l−1∑
j=1

ã(λ)j k̃(λ)Cxj + ã(λ)lk̃(λ)
(
I − ã(λ)A

)−1
xl.

If we define the operator family (S(t))t≥0 as explained below, then the previous
equation implies that the identity [14, (180)] continues to hold with the single-valued
operator A replaced by the MLO A, provided in addition that the number λ in this
equation satisfies ã(λ) 6= 0. Furthermore, the identities [14, (181), (183)] also hold,
and the assumption y ∈ (I− ã(λ)(A+B))x implies on account of Lemma 1 and the
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validity of identity [14, (180)] that R̃B(λ)y = (I − S̃(λ))−1k̃(λ)(I − ã(λ)A)−1Cy =

k̃(λ)Cx for <λ > 0 suff. large and ã(λ)k̃(λ) 6= 0. Owing to the condition (i) in
Theorem 2, we have that the operator A+B is closed and commutes with C. The
representation (I − S̃(λ))−1 =

∑∞
n=0[( 1

ã(λ) −A)−1CC−1B]n implies along with the

closedness of A that

k̃(λ)Cx ∈

(
1

ã(λ)
− (A+B)

)(
I − S̃(λ)

)−1

k̃(λ)

(
1

ã(λ)
−A

)−1

Cx, x ∈ E,

and R(C) ⊆ R(I − ã(λ)(A + B)) for <λ > 0 suff. large and ã(λ)k̃(λ) 6= 0. Now
it is clear that the Laplace transfrom identity [14, (182)] holds with the operator
A+B replaced by A+B, provided in addition that the number λ in this equation
satisfies ã(λ) 6= 0. After that, we can apply [19, Theorem 5.5(ii)] to complete the
whole analysis:
Theorem 2 Suppose M, M1 > 0, ω ≥ 0, l ∈ N and A is a closed subgenerator of
an (a, k)-regularized C-resolvent family (R(t))t≥0 such that p(R(t)x) ≤Meωtp(x),
x ∈ E, t ≥ 0, p ∈ ~ and (1) holds. Let |a|(t) and k(t) satisfy (P1), and let the
following conditions hold:

(i) BCx = CBx, x ∈ D(A); if x = x0 ∈ D(A), then C−1Bx ∈ D(Al) and
there exists a sequence (xj)1≤j≤l such that xj ∈ Axj−1 for 1 ≤ j ≤ l, as
well as that:

p
(
Cxj

)
≤M1p(x), x ∈ D(A), p ∈ ~, 0 ≤ j ≤ l − 1, and

p
(
xl
)
≤M1p(x), x ∈ D(A), p ∈ ~.

(ii) There exist a locally integrable function b(t) and a complex number z such
that |b|(t) satisfies (P1) and

ã(λ)l+1
/
k̃(λ) = b̃(λ) + z, <λ > max(ω, abs(|a|), abs(k)), k̃(λ) 6= 0.

(iii) limλ→+∞
∫∞

0
e−λt|a(t)| dt = 0 and limλ→+∞

∫∞
0
e−λt|b(t)| dt = 0.

Define, for every x = x0 ∈ D(A) and t ≥ 0,

S(t)x :=

l−1∑
j=0

a∗,j+1(t)Cxj +

t∫
0

b(t− s)R(s)xl ds+ zR(t)xl,

where (xj)1≤j≤l is an arbitrary sequence satisfying the assumptions prescribed in
(i). Then, for every x ∈ E, there exists a unique solution of the integral equation

RB(t)x = R(t)x+ (S ∗RB)(t)x, t ≥ 0; (4)

furthermore, (RB(t))t≥0 is an (a, k)-regularized C-resolvent family with a closed
subgenerator A + B, there exist µ ≥ max(ω, abs(|a|), abs(k)) and γ ∈ [0, 1) such
that p(RB(t)x) ≤ M

1−γ e
µtp(x), x ∈ E, t ≥ 0, p ∈ ~ and (1) holds with R(t) replaced

by RB(t) therein.

Remark 1 It is worth noting that Theorem 1 continues to hold, with appro-
priate changes, in the case that B is not necessarily bounded operator from D(A)
into E. More precisely, suppose that E is complete, B is a closed linear operator
in E, and the requirements of Theorem 1 hold with the condition C−1B ∈ L(E)
replaced by that D(A) ⊆ D(C−1B) and the mapping t 7→ C−1B(b ∗ R)(t)x, t ≥ 0
is well-defined, continuous and Laplace transformable for all x ∈ D(A). Then the
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final conclusions established in Theorem 1 continue to hold; here, it is only worth
noting that the closedness of the operator A + B can be proved (cf. [14, Remark
2.6.13] for more details, especially, the condition (\) therein) by using the inclusion

(I − S̃(λ))−1(I − ã(λ)(A+B))−1x ⊆ (I − ã(λ)A)x, x ∈ D(A).

Remark 2 The method proposed in the proofs of [25, Theorem 1.2, Theorem 2.3]
and [14, Theorem 2.6.13] enables one to deduce some results on the well-posedness
of perturbed abstract Volterra inclusion:

u(t) ∈ f(t) + (a+ a ∗ k)(t) ∗ Au(t) + (b ∗ u)(t), t ∈ [0, τ), (5)

provided that A is a closed subgenerator of an exponentially equicontinuous (a, k)-
regularized C-resolvent family (R(t))t≥0, b, k ∈ L1

loc([0,∞)) and f ∈ C([0,∞)).
The starting point is the observation that the regularized resolvent families for (5)
satisfy the integral equations like [25, (1.28)] or (4).

Now it quite easy to formulate the following extension of [14, Corollary 2.6.15].
Corollary 1 Suppose M, M1 > 0, ω ≥ 0, α > 0, β ≥ 0, A is a closed subgenera-
tor of a (gα, gαβ+1)-regularized C-resolvent family (R(t))t≥0 satisfying p(R(t)x) ≤
Meωtp(x), x ∈ E, t ≥ 0, p ∈ ~ and (1) holds with a(t) = gα(t) and k(t) = gαβ+1(t).
Assume exactly one of the following conditions:

(i) α− 1− αβ ≥ 0, BCx = CBx, x ∈ D(A), and (a) ∨ (b), where:

(a) p(C−1Bx) ≤M1p(x), x ∈ D(A), p ∈ ~.
(b) E is complete, (3) holds, D(A) ⊆ D(C−1B), as well as the mapping

t 7→ C−1B(b ∗ R)(t)x, t ≥ 0 is well-defined, continuous and Laplace
transformable for all x ∈ D(A).

(ii) α− 1−αβ < 0, BCx = CBx, x ∈ D(A), l = dαβ+1−α
α e and (i) of Theorem

2 holds.

Then there exist µ > ω and γ ∈ [0, 1) such that A + B is a closed subgenerator
of a (gα, gαβ+1)-regularized C-resolvent family (RB(t))t≥0 satisfying p(RB(t)x) ≤
M

1−γ e
µtp(x), x ∈ E, t ≥ 0, p ∈ ~, and (1) holds with R(t) replaced by RB(t) therein,

with a(t) = gα(t) and k(t) = gαβ+1(t).

Observe that the local Hölder continuity is an example of the property that
is stable under perturbations described in the previous three assertions (cf. [14,
Remark 2.6.14] for more details, and [14, Remark 2.6.16] for inheritance of analytical
properties under perturbations described in Corollary 1).

Taking into account the assertions of [19, Theorem 2.4(i), Theorem 5.18-Theorem
5.19], and the fact that the identity (2) can be reconsidered for C-resolvents of the
operator A+B (cf. the formula following the equation [14, (204)] for more details),
we can repeat almost literally the arguments contained in the proof of [14, Theorem
2.6.22] so as to conclude that the following perturbation result holds true.
Theorem 3 Let k(t) and |a|(t) satisfy (P1). Suppose δ ∈ (0, π/2],

ω ≥ max(0, abs(|a|), abs(k)), there exist analytic functions k̂ : ω + Σπ
2 +δ → C and

â : ω + Σπ
2 +δ → C such that k̂(λ) = k̃(λ), <λ > ω, â(λ) = ã(λ), <λ > ω and

k̂(λ)â(λ) 6= 0, λ ∈ ω + Σπ
2 +δ. Let A be a closed subgenerator of an analytic (a, k)-

regularized C-resolvent family (R(t))t≥0 of angle δ, and let (1) hold. Suppose that,



JFCA-2018/9(1) PERTURBATION RESULTS FOR ABSTRACT DEGENERATE... 147

for every η ∈ (0, δ), there exists cη > 0 such that

p
(
e−ω<zR(z)x

)
≤ cηp(x), x ∈ E, p ∈ ~, z ∈ Ση,

as well as b, c ≥ 0, B is a linear operator satisfying D(C−1AC) ⊆ D(B), BCx =
CBx, x ∈ D(C−1AC) and

p
(
C−1Bx

)
≤ bp(y) + cp(x), whenever (x, y) ∈ C−1AC, p ∈ ~.

Assume that at least one of the following conditions holds:

(i) A is densely defined, the numbers b and c are sufficiently small, there exists
|C|~ > 0 such that p(Cx) ≤ |C|~p(x), x ∈ E, p ∈ ~ and, for every

η ∈ (0, δ), there exists ωη ≥ ω such that |k̂(λ)−1| = O(|λ|), λ ∈ ωη + Σπ
2 +η

and |â(λ)/k̂(λ)| = O(|λ|), λ ∈ ωη + Σπ
2 +η.

(ii) A is densely defined, the number b is sufficiently small, there exists |C|~ > 0
such that p(Cx) ≤ |C|~p(x), x ∈ E, p ∈ ~ and, for every η ∈ (0, δ),

there exists ωη ≥ ω such that |k̂(λ)−1| = O(|λ|), λ ∈ ωη + Σπ
2 +η and

â(λ)/(λk̂(λ))→ 0, |λ| → ∞, λ ∈ ωη + Σπ
2 +η.

(iii) A is densely defined, the number c is sufficiently small, b = 0 and, for

every η ∈ (0, δ), there exists ωη ≥ ω such that |â(λ)/k̂(λ)| = O(|λ|), λ ∈
ωη + Σπ

2 +η.

(iv) b = 0 and, for every η ∈ (0, δ), there exists ωη ≥ ω such that â(λ)/(λk̂(λ))→
0, |λ| → ∞, λ ∈ ωη + Σπ

2 +η.

Then C−1(C−1AC + B)C is the integral generator of an exponentially equicon-
tinuous, analytic (a, k)-regularized C-resolvent family (RB(t))t≥0 of angle δ, which
satisfies RB(z)[C−1(C−1AC+B)C] ⊆ [C−1(C−1AC+B)C]RB(z), z ∈ Σδ and the
following condition:

∀η ∈ (0, δ) ∃ω′η > 0 ∃Mη > 0 ∀p ∈ ~ :

p
(
RB(z)x

)
≤Mηe

ω′η<zp(x), x ∈ E, z ∈ Ση.

Furthermore, in cases (iii) and (iv), the above remains true with the operator
C−1(C−1AC +B)C replaced by C−1AC +B.

In this paper, we will not discuss possibilities to generalize results on rank 1-
perturbations [2] and time-dependent perturbations [32] to (a, k)-regularized C-
resolvent families subgenerated by mutivalued linear operators; for more details
about non-degenerate case, we refer the reader to [14, Lemma 2.6.26-Theorem
2.6.33] and [14, Theorem 2.6.34, Corollary 2.6.35-Corollary 2.6.38, Theorem 2.6.40,
Corollary 2.6.42-Corollary 2.6.45]. In the following theorem, we will extend the
assertions of time-dependent perturbations [3, Theorem 2.26] and [14, Theorem
2.6.46(i)] to multivalued linear operators. The proof is very similar to that of [14,
Theorem 2.6.46(i)] and therefore omitted.
Theorem 4 Suppose α ≥ 1, M ≥ 1, ω ≥ 0 and A is a closed subgenerator of
a (local) (gα, C)-regularized resolvent family (Sα(t))t∈[0,τ) satisfying p(Sα(t)x) ≤
Meωtp(x), t ∈ [0, τ), x ∈ E, p ∈ ~ and (1) with R(t) and a(t) replaced by Sα(t)
and gα(t), respectively. Let (B(t))t∈[0,τ) ⊆ L(E), R(B(t)) ⊆ R(C), t ∈ [0, τ) and

C−1B(·) ∈ C([0, τ) : L(E)). Assume that t 7→ C−1f(t), t ∈ [0, τ) is a locally inte-
grable E-valued mapping such that the mapping t 7→ (d/dt)C−1f(t) is defined for
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a.e. t ∈ [0, τ) and locally integrable on [0, τ) (in the sense of [21, Definition 4.4.3]).
Then there exists a unique solution of the integral Volterra inclusion:

u(t, f) ∈ f(t) +A
t∫

0

gα(t− s)u(s, f) ds+

t∫
0

gα(t− s)B(s)u(s, f) ds; (6)

here, by a solution of (6) we mean any continuous function u ∈ C([0, τ) : E) such

that there exists a continuous section uA,α,f (t) ∈ secc(A
∫ t

0
gα(t− s)u(s, f) ds) for

t ∈ [0, τ), with the property that u(t, f) = f(t)+uA,α,f (t)+
∫ t

0
gα(t−s)B(s)u(s, f) ds,

t ∈ [0, τ). The solution u(t, f) is given by u(t, f) :=
∑∞
n=0 Sα,n(t), t ∈ [0, τ), where

we define Sα,n(t) recursively by

Sα,0(t) := Sα(t)C−1f(0) +

∫ t

0

Sα(t− s)
(
C−1f

)′
(s) ds, t ∈ [0, τ) (7)

and

Sα,n(t) :=

t∫
0

t−σ∫
0

gα−1(t− σ − s)Sα(s)C−1B(σ)Sα,n−1(σ) ds dσ, t ∈ [0, τ). (8)

Denote, for every T ∈ (0, τ) and p ∈ ~, KT,p := maxt∈[0,T ] p(C
−1B(t)) and FT,p :=

p(C−1f(0)) +
∫ T

0
e−ωsp((C−1f)′(s)) ds. Then, for every p ∈ ~, we have:

p
(
u(t, f)) ≤MeωtEα

(
MKT,pt

α
)
FT,p, t ∈ [0, T ]

and

p
(
u(t, f)− Sα,0(t)

)
≤Meωt

(
Eα
(
MKT,pt

α
)
− 1
)
FT,p, t ∈ [0, T ].

In [8, Chapter III], A. Favini and A. Yagi have analyzed a class of infinitely
differentiable semigroups generated by multivalued linear operators. Motivated by
their research, we introduce the following definition (for the sake of convenience,
we shall work only in Banach spaces).
Definition 2 Suppose that (E, ‖·‖) is a Banach space, α > 0, ζ ∈ (0, 1), 0 < τ ≤ ∞,
A is an MLO in E, C ∈ L(E) is injective and CA ⊆ AC. Then it is said that a
strongly continuous operator family (R(t))t∈(0,τ) ⊆ L(E) is a (gα, C)-regularized

resolvent family of growth order ζ, with a subgenerator A, iff the family {tζR(t) :
t ∈ (0, τ)} ⊆ L(E) is bounded, as well as that R(t)C = CR(t), R(t)A ⊆ AR(t)
(t ∈ (0, τ)) and

t∫
0

gα(t− s)R(s)y ds = R(t)x− Cx, whenever t ∈ (0, τ) and (x, y) ∈ A.

It directly follows from definition that, for every ν > ζ, the operator family
((gν ∗R)(t))t∈[0,τ) is a gν-times integrated (gα, C)-regularized resolvent family with
a subgenerator A.
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Consider now the following abstract integral Volterra inclusion:

u(t, f) ∈ f(t)+A
t∫

0

gα(t−s)u(s, f) ds+

t∫
0

gα(t−s)B(s)u(s, f) ds, t ∈ (0, τ), (9)

where B(·) ∈ C([0, τ) : L(E)) and f ∈ C((0, τ) : E). By a solution of (9) we mean
any continuous function u ∈ C((0, τ) : E) such that the mapping t 7→ u(t, f),
t ∈ (0, τ) is locally integrable at the point t = 0 and there exists a continuous

section uA,α,f (t) ∈ secc(A
∫ t

0
gα(t − s)u(s, f) ds) for t ∈ (0, τ), with the property

that u(t, f) = f(t) + uA,α,f (t) +
∫ t

0
gα(t− s)B(s)u(s, f) ds, t ∈ (0, τ).

The subsequent theorem is very similar to [3, Theorem 2.26] and [14, Theorem
2.6.46(i)]. For the sake of clarity, we will include the proof.
Theorem 5 Suppose α ≥ 1, M ≥ 1, ω ≥ 0 and A is a closed subgenerator of a
(local) (gα, C)-regularized resolvent family (Sα(t))t∈(0,τ) of growth order ζ ∈ (0, 1),
satisfying that ‖gζ+1(t)Sα(t)‖ ≤ Meωt, t ∈ (0, τ) and that (1) holds for t ∈ (0, τ)
with R(t) and a(t) replaced by Sα(t) and gα(t), respectively. Let (B(t))t∈[0,τ) ⊆
L(E), R(B(t)) ⊆ R(C), t ∈ [0, τ) and C−1B(·) ∈ C([0, τ) : L(E)). Assume that
t 7→ C−1f(t), t ∈ [0, τ) is a continuous E-valued mapping such that the mapping
t 7→ Sα,0(t), defined by (7), is a solution of problem

v(t, f) ∈ f(t) +A
t∫

0

gα(t− s)v(s, f) ds, t ∈ (0, τ)

and satisfies ‖gζ+1(t)Sα,0(t)‖ ≤ Meωt, t ∈ (0, τ) (cf. [8, Theorem 3.7-Theorem
3.13] for more details). Then there exists a unique solution u(t, f) of the abstract
integral Volterra inclusion (6) on the interval (0, τ). Moreover, the solution u(t, f)
is given by u(t, f) :=

∑∞
n=0 Sα,n(t), t ∈ (0, τ), where we define Sα,n(t) for t ∈ (0, τ)

recursively by (8). Denote, for every T ∈ (0, τ), KT := maxt∈[0,T ] ‖C−1B(t)‖. Then
there exists a constant cα,γ > 0 such that:

‖u(t, f)‖ ≤ cα,γeωtt−ηEα−ζ,1−ζ
(
MKT t

α−ζ), t ∈ (0, T ] (10)

and∥∥u(t, f)− Sα,0(t)
∥∥ ≤ cα,γeωtt−η(Eα−ζ,1−ζ(MKT t

α−ζ)− 1
)
, t ∈ (0, T ]. (11)

Proof. It is very simple to prove that there exists a constant cα,γ > 0 such that:

‖Sα,n(t)‖ ≤Mn+1Kn
T e

ωt
(
gη+1(t)

)−1 t(α−η)n

Γ
(
(α− η)n+ 1− η

) , t ∈ (0, T ], n ∈ N0,

which implies that the series
∑∞
n=0 Sα,n(t) converges uniformly on compact subsets

of [ε, T ] and (10)-(11) hold (0 < ε < T ). Clearly, u(t, f) = Sα,0(t) +
∫ t

0
(gα−1 ∗
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Sα)(t− s)C−1B(s)u(s, f) ds, t ∈ [0, T ]. With the help of Lemma 1, this implies

u(t, f) ∈ f(t) +A
t∫

0

gα(t− s)v(s, f) ds+
[
gα−1 ∗ Sα ∗ C−1B(·)u(·, f)

]
(t)

∈ f(t) +A
t∫

0

gα(t− s)v(s, f) ds+A
t∫

0

gα(t− s)
(
gα−1 ∗ Sα ∗ C−1B(·)u(·, f)

)
(s) ds

+
[
gα−1 ∗ C ∗ C−1B(·)u(·, f)

]
(t)

= f(t) +A
t∫

0

gα(t− s)u(s, f) ds+

t∫
0

gα(t− s)B(s)u(s, f) ds, t ∈ (0, τ).

Therefore, u(t, x) is a solution of (6). Since the variation of parameters formula
holds in our framework, the uniqueness of solutions follows similarly as in the proof
of [3, Theorem 2.26].

We close the paper with the following illustrative example.
Example 3

(i) It is clear that Theorem 5 can be applied in the analysis of a great number
of the abstract degenerate Cauchy problems of first order appearing in
[8, Chapter III] (applications can be also made to some time-oscillation
degenerate equations for which the range of possible values of corresponding
Caputo fractional derivative depends directly on the value of constant c > 0
in condition [8, (P), p. 47], provided that α = 1 in (P)). For example, we
can consider the following time-dependent perturbation of the Poisson heat
equation in the space E = Lp(Ω):

(P ) :


∂
∂t [m(x)v(t, x)] = (∆ + b)v(t, x) +m(x)B(t)v(t, x), t ≥ 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rn with smooth boundary, b > 0, m(x) ≥ 0
a.e. x ∈ Ω, m ∈ L∞(Ω), 1 < p <∞ and B ∈ C([0,∞) : L(E)).

(ii) Suppose that A, B and C are three closed linear operators in E, D(B) ⊆
D(A) ∩ D(C), B−1 ∈ L(E) and the conditions [8, (6.4)-(6.5)] hold with
certain numbers c > 0 and 0 < β ≤ α ≤ 1. In [8, Chapter VI], the second
order differential equation

d

dt

(
Cu′(t)

)
+Bu′(t) +Au(t) = f(t), t > 0,

has been considered by the usual converting into the first order matricial
system

d

dt
Mz(t) = Lz(t) + F (t), t > 0,

where

M =

[
I O
O C

]
, L =

[
O I
−A −B

]
and F (t) =

[
0
f(t)

]
(t > 0).
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The argumentation contained in the proof of [8, Theorem 6.1] shows that
the multivalued linear operator L[D(B)]×E(M[D(B)]×E)−1 generates a (g1, I)-
regularized resolvent family (S1(t))t>0 of growth order ζ = ((1 − β)/α) in
the pivot space [D(B)]×E, satisfying additionally that there exists ω ≥ 0
with the property that ‖gζ+1(t)S1(t)‖ ≤ Meωt, t > 0. Assuming that the
mappings t 7→ B1,3(t) ∈ L([D(B)]), t ≥ 0 and t 7→ B2,4(t) ∈ L(E), t ≥ 0
are continuous, Theorem 5 is susceptible to applications so that we are in a
position to consider the-wellposedness of the following system of equations:

u′1(t) = u2(t) +B1(t)u1(t) +B2(t)u2(t) + f1(t), t > 0;

d

dt

(
Cu2(t)

)
= −Au1(t)−Bu2(t) +B3(t)u1(t) +B4(t)u2(t) + f2(t), t > 0.

Many concrete examples of applications can be found in [8, Section 6.2].
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