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SOME APPLICATION OF A POISSON DISTRIBUTION SERIES

ON SUBCLASSES OF UNIVALENT FUNCTIONS

R. M. EL-ASHWAH AND W. Y. KOTA

Abstract. In this paper, we introduce a power series with coefficients are the

probabilities of Poisson distribution and obtain sufficient conditions for this
power series and some related series to be in various subclasses of analytic
functions. Also, we investigate several mapping properties involving these

subclasses.

1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}, and let S be
the subclass of all functions in A, which are univalent. For g(z) ∈ A of the form

g(z) = z +
∞∑

n=2

bnz
n, (2)

the Hadamard product (or convolution) of two power series f(z) and g(z) is given
by (see [1])

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n = (g ∗ f)(z).

and the integral convolution is defined by (see [1]):

(f ~ g)(z) = z +

∞∑
n=2

anbn
n

zn = (g ~ f)(z).

Definition 1.1. For two functions f(z) and g(z) analytic in U, we say that the
function f(z) is subordinate to g(z) in U and written f(z) ≺ g(z), if there exists
a Schwarz function w(z), analytic in U with w(0) = 0 and w(z) < 1 such that

2010 Mathematics Subject Classification. for example 30C45, 30C50.
Key words and phrases. Poisson distribution series, Analytic functions, Hadamard product,

Starlike function, Integral convolution.
Submitted March 19, 2016.

167



168 R. M. EL-ASHWAH AND W. Y. KOTA JFCA-2018/9(1)

f(z) = g(w(z)) (z ∈ U). Furthermore, if the function g(z) is univalent in U, then
we have the following equivalence (see [7]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let S∗(α) and K(α) denote the subclasses of starlike and convex functions of
order α, respectively. We note that S∗(0) = S∗ and K(0) = K, the subclasses of
starlike and convex functions (see [6, 8, 10, 12, 13, 14] and [17]).

Definition 1.2. ([2]) For 0 ≤ α < 1, β ≥ 0, −1 ≤ B < A ≤ 1, and g(z) is given
by (2), we denote S(f, g;A,B;α, β) the subclass of S consisting of functions of the
form (1) and satisfying:

z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

∣∣∣∣ ≺ (1− α)
1 +Az

1 +Bz
+ α.

Or equivalently,∣∣∣∣∣∣
z(f∗g)′(z)
(f∗g)(z) − β

∣∣∣ z(f∗g)′(z)(f∗g)(z) − 1
∣∣∣− 1

B
[
z(f∗g)′(z)
(f∗g)(z) − β

∣∣∣ z(f∗g)′(z)(f∗g)(z) − 1
∣∣∣]− [B + (A−B)(1− α)]

∣∣∣∣∣∣ < 1.

We note that:

(i): S(f, g;A,B;α, 0) = S(f, g;A,B;α)

=

f(z) ∈ S :

∣∣∣∣∣∣
z(f∗g)′(z)
(f∗g)(z) − 1

B z(f∗g)′(z)
(f∗g)(z) − [B + (A−B)(1− α)]

∣∣∣∣∣∣ < 1 (z ∈ U)

 ;

(ii): S(f, g; γ,−γ;α, 0) = S(f, g; γ, α)

=

f(z) ∈ S :

∣∣∣∣∣∣
z(f∗g)′(z)
(f∗g)(z) − 1

z(f∗g)′(z)
(f∗g)(z) + 1− 2α

∣∣∣∣∣∣ < γ (0 < γ ≤ 1; z ∈ U)

 ;

(iii): S(f, z
1−z ;A,B;α, β) = SS∗(f ;A,B;α, β)∣∣∣∣∣∣

zf ′(z)
f(z) − β

∣∣∣ zf ′(z)
f(z) − 1

∣∣∣− 1

B
[
zf ′(z)
f(z) − β

∣∣∣ zf ′(z)
f(z) − 1

∣∣∣]− [B + (A−B)(1− α)]

∣∣∣∣∣∣ < 1;

(iv): S(f, z
(1−z)2 ;A,B;α, β) = SK(f ;A,B;α, β)∣∣∣∣∣∣

zf ′′(z)
f ′(z) − β

∣∣∣ zf ′′(z)
f ′(z) − 1

∣∣∣− 1

B
[
zf ′′(z)
f ′(z) − β

∣∣∣ zf ′′(z)
f ′(z) − 1

∣∣∣]− [B + (A−B)(1− α)]

∣∣∣∣∣∣ < 1;

(v): S(f, z
1−z ; 1,−1;α, β) = β − ST (α) and S(f, z

(1−z)2 ; 1,−1;α, β) = β −
UCV (α) (see Kanas and Wisniowska [4, 5]);

(vi): S(f, z
1−z ; 1,−1;α, 0) = S∗(α) and S(f, z

(1−z)2 ; 1,−1;α, 0) = K(α) (see

Silverman [15]).

Definition 1.3. For δ < 1 and |θ| ≤ π
2 , we define the class R(θ, δ) which consists

of functions g(z) of the form (2) and satisfying the condition:

ℜ[eiθ(g′(z)− δ)] > 0 (z ∈ U).
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Clearly, we have R(θ, δ) ⊂ S (0 ≤ δ < 1). Furthermore, if the function g(z) of the
form (2) belongs to the class R(θ, δ), then

|bn| ≤
2(1− δ) cos θ

n
(n ≥ 2).

The class R(θ, δ) studied by Kanas and srivastava [3].

Very recently, Porwal [9] introduce a power series whose coefficients are proba-
bilities of Poisson distribution:

H(m; z) = z +
∞∑

n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U). (3)

We note that, by ratio test, the radius of convergence of the above series is infinity.
Also, we define the function

ψ(m,µ; z) = (1− µ)H(m; z) + µz(H(m; z))′

= z +
∞∑

n=2

[1 + µ(n− 1)]
mn−1

(n− 1)!
e−mzn (µ ≥ 0).

Also, we define the linear operator Tm(f ∗ g) : A → A by the convolution as

[Tm(f ∗ g)](z) = [H(m; z)] ∗ [(f ∗ g)(z)] = z +

∞∑
n=2

mn−1

(n− 1)!
anbne

−mzn,

and the linear operator Pm(f ∗ g) : A → A by the integral convolution as

[Pm(f ∗ g)](z) = [H(m; z)]~ [(f ∗ g)(z)] = z +
∞∑

n=2

mn−1

(n− 1)!

anbn
n

e−mzn.

Also, we define the linear operator Kµ(f ∗ g) : A → A by the convolution as

[Kµ(f ∗ g)](z) = [ψ(µ,m; z)] ∗ [(f ∗ g)(z)] = z +

∞∑
n=2

[1 + µ(n− 1)]
mn−1

(n− 1)!
anbne

−mzn,

and the linear operator Nµ(f ∗ g) : A → A by the integral convolution as

[Nµ(f ∗ g)](z) = [ψ(µ,m; z)]~ [(f ∗ g)(z)] = z +
∞∑

n=2

[1 + µ(n− 1)]
mn−1

(n− 1)!

anbn
n

e−mzn.

The main objective of this paper is to obtain sufficient conditions for the power
series with coefficients are the probabilities of Poisson distribution given by (3) and
some related series to be in various subclasses of analytic functions.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that 0 ≤ α < 1,
β ≥ 0, δ < 1, −1 ≤ B < A ≤ 1, |θ| ≤ π

2 and m > 0. To establish our results, we
need the following Lemma.

Lemma 2.1. ([2], Theorem 1) A sufficient condition for f(z) defined by (1) to be
in the class S(f, g;A,B;α, β) is

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]|anbn| ≤ (A−B)(1− α).
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Theorem 2.1. If g(z) ∈ R(θ, δ) and the inequality

(1−B)(1+β)(1−e−m)+[(A−B)(1− α)− (1−B)(1 + β)]
1

m
(1−e−m−me−m) ≤ (A−B)(1− α)

2(1− δ) cos θ
,

(4)
satisfied, then H(m; z) is in the class S(H, g;A,B;α, β).

Proof. Let g(z) of the form (2) belong to the class R(θ, δ). According to Lemma
2.1, we need only prove that

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]|bn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1− α).

Thus

T =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
mn−1

(n− 1)!
e−m 2(1− δ) cos θ

n
,

= 2(1− δ) cos θe−m

[
(1−B)(1 + β)

∞∑
n=2

(n− 1)
mn−1

n!
+ (A−B)(1− α)

∞∑
n=2

mn−1

n!

]
,

= 2(1− δ) cos θe−m

[
(1−B)(1 + β)

{ ∞∑
n=1

mn

n!
− 1

m

∞∑
n=2

mn

n!

}
+ (A−B)(1− α)

1

m

∞∑
n=2

mn

n!

]
,

= 2(1− δ) cos θe−m

[
(1−B)(1 + β)(em − 1) + {(A−B)(1− α)− (1−B)(1 + β)} 1

m
(em − 1−m)

]
,

= 2(1− δ) cos θ

[
(1−B)(1 + β)(1− e−m) + [(A−B)(1− α)− (1−B)(1 + β)]

1

m
(1− e−m −me−m)

]
,

and the last expression is bounded above by (A − B)(1 − α) if (4) holds. This
completes the proof of Theorem 2.1. �

Corollary 2.1. Let β = 0, in Theorem 2.1, then H(m; z) is in the class S(H, g;A,B;α),
if the inequality

(1−B)(1−e−m)+[(A−B)(1− α)− (1−B)]
1

m
(1−e−m−me−m) ≤ (A−B)(1− α)

2(1− δ) cos θ
,

is satisfied.

Corollary 2.2. Let β = 0, A = γ and B = −γ in Theorem 2.1, then H(m; z) is
in the class S(H, g; γ, α), if the inequality

(1 + γ)(1− e−m) + [2γ(1− α)− (1 + γ)]
1

m
(1− e−m −me−m) ≤ γ(1− α)

(1− δ) cos θ
,

is satisfied.

Remark 2.1.

(i): Let A = 1, and B = −1 in Theorem 2.1, we give the result obtained by
Srivastava and Porwal [16] Theorem 2.2 with |τ | = cos θ and γ = 1.

(ii): Let γ = 1 in Corollary 2.2, we give the result obtained by Porwal and
Kumar [11] Theorem 3.2 with |τ | = cos θ, A = 1− 2δ, λ = 0 and B = −1.
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Theorem 2.2. If g(z) ∈ R(θ, δ) and the inequality

[(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)](1− e−m) + [(1− µ)(A−B)(1− α)

− (1− µ)(1−B)(1 + β)]
1

m
(1− e−m −me−m) + µm(1−B)(1 + β) ≤ (A−B)(1− α)

2(1− δ) cos θ
,

(5)

satisfied, then ψ(µ,m; z) is in the class S(ψ, g;A,B;α, β).

Proof. Let g(z) of the form (2) belong to the class R(θ, δ). According to Lemma
2.1, we need only prove that

∞∑
n=2

[(1−B)(1+β)(n−1)+(A−B)(1−α)][1+µ(n−1)]|bn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1−α).

Thus,

T1 =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)][1 + µ(n− 1)]
mn−1

(n− 1)!
e−m 2(1− δ) cos θ

n
,

= 2(1− δ) cos θe−m[{(1−B)(1 + β) + µ(A−B)(1− α)}
∞∑

n=2

(n− 1)
mn−1

n!

+ µ(1−B)(1 + β)

∞∑
n=2

(n2 − 2n+ 1)
mn−1

n!
+ (A−B)(1− α)

∞∑
n=2

mn−1

n!
],

= 2(1− δ) cos θe−m[{(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)}
∞∑

n=2

mn−1

(n− 1)!

+ {(1− µ)(A−B)(1− α)− (1− µ)(1−B)(1 + β)} 1

m

∞∑
n=2

mn

n!
+ µm(1−B)(1 + β)

∞∑
n=2

mn−2

(n− 2)!
],

= 2(1− δ) cos θe−m[{(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)}
∞∑

n=1

mn

n!

+ {(1− µ)(A−B)(1− α)− (1− µ)(1−B)(1 + β)} 1

m

∞∑
n=2

mn

n!
+ µm(1−B)(1 + β)

∞∑
n=0

mn

n!
],

= 2(1− δ) cos θ[(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)](1− e−m) + [(1− µ)(A−B)(1− α)

− (1− µ)(1−B)(1 + β)]
1

m
(1− e−m −me−m) + µm(1−B)(1 + β),

and the last expression is bounded above by (A − B)(1 − α) if (5) holds. This
completes the proof of Theorem 2.2. �

Corollary 2.3. Let β = 0 in Theorem 2.2, then ψ(µ,m; z) is in the class S(ψ, g;A,B;α),
if the inequality

[(1− µ)(1−B) + µ(A−B)(1− α)](1− e−m) + [(1− µ)(A−B)(1− α)

− (1− µ)(1−B)]
1

m
(1− e−m −me−m) + µm(1−B) ≤ (A−B)(1− α)

2(1− δ) cos θ
,

is satisfied.
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Corollary 2.4. Let β = 0, A = γ and B = −γ in Theorem 2.2, then ψ(µ,m; z) is
in the class S(ψ, g; γ, α), if the inequality

[(1− µ)(1 + γ) + 2γµ(1− α)](1− e−m) + [2γ(1− µ)(1− α)

− (1− µ)(1 + γ)]
1

m
(1− e−m −me−m) + µm(1 + γ) ≤ γ(1− α)

(1− δ) cos θ
,

is satisfied.

Remark 2.2. Let γ = 1 in Corollary 2.4, we give the result obtained by Porwal
and Kumar [11] Theorem 3.2 with |τ | = cos θ, A = 1− 2δ, B = −1 and λ = 0.

Theorem 2.3. If the inequality

em
[
(1−B)(1 + β)m2 + [(A−B)(1− α) + 2(1−B)(1 + β)]m

]
≤ (A−B)(1− α),

(6)
is true, then [Tm(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α, β).

Proof. According to Lemma 2.1, we need only prove that
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]|anbn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1− α),

and using the fact |anbn| ≤ n for (f ∗ g) ∈ S (or S∗), then

T2 =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]n
mn−1

(n− 1)!
e−m,

= (1−B)(1 + β)e−m
∞∑

n=2

(n− 1)(n− 2)
mn−1

(n− 1)!

+ [2(1−B)(1 + β) + (A−B)(1− α)]e−m
∞∑

n=2

(n− 1)
mn−1

(n− 1)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= (1−B)(1 + β)m2e−m
∞∑

n=0

mn

n!
+ [2(1−B)(1 + β) + (A−B)(1− α)]me−m

∞∑
n=0

mn

n!

+ (A−B)(1− α)e−m

[ ∞∑
n=0

mn

(n)!
− 1

]
,

= (1−B)(1 + β)(m2 + 2m) + (A−B)(1− α)(m+ 1− e−m),

and the last expression is bounded above by (A − B)(1 − α) if (6) holds. This
completes the proof of Theorem 2.3. �

Corollary 2.5. Let β = 0 in Theorem 2.3, then [Tm(f ∗ g)](z) maps (f ∗ g) ∈ S
(or S∗) to S(f, g;A,B;α), if the inequality

em
[
(1−B)m2 + [(A−B)(1− α) + 2(1−B)]m

]
≤ (A−B)(1− α),

is true.

Corollary 2.6. Let β = 0, A = γ and B = −γ in Theorem 2.3, then [Tm(f ∗g)](z)
maps (f ∗ g) ∈ S (or S∗) to S(f, g; γ;α), if the inequality

em
[
(1 + γ)m2 + [2γ(1− α) + 2(1 + γ)]m

]
≤ 2γ(1− α),

is true.
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Theorem 2.4. If the inequality

(1−B)(1 + β)emm ≤ (A−B)(1− α), (7)

is true, then

(1) [Tm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α, β),
(2) [Pm(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α, β).

Proof. 1. According to Lemma 2.1, we need only prove that

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]|anbn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1− α),

and using the fact |anbn| ≤ 1 for (f ∗ g) ∈ K, then

l =

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
mn−1

(n− 1)!
e−m,

= (1−B)(1 + β)e−m
∞∑

n=2

(n− 1)
mn−1

(n− 1)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= (1−B)(1 + β)me−m
∞∑

n=2

mn−2

(n− 2)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= (1−B)(1 + β)me−m
∞∑

n=0

mn

n!
+ (A−B)(1− α)e−m

[ ∞∑
n=0

mn

n!
− 1

]
,

= (1−B)(1 + β)m+ (A−B)(1− α)[1− e−m],

and the last expression is bounded above by (A−B)(1− α) if (7) holds.
2. The proof is similar to above with using the fact that |anbn| ≤ n, so we omit it.
This completes the proof of Theorem 2.4. �

Corollary 2.7. Let β = 0 in Theorem 2.4. If the inequality

(1−B)mem ≤ (A−B)(1− α),

is true, then

(1) [Tm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α),
(2) [Pm(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α).

Corollary 2.8. Let β = 0, A = γ, B = −γ in Theorem 2.4. If the inequality

(1 + γ)mem ≤ 2γ(1− α),

is true, then

(1) [Tm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g; γ;α),
(2) [Pm(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; γ;α).

Remark 2.3.

(I): Let g(z) = z
1−z and γ = 1 in Corallary 2.8, we give the result obtained

by Porwal [9] Theorem 3 with λ = 0,
(II): Let g(z) = z

1−z and γ = 1 in Corallary 2.8, we give the result obtained

by Porwal and Kumar [11] Theorem 2.1 with λ = 0.
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Theorem 2.5. If the inequality

(1−B)(1+β)(1−e−m)+[(A−B)(1−α)−(1−B)(1+β)]
1

m
(1−e−m−me−m) ≤ (A−B)(1−α),

(8)
is true, then [Pm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α, β).

Proof. According to Lemma 2.1, we need only prove that

∞∑
n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
|anbn|
n

mn−1

(n− 1)!
e−m ≤ (A−B)(1− α),

and using the fact |anbn| ≤ 1 for (f ∗ g) ∈ K, then

T3 =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)]
mn−1

n!
e−m,

= (1−B)(1 + β)e−m
∞∑

n=2

n
mn−1

n!
+ [(A−B)(1− α)− (1−B)(1 + β)]e−m

∞∑
n=2

mn−1

n!
,

= (1−B)(1 + β)e−m
∞∑

n=2

mn−1

(n− 1)!
+ [(A−B)(1− α)− (1−B)(1 + β)]e−m

∞∑
n=2

mn−1

n!
,

= (1−B)(1 + β)e−m
∞∑

n=1

mn

n!
+ [(A−B)(1− α)− (1−B)(1 + β)]

e−m

m

∞∑
n=2

mn

n!
,

= (1−B)(1 + β)e−m

[ ∞∑
n=0

mn

n!
− 1

]
+ [(A−B)(1− α)− (1−B)(1 + β)]

e−m

m

[ ∞∑
n=0

mn

n!
− 1−m

]
,

= (1−B)(1 + β)[1− e−m] + [(A−B)(1− α)− (1−B)(1 + β)]
1

m
[1− e−m −me−m],

and the last expression is bounded above by (A − B)(1 − α) if (8) holds. This
completes the proof of Theorem 2.5. �

Corollary 2.9. Let β = 0 in Theorem 2.5. If the inequality

(1−B)(1−e−m)+[(A−B)(1−α)−(1−B)]
1

m
(1−e−m−me−m) ≤ (A−B)(1−α),

is true, then [Pm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α).

Corollary 2.10. Let β = 0, A = γ, B = −γ in Theorem 2.5. If the inequality

(1 + γ)(1− e−m) + [2γ(1− α)− (1 + γ)]
1

m
(1− e−m −me−m) ≤ 2γ(1− α),

is true, then [Pm(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g; γ;α).

Theorem 2.6. If the inequality

em[µ(1−B)(1 + β)m3 + [µ(A−B)(1− α) + (4µ+ 1)(1−B)(1 + β)]m2

+ [2(µ+ 1)(1−B)(1 + β) + (2µ+ 1)(A−B)(1− α)]m] ≤ (A−B)(1− α),

(9)

is true, then [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α, β).
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Proof. According to Lemma 2.1, we need only prove that
∞∑

n=2

[(1−B)(1+β)(n−1)+(A−B)(1−α)][1−µ(n−1)]|anbn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1−α),

and using the fact |anbn| ≤ n for (f ∗ g) ∈ S (or S∗), then

T4 =
∞∑

n=2

n[(1−B)(1 + β)(n− 1) + (A−B)(1− α)][1− µ(n− 1)]
mn−1

(n− 1)!
e−m,

= µ(1−B)(1 + β)e−m
∞∑

n=2

(n− 1)(n− 2)(n− 3)
mn−1

(n− 1)!
+ [µ(A−B)(1− α)

+ (4µ+ 1)(1−B)(1 + β)]e−m
∞∑

n=2

(n− 1)(n− 2)
mn−1

(n− 1)!
+ [2(µ+ 1)(1−B)(1 + β)

+ (1 + 2µ)(A−B)(1− α)]e−m
∞∑

n=2

(n− 1)
mn−1

(n− 1)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= µ(1−B)(1 + β)m3e−m
∞∑

n=4

mn−4

(n− 4)!
+ [µ(A−B)(1− α)

+ (4µ+ 1)(1−B)(1 + β)]m2e−m
∞∑

n=3

mn−3

(n− 3)!
+ [2(µ+ 1)(1−B)(1 + β)

+ (1 + 2µ)(A−B)(1− α)]me−m
∞∑

n=2

mn−2

(n− 2)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= µ(1−B)(1 + β)m3e−m
∞∑

n=0

mn

n!
+ [µ(A−B)(1− α) + (4µ+ 1)(1−B)(1 + β)]m2e−m

∞∑
n=0

mn

n!
+ [2(µ+ 1)(1−B)(1 + β) + (1 + 2µ)(A−B)(1− α)]me−m

∞∑
n=0

mn

n!

+ (A−B)(1− α)e−m

[ ∞∑
n=0

mn

n!
− 1

]
,

= µ(1−B)(1 + β)m3 + [µ(A−B)(1− α) + (4µ+ 1)(1−B)(1 + β)]m2

+ [2(µ+ 1)(1−B)(1 + β) + (1 + 2µ)(A−B)(1− α)]m+ (A−B)(1− α)[1− e−m],

and the last expression is bounded above by (A − B)(1 − α) if (9) holds. This
completes the proof of Theorem 2.6. �
Corollary 2.11. Let β = 0 in Theorem 2.6. If the inequality

em[µ(1−B)m3 + [µ(A−B)(1− α) + (4µ+ 1)(1−B)]m2 + [2(µ+ 1)(1−B)

+ (2µ+ 1)(A−B)(1− α)]m] ≤ (A−B)(1− α),

is true, then [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α).

Corollary 2.12. Let β = 0, A = γ, B = −γ in Theorem 2.6. If the inequality

em[µ(1 + γ)m3+[2µγ(1− α) + (4µ+ 1)(1 + γ)]m2 + [2(µ+ 1)(1 + γ)

+ 2(2µ+ 1)γ(1− α)]m] ≤ 2γ(1− α),

is true, then [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; γ;α).
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Remark 2.4.

(i): Let g(z) = z
(1−z)2 and γ = 1 in Corollary 2.12, we give the result obtained

by Porwal and Kumar [11] Theorem 2.2 with λ = µ,
(ii): Let g(z) = z

(1−z)2 , A = 1, B = −1, and µ = 1 in Theorem 2.6, we give

the result obtained by Srivastava and Porwal [16] Theorem 2.5.

Theorem 2.7. If the inequality

em[µ(1−B)(1+β)m2+[µ(A−B)(1−α)+(1+µ)(1−B)(1+β)]m] ≤ (A−B)(1−α),
(10)

is true, then

(i): [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α, β),
(ii): [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α, β).

Proof. (i) According to Lemma 2.1, we need only prove that

∞∑
n=2

[(1−B)(1+β)(n−1)+(A−B)(1−α)][1+µ(n−1)]|anbn|
mn−1

(n− 1)!
e−m ≤ (A−B)(1−α),

and using the fact |anbn| ≤ 1 for (f ∗ g) ∈ K, then

T5 =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)][1 + µ(n− 1)]
mn−1

(n− 1)!
e−m,

= µ(1−B)(1 + β)e−m
∞∑

n=2

(n− 1)(n− 2)
mn−1

(n− 1)!
+ [µ(A−B)(1− α) + (1 + µ)(1 + β)(1−B)]

e−m
∞∑

n=2

(n− 1)
mn−1

(n− 1)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= µ(1−B)(1 + β)e−m
∞∑

n=3

mn−1

(n− 3)!
+ [µ(A−B)(1− α) + (1 + µ)(1 + β)(1−B)]

e−m
∞∑

n=2

mn−1

(n− 2)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= µ(1−B)(1 + β)m2e−m
∞∑

n=3

mn−3

(n− 3)!
+ [µ(A−B)(1− α) + (1 + µ)(1 + β)(1−B)]

me−m
∞∑

n=2

mn−2

(n− 2)!
+ (A−B)(1− α)e−m

∞∑
n=2

mn−1

(n− 1)!
,

= µ(1−B)(1 + β)m2e−m
∞∑

n=0

mn

n!
+ [µ(A−B)(1− α) + (1 + µ)(1 + β)(1−B)]

me−m
∞∑

n=0

mn

n!
+ (A−B)(1− α)e−m

∞∑
n=1

mn

n!
,

= µ(1−B)(1 + β)m2 + [µ(A−B)(1− α) + (1 + µ)(1 + β)(1−B)]m+ (A−B)(1− α)(1− e−m),

and the last expression is bounded above by (A−B)(1− α) if (10) holds.
(ii) The proof is similar to above with using the fact that |anbn| ≤ n, so we omit
it. This completes the proof of Theorem 2.7. �
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Corollary 2.13. Let β = 0 in Theorem 2.7. If the inequality

em[µ(1−B)m2 + [µ(A−B)(1− α) + (1 + µ)(1−B)]m] ≤ (A−B)(1− α),

is true, then

(i): [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α),
(ii): [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g;A,B;α).

Corollary 2.14. Let β = 0, A = γ, B = −γ in Theorem 2.7. If the inequality

em[µ(1 + γ)m2 + [2µγ(1− α) + (1 + µ)(1 + γ)]m] ≤ 2γ(1− α),

is true, then

(i): [Kµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g; γ;α),
(ii): [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ S (or S∗) to S(f, g; γ;α).

Remark 2.5.

(I): Let g(z) = z
1−z and γ = 1 in Corollary 2.14, we give the result obtained

by Porwal and Kumar [11] Theorem 2.1,
(II): Let g(z) = z

1−z , A = 1, B = −1, and µ = 1 in Theorem 2.7, we give us

the result obtained by Srivastava and Porwal [16] Theorem 2.6.

Theorem 2.8. If the inequality

µ(1−B)(1 + β)m+ [µ(A−B)(1− α) + (1− µ)(1−B)(1 + β)](1− e−m)

+ [(1− µ)(A−B)(1− α)− (1− µ)(1−B)(1 + β)]
1

m
(1− e−m −me−m) ≤ (A−B)(1− α),

(11)

is true, then [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α, β).

Proof. According to Lemma 2.1, we need only prove that

∞∑
n=2

[(1−B)(1+β)(n−1)+(A−B)(1−α)][1+µ(n−1)]

∣∣∣∣anbnn
∣∣∣∣ mn−1

(n− 1)!
e−m ≤ (A−B)(1−α),

and using the fact |anbn| ≤ 1 for (f ∗ g) ∈ K, then

T6 =
∞∑

n=2

[(1−B)(1 + β)(n− 1) + (A−B)(1− α)][1 + µ(n− 1)]
mn−1

n!
e−m,

= [(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)]e−m
∞∑

n=2

n
mn−1

n!

+ [(1− µ)(A−B)(1− α) + (µ− 1)(1 + β)(1−B)]e−m
∞∑

n=2

mn−1

n!

+ µ(1−B)(1 + β)e−m
∞∑

n=2

n(n− 1)
mn−1

n!
,
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= [(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)]e−m
∞∑

n=2

mn−1

(n− 1)!

+ [(1− µ)(A−B)(1− α) + (µ− 1)(1 + β)(1−B)]e−m
∞∑

n=2

mn−1

n!

+ µ(1−B)(1 + β)e−m
∞∑

n=2

mn−1

(n− 2)!
,

= [(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)]e−m
∞∑

n=1

mn

n!

+ [(1− µ)(A−B)(1− α) + (µ− 1)(1 + β)(1−B)]
e−m

m

∞∑
n=2

mn

n!

+ µ(1−B)(1 + β)me−m
∞∑

n=0

mn

n!
,

= [(1− µ)(1−B)(1 + β) + µ(A−B)(1− α)](1− e−m)

+ [(1− µ)(A−B)(1− α) + (µ− 1)(1 + β)(1−B)]
1

m
(1− e−m −me−m) + µ(1−B)(1 + β)m,

and the last expression is bounded above by (A − B)(1 − α) if (11) holds. This
completes the proof of Theorem 2.8. �
Corollary 2.15. Let β = 0 in Theorem 2.8. If the inequality

µ(1−B)m+ [µ(A−B)(1− α) + (1− µ)(1−B)](1− e−m)

+ [(1− µ)(A−B)(1− α)− (1− µ)(1−B)]
1

m
(1− e−m −me−m) ≤ (A−B)(1− α),

is true, then [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g;A,B;α).

Corollary 2.16. Let β = 0, A = γ, B = −γ in Theorem 2.8. If the inequality

µ(1 + γ)m+ [2µγ(1− α) + (1− µ)(1 + γ)](1− e−m)

+ [2(1− µ)γ(1− α)− (1− µ)(1 + γ)]
1

m
(1− e−m −me−m) ≤ 2γ(1− α),

is true, then [Nµ(f ∗ g)](z) maps (f ∗ g) ∈ K to S(f, g; γ;α).
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