THE FEKETE-SZEGO INEQUALITY FOR A CLASS OF p-VALENT FUNCTIONS

MUHAMMET KAMALİ

Abstract

In the present paper, the author considers a subclass of p-valent analytic functions of complex order which is denoted by $S_{(\lambda, p)}^{\Omega}(A, B, b)$ in the open unit disk U and gives the upper bounds for $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ when f belongs to $S_{(\lambda, p)}^{\Omega}(A, B, b)$.

1. Introduction

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z: z \in \mathrm{C},|z|<1\}$.
Let n, p be integers greater than zero; U is the open unit disc in the complex plane. Furthermore, let $A(p, n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k} z^{p+k} \tag{2}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc U. Note that $A=A(1)$.
A function $f \in A(p, n)$ is said to be in the class $S(p, n, \alpha)$ of p-valently starlike functions of order α if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad(z \in U: 0 \leq \alpha<p) \tag{3}
\end{equation*}
$$

A function $f \in A(p, n)$ is in $K(p, n, \alpha), p$-valently convex functions of order α, if it is satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad(z \in U: 0 \leq \alpha<p) \tag{4}
\end{equation*}
$$

In 1991, S. Owa [7] studied the classes $S(p, n, \alpha)$ and $K(p, n, \alpha)$.

[^0]The subclass of A consisting of univalent functions is denoted by S. In 1994, Ma and Minda [9] introduced and studied the class $S^{*}(\phi)$, consists of functions in $f \in S$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in U)
$$

V. Ravichandran et al. [8] defined a class of functions which extends the class of starlike functions of complex order in the following.

Definition 1. 8 Let $\phi(z)$ be an analytic functions with positive real part on U with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the open unit disc Uonto a region starlike with respect to 1 and symmetric with respect to the real axis.Then the class $S_{b}^{*}(\phi)$ consists of all analytic functions $f \in A$ satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z) \quad(z \in U, b \in \mathrm{C}-\{0\})
$$

The class $C_{b}(\phi)$ consists of all functions in $f \in A$ for which

$$
1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z) \quad(z \in U, b \in \mathrm{C}-\{0\})
$$

In [8], V. Ravichandran et al. consider the classes $S_{b}^{*}(\phi)$ and $C_{b}(\phi)$ which are obtained by the suitable choices of A, B and b that are in the well-known classes of $S^{*}(A, B, b)$ and $C(A, B, b)$, where

$$
\phi(z)=\frac{1+A z}{1+B z}, \quad b \in \mathrm{C}-\{0\}, \quad(-1 \leq B<A \leq 1)
$$

In [8], the following Fekete-Szegö inequality for functions in the class $S_{b}^{*}(\phi)$ is obtained.

Theorem 1. [8] Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by Equation (1) belongs to $S_{b}^{*}(\phi)$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \max \left\{1 ;\left|\frac{B_{2}}{B_{1}}+(1-2 \mu) b B_{1}\right|\right\} \tag{5}
\end{equation*}
$$

This result is sharp.
A function $f(z) \in A$ is said to be starlike functions of complex order b, that is $f(z) \in S(b)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0, \quad(z \in U, b \in \mathrm{C}-\{0\}) \tag{6}
\end{equation*}
$$

and $\frac{f(z)}{z} \neq 0$ in U. This class was introduced by Nasr and Aouf [5].
Let $S_{p}^{\lambda}(A, B, b)$ be the subclass that consists of functions $f(z) \in A(p, 1)$ that satisfy the condition

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{1}{p} \frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}-1\right) \prec \frac{1+A z}{1+B z}, \quad b \in\{\mathrm{C}-\{0\}\} \tag{7}
\end{equation*}
$$

where \prec denotes subordination, $-1 \leq B<A \leq 1$ and $z \in U$. In 2004, Shenen et al. [3] introduced the operator $D^{\lambda} f(z)$ which is the entension of Salagean operator
[4] where

$$
D^{\lambda} f(z)=D\left(D^{\lambda-1} f(z)\right)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)^{\lambda} a_{p+k} z^{p+k}
$$

with $\lambda \in \mathrm{N} \bigcup\{0\}$. Akbarally et al. [1] obtained the following Theorem 2 related to upper bounds of the Fekete-Szego functional for the class $S_{p}^{\lambda}(A, B, b)$.

Theorem 2. [1] Let $\frac{1+A z}{1+B z}=1+F_{1} z+F_{2} z^{2}+F_{3} z^{3}+\cdots$. If $f(z) \in S_{p}^{\lambda}(A, B, b)$, then for any complex number μ,

$$
\begin{align*}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| F_{1} p^{\lambda+1}}{(A-B)(p+1)^{\lambda}} \tag{8}\\
& \max \left\{1,\left|\frac{1}{(A-B)}\left\{(A+B)+\frac{2 F_{2}}{F_{1}}+2 p b F_{1}\left[\frac{(p+1)^{2 \lambda}-2 \mu[p(p+2)]^{\lambda}}{(p+1)^{2 \lambda}}\right]\right\}\right|\right\}
\end{align*}
$$

This result is sharp.
In [6], the authors introduce the following equalities for the functions $f(z) \in A(p, n)$

$$
\begin{gather*}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z\left(D^{0} f(z)\right)^{\prime}=p z^{p}+\sum_{k=n}^{\infty}(p+k) a_{p+k} z^{p+k} \\
\vdots \tag{9}\\
D^{\Omega} f(z)=D\left(D^{\Omega-1} f(z)\right)=p^{\Omega} z^{p}+\sum_{k=n}^{\infty}(p+k)^{\Omega} a_{p+k} z^{p+k}
\end{gather*}
$$

In 2011, Kamali and Sağsöz [6] define $\wp_{(\Omega, \lambda, p)} f(z): A(p, n) \rightarrow A(p, n)$ such that

$$
\begin{equation*}
\wp_{(\Omega, \lambda, p)} f(z)=\left(\frac{1}{p^{\Omega}}-\lambda\right) D^{\Omega} f(z)+\frac{\lambda}{p} z\left(D^{\Omega} f(z)\right)^{\prime} \tag{10}
\end{equation*}
$$

where $0 \leq \lambda \leq \frac{1}{p^{\Omega}}, \Omega \in \mathrm{N} \bigcup\{0\}$. A function $f(z) \in A(p, n)$ is said to be in the class $\Im(\Omega, \lambda, p, \alpha)$ if,

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z(\wp(\Omega, \lambda, p) f(z))^{\prime}}{\wp(\Omega, \lambda, p)} f(z)\right. \\
= & \operatorname{Re}\left\{\frac{z\left\{\left(\frac{1}{p^{\Omega}}+\left(\frac{1}{p}-1\right) \lambda\right)\left(D^{\Omega} f(z)\right)^{\prime}+\frac{\lambda}{p} z\left(D^{\Omega} f(z)\right)^{\prime \prime}\right\}}{\left(\frac{1}{p^{\Omega}}-\lambda\right) D^{\Omega} f(z)+\frac{\lambda}{p} z\left(D^{\Omega} f(z)\right)^{\prime}}\right\}>\alpha, \tag{11}
\end{align*}
$$

for some $\alpha(0 \leq \alpha<p), 0 \leq \lambda \leq 1 / p^{\Omega}, \Omega \in \mathrm{N} \bigcup\{0\}$ and for all $z \in U$. This class was considered and studied earlier by Kamali and Sağsöz [6].
First, we introduce the subclass by denoted $S_{(\lambda, p)}^{\Omega}(A, B, b)$ that consists of functions $f(z) \in A(p, 1)$ that satisfy the condition

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{1}{p} \cdot \frac{z\left(\wp_{(\Omega, \lambda, p)} f(z)\right)^{\prime}}{\wp_{(\Omega, \lambda, p)} f(z)}-1\right) \prec \frac{1+A z}{1+B z} \tag{12}
\end{equation*}
$$

where \prec denotes subordination, $b \in \mathrm{C}-\{0\}, A$ and B are the arbitrary fixed number, $-1 \leq B<A \leq 1$ and $z \in U$. We write $S_{(0, p)}^{\Omega}(A, B, b)=S_{p}^{\lambda}(A, B, b)$.
In the present paper, we obtain the upper bounds related to Fekete-Szegö inequality for functions in class $S_{(\lambda, p)}^{\Omega}(A, B, b)$.
2. The Fekete-Szego inequality for functions in the class $S_{(\lambda, p)}^{\Omega}(A, B, b)$

To prove our theorem, We need the following Lemma 3 by given Ma and Minda (9].
Lemma 3. 9 If $p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ is a function with positive real part, then for any complex number μ,

$$
\begin{equation*}
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\} \tag{13}
\end{equation*}
$$

and the result is sharp for functions given by $p(z)=\frac{1+z^{2}}{1-z^{2}}$ and $p(z)=\frac{1+z}{1-z}$.
Theorem 4. Let $\zeta(z)=\frac{1+A z}{1+B z}=1+\delta_{1} z+\delta_{2} z^{2}+\cdots$. If $f(z) \in S_{(\lambda, p)}^{\Omega}(A, B, b)$, then for some complex number μ,

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| p}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{p}{p+2}\right)^{\Omega}\left(\frac{\delta_{1}}{A-B}\right) \\
& \max \left\{1,\left|\frac{1}{(A-B)}\left\{\frac{2 \delta_{2}}{\delta_{1}}+2 \delta_{1} p b\left[1-\frac{2 p^{\Omega}(p+2)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right)}{\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}} \mu\right]+(A+B)\right\}\right|\right\}
\end{aligned}
$$

The result is sharp.
Proof. If $f(z) \in S_{(\lambda, p)}^{\Omega}(A, B, b)$, then there exists a Schwarz function with $w(0)=0$ and $|w|<1$, analytic in the open unit disk such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{1}{p} \cdot \frac{z\left(\wp_{(\Omega, \lambda, p)} f(z)\right)^{\prime}}{\wp_{(\Omega, \lambda, p)} f(z)}-1\right)=\zeta(w(z)) \tag{14}
\end{equation*}
$$

Let $\frac{1+A w(z)}{1+B w(z)}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$, we obtain

$$
\begin{aligned}
& 1+A w(z)=\{1+B w(z)\}\left(1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right) \Rightarrow \\
& w(z)=\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots}{(A-B)-B\left\{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right\}}
\end{aligned}
$$

and thus

$$
\begin{equation*}
w(z)=\left(\frac{c_{1}}{A-B}\right) z+\frac{1}{(A-B)}\left\{c_{2}+\frac{c_{1}^{2} B}{(A-B)}\right\} z^{2}+\cdots \tag{15}
\end{equation*}
$$

Since $\zeta(z)=1+\delta_{1} z+\delta_{2} z^{2}+\cdots$, therefore from 15

$$
\begin{equation*}
\zeta(w(z))=1+\frac{\delta_{1} c_{1}}{(A-B)} z+\frac{1}{(A-B)}\left\{\frac{B \delta_{1} c_{1}^{2}}{(A-B)}+\delta_{1} c_{2}+\frac{\delta_{2} c_{1}^{2}}{(A-B)}\right\} z^{2}+\cdots \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{1}{p} \cdot \frac{z\left(\wp_{(\Omega, \lambda, p)} f(z)\right)^{\prime}}{\wp(\Omega, \lambda, p)}-1\right)=1+h_{1} z+h_{2} z^{2}+\cdots \tag{17}
\end{equation*}
$$

If following equality is used and compared for z and z^{2}, we obtain

$$
\begin{gather*}
1+\frac{\delta_{1} c_{1}}{(A-B)} z+\frac{1}{(A-B)}\left\{\frac{B \delta_{1} c_{1}^{2}}{(A-B)}+\delta_{1} c_{2}+\frac{\delta_{2} c_{1}^{2}}{(A-B)}\right\} z^{2}+\cdots \\
=1+h_{1} z+h_{2} z^{2}+\cdots \Rightarrow \\
h_{1}=\frac{\delta_{1} c_{1}}{A-B} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
h_{2}=\frac{B \delta_{1} c_{1}^{2}}{(A-B)^{2}}+\frac{\delta_{1} c_{2}}{(A-B)}+\frac{\delta_{2} c_{1}^{2}}{(A-B)^{2}} \tag{19}
\end{equation*}
$$

From 17),

$$
\begin{aligned}
& 1+\frac{1}{b}\left(\frac{1}{p} \frac{p z^{p}+\sum_{k=1}^{\infty} \frac{(k+p)^{\Omega+1}}{p^{\Omega}}\left(1+\lambda k p^{\Omega-1}\right) a_{k+p} z^{k+p}}{z^{p}+\sum_{k=1}^{\infty} \frac{(k+p)^{\Omega}}{p^{\Omega}}\left(1+\lambda k p^{\Omega-1}\right) a_{k+p} z^{k+p}}-1\right) \\
& =1+h_{1} z+h_{2} z^{2}+\cdots \Rightarrow \\
& =\frac{\sum_{k=1}^{\infty} \frac{(k+p)^{\Omega+1}}{p^{\Omega}}\left(1+\lambda k p^{\Omega-1}\right) a_{k+p} z^{k}-\sum_{k=1}^{\infty}\left(\frac{k+p}{p}\right)^{\Omega} \cdot p\left(1+\lambda k p^{\Omega-1}\right) a_{k+p} z^{k}}{1+\sum_{k=1}^{\infty} \frac{(k+p)^{\Omega}}{p^{\Omega}}\left(1+\lambda k p^{\Omega-1}\right) a_{k+p} z^{k}} \\
& =p b h_{1} z+p b h_{2} z^{2}+\cdots \Rightarrow \\
& = \\
& \frac{\left(\frac{1}{p^{\Omega}}\right)\left\{(p+1)^{\Omega}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} z+(p+2)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right) 2 a_{p+2} z^{2}+\cdots\right\}}{1+\frac{(p+1)^{\Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} z+\frac{(p+2)^{\Omega}}{p^{\Omega}}\left(1+2 \lambda p^{\Omega-1}\right) a_{p+2} z^{2}+\cdots} \\
&
\end{aligned}
$$

which yields

$$
\begin{align*}
& \left(\frac{1+p}{p}\right)^{\Omega}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} z+\left(\frac{2+p}{p}\right)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right) 2 a_{p+2} z^{2}+\cdots \\
& =\left\{\begin{array}{c}
1+\left(\frac{1+p}{p}\right)^{\Omega}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} z \\
+\left(\frac{2+p}{p}\right)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right) a_{p+2} z^{2}+\cdots
\end{array}\right\}\left\{p b h_{1} z+p b h_{2} z^{2}+\cdots\right\} . \tag{20}
\end{align*}
$$

Equalizing coefficients of terms z in the both side of equality (20), we have

$$
\begin{equation*}
\frac{(1+p)^{\Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right) a_{p+1}=p b h_{1} \Rightarrow h_{1}=\frac{1}{p b}\left(\frac{1+p}{p}\right)^{\Omega}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} \tag{21}
\end{equation*}
$$

Furthermore, equalizing coefficients of terms z^{2} in the both side of equality 20, we obtain

$$
\frac{2(p+2)^{\Omega}}{p^{\Omega}}\left(1+2 \lambda p^{\Omega-1}\right) a_{p+2}=p b h_{2}+\frac{(p+1)^{\Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} p b h_{1}
$$

If this equation is withdrawn h_{2} and used 21

$$
\begin{align*}
& 2\left(1+2 \lambda p^{\Omega-1}\right) \frac{(p+2)^{\Omega}}{p^{\Omega}} a_{p+2}=p b h_{2}+\left(1+\lambda p^{\Omega-1}\right)^{2} \frac{(p+1)^{2 \Omega}}{p^{2 \Omega}} a_{p+1}^{2} \Rightarrow \\
& h_{2}=\frac{1}{b p^{\Omega+1}}\left\{2(2+p)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right) a_{p+2}-\frac{(1+p)^{2 \Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right)^{2} a_{p+1}^{2}\right\} . \tag{22}
\end{align*}
$$

Equating (18) and 21)

$$
\begin{align*}
& \frac{\delta_{1} c_{1}}{A-B}=\frac{1}{p b} \frac{(p+1)^{\Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right) a_{p+1} \Rightarrow \\
& a_{p+1}=\frac{p b \delta_{1} c_{1}}{(A-B)\left(1+\lambda p^{\Omega-1}\right)}\left(\frac{p}{1+p}\right)^{\Omega} \tag{23}
\end{align*}
$$

Equating 19 and 22 , we obtain

$$
\begin{align*}
& \quad \frac{1}{b p^{\Omega+1}}\left\{2\left(1+2 \lambda p^{\Omega-1}\right)(2+p)^{\Omega} a_{p+2}-\frac{(1+p)^{2 \Omega}}{p^{\Omega}}\left(1+\lambda p^{\Omega-1}\right)^{2} a_{p+1}^{2}\right\} \\
& =\left(\frac{1}{A-B}\right)\left\{\frac{B \delta_{1} c_{1}^{2}}{(A-B)}+\delta_{1} c_{2}+\frac{\delta_{2} c_{1}^{2}}{(A-B)}\right\} \Rightarrow \\
& 2(2+p)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right) a_{p+2}=\left[\frac{p^{\Omega} b p \delta_{1}}{A-B}\right]\left\{\frac{p b \delta_{1} c_{1}^{2}}{(A-B)}+\left\{\begin{array}{c}
\frac{B c_{1}^{2}}{(A-B)}+c_{2} \\
+\frac{\delta_{2} c_{1}^{2}}{\delta_{1}(A-B)}
\end{array}\right\}\right\} \Rightarrow \\
& a_{p+2}=\frac{b}{2} \frac{p^{\Omega+1}}{(p+2)^{\Omega}} \frac{1}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{\delta_{1}}{A-B}\right)\left\{\begin{array}{c}
\frac{B c_{1}^{2}}{(A-B)}+c_{2} \\
+\frac{\delta_{2} c_{1}^{2}}{\delta_{1}(A-B)}+\frac{\delta_{1} c_{1}^{2}}{A-B} p b
\end{array}\right\} . \tag{24}
\end{align*}
$$

By using the obtained equalities 23 and 24 , we can write

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right|=\left|\begin{array}{l}
\frac{b}{2} \frac{p^{\Omega+1}}{(p+2)^{\Omega}} \frac{1}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{\delta_{1}}{A-B}\right)\left\{\begin{array}{c}
\frac{B c_{1}^{2}}{(A-B)}+c_{2} \\
+\frac{\delta_{2} c_{1}^{2}}{\delta_{1}(A-B)}+\frac{\delta_{1} c_{1}^{2}}{A-B} p b
\end{array}\right\} \tag{25}\\
-\mu\left\{\frac{p b \delta_{1} c_{1}}{(A-B)\left(1+\lambda p^{\Omega-1}\right)} \frac{p^{\Omega}}{(1+p)^{\Omega}}\right\}^{2}
\end{array}\right|
$$

This equality numbered 25 is written as follows

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right|=\left\{\frac{|b|}{2} \frac{p^{\Omega+1}}{(2+p)^{\Omega}} \frac{1}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{\delta_{1}}{A-B}\right)\right\} \\
& \left|\left\{c_{2}+\frac{1}{(A-B)}\left[B c_{1}^{2}+\frac{\delta_{2} c_{1}^{2}}{\delta_{1}}+\delta_{1} c_{1}^{2} p b\right]\right\}-\mu\left\{\frac{2 p^{\Omega}(p+2)^{\Omega} p b \delta_{1} c_{1}^{2}\left(1+2 \lambda p^{\Omega-1}\right)}{(A-B)\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}}\right\}\right| \Rightarrow \\
& \left|a_{p+2}-\mu a_{p+1}^{2}\right|=\left\{\frac{|b|}{2(A-B)} \frac{p^{\Omega+1}}{(p+2)^{\Omega}} \frac{\delta_{1}}{\left(1+2 \lambda p^{\Omega-1}\right)}\right\} \\
& \left|c_{2}-\frac{1}{(A-B)}\left\{\frac{2 p^{\Omega}(p+2)^{\Omega} p b \delta_{1}\left(1+2 \lambda p^{\Omega-1}\right)}{\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}} \mu-\left(B+\frac{\delta_{2}}{\delta_{1}}+\delta_{1} p b\right)\right\} c_{1}^{2}\right|
\end{aligned}
$$

and if it is taken as

$$
\nu=\frac{1}{(A-B)}\left\{\frac{2 p^{\Omega}(p+2)^{\Omega} p b \delta_{1}\left(1+2 \lambda p^{\Omega-1}\right)}{\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}} \mu-\left(B+\frac{\delta_{2}}{\delta_{1}}+\delta_{1} p b\right)\right\}
$$

equality is obtained

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right|=\left\{\frac{|b| p}{2}\left(\frac{p}{p+2}\right)^{\Omega} \frac{1}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{\delta_{1}}{A-B}\right)\right\}\left|c_{2}-\nu c_{1}^{2}\right|
$$

By using Lemma 3, we obtain

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq\left\{\frac{|b|}{2(A-B)} \frac{p^{\Omega+1}}{(p+2)^{\Omega}} \frac{\delta_{1}}{\left(1+2 \lambda p^{\Omega-1}\right)}\right\}[2 \max \{1,|2 \nu-1|\}]
$$

and thus,

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| p}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{p}{p+2}\right)^{\Omega}\left(\frac{\delta_{1}}{A-B}\right) \\
& \max \left\{1,\left[\left|\frac{2}{(A-B)}\left\{\frac{2 p^{\Omega}(p+2)^{\Omega} p b \delta_{1}\left(1+2 \lambda p^{\Omega-1}\right)}{\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}} \mu-\left(B+\frac{\delta_{2}}{\delta_{1}}+\delta_{1} p b\right)\right\}-\frac{A-B}{A-B}\right|\right]\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| p}{\left(1+2 \lambda p^{\Omega-1}\right)}\left(\frac{p}{p+2}\right)^{\Omega}\left(\frac{\delta_{1}}{A-B}\right) \\
& \max \left\{1,\left|\frac{1}{(A-B)}\left\{\frac{2 \delta_{2}}{\delta_{1}}+2 \delta_{1} p b\left[1-\frac{2 p^{\Omega}(p+2)^{\Omega}\left(1+2 \lambda p^{\Omega-1}\right)}{\left(1+\lambda p^{\Omega-1}\right)^{2}(p+1)^{2 \Omega}} \mu\right]+(A+B)\right\}\right|\right\}
\end{aligned}
$$

This result is sharp for the functions defined by

$$
1+\frac{1}{b}\left(\frac{1}{p} \frac{z\left(\wp_{(\Omega, \lambda, p)} f(z)\right)^{\prime}}{\wp(\Omega, \lambda, p)} f(z) \quad 1\right)=\frac{1+A z^{2}}{1+B z^{2}}
$$

and

$$
1+\frac{1}{b}\left(\frac{1}{p} \frac{z\left(\wp_{(\Omega, \lambda, p)} f(z)\right)^{\prime}}{\wp_{(\Omega, \lambda, p)} f(z)}-1\right)=\frac{1+A z}{1+B z} .
$$

Lemma 5. (i) If we set $\lambda=0$ in Theorem 4, we obtain the upper bounds of the Fekete-Szego functional for the class $S_{p}^{\lambda}(A, \overline{B, b}) \equiv S_{(0, p)}^{\Omega}(A, B, b)$ by Akbarally et al. [1]
(ii) If we take $\lambda=\Omega=0$ in Theorem 4, then we have the results for the class $S_{(0,1)}^{0}(1,-1, b) \equiv S^{*}(b)$ by V. Ravichandran et al. [8]

Letting $\lambda=\Omega=0, p=b=1, A=1$ and $B=-1$ in Theorem 4, we have the following Corollary 6 given by Koegh and Merkes [2].
Corollary 6. If $f \in S_{(0,1)}^{0}(1,-1,1) \equiv S^{*}$, then $\left|a_{3}-\mu a_{2}^{2}\right| \leq \max \{1,|4 \mu-3|\}$.
Also, if $\lambda=0, \Omega=p=b=A=1$ and $B=-1$ are taken in Theorem 4, the following Corollary 7 is obtained given by Koegh and Merkes [2].
Corollary 7. If $f \in S_{(0,1)}^{1}(1,-1,1) \equiv K$, then $\left|a_{3}-\mu a_{2}^{2}\right| \leq \max \left\{\frac{1}{3},|1-\mu|\right\}$
Note. When we get Corollary 6 and Corollary 7 given as a result of Theorem 4 we want to express that if $A=1$ and $B=-1$, it is obvious that $\delta_{1}=\delta_{2}=2$.

References

[1] A. Akbarally, S.C. Soh, M. Ismail, Coefficient bounds for a class multivalent function defined by Salagean operator, International Journal of Pure and Applied Mathematics, Volume 83, No. 3, 417-423, 2013.
[2] E.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, 8-12, 1969.
[3] G.M. Shenen, T.Q. Salim, M.S. Marouf, A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator, Kyungpook Math.J., 44, 353362, 2004.
[4] G.S. Salagean, Subclasses of Univalent Functions, Lecture notes in Math., Springer-Verlage, 1013, 362-372, 1983.
[5] M.A. Nasr, M.K. Aouf, Starlike functions of complex order, J.Natural Sci.Math 25, 1-12, 1985.
[6] M. Kamali, F. Sağsöz, Some properties of subclasses of multivalent functions, Abstract and Applied Analysis, volume 2011, Article ID 361647, 15 Pages, 2011.
[7] S. Owa, "Some properties of certain multivalent functions", Applied Mathematics Letters, vol. 4, no.5, pp. 79-83, 1991.
[8] V. Ravichandran, Y. Polatoğlu, M. Bolcal, A. Şen, Certain subclasses of starlike and convex functions of complex order,Hacettepe Journal of Mathematics and Statistics, Volume 34, 9-15, 2005.
[9] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Internatinal Conferences on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, 157-169, 1994.

Muhammet KAMALİ, Avrasya University, Faculty of Sciences and Arts, 61010 TrabzonTURKEY

E-mail address: muhammet.kamali@avrasya.edu.tr

[^0]: 1991 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions, p-valent functions, Schwarz function, Fekete Szegö inequality, Salagean operator.

 Submitted June 6, 2017.

