COEFFICIENTS ESTIMATE FOR CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH QUASI-SUBORDINATION

SHASHI KANT

Abstract

In this paper we introduce and investigate certain new subclasses of the function class Σ of bi-univalent function defined in the open unit disk, which are associated with the quasi-subordination. We find estimates on the Taylor-Maclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses. Several known and new consequences of these results are also pointed out.

1. Introduction and definitions

Let \mathcal{A} denote the class of analytic functions in the open unit disk $\mathbb{U}=\{z:|z|<$ $1\}$ that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

and let \mathcal{S} be the class of all functions from \mathcal{A} which are univalent in \mathbb{U}. The Koebe one quarter theorem [5] states that the image of U under every function f from \mathcal{S} contains a disk of radius $\frac{1}{4}$. Thus such univalent function has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$. In fact the inverse function f^{-1} is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{2}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denotes the class of bi-univalent functions defined in the unit disc \mathbb{U}. Ma - Minda [9] introduce the following classes by means of subordination :

$$
\mathcal{S}^{*}(h)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec h(z)\right\},
$$

where h is an analytic function with positive real part on \mathbb{U} with $h(0)=1, h(0)^{\prime}>0$ which maps the unit disc \mathbb{U} onto a region starlike with respect to 1 and which is

[^0]symmetric with respect to real axis. A function $f \in \mathcal{S}^{*}(h)$ is called Ma - Minda starlike. $\mathcal{C}(h)$ is the class of convex function $f \in \mathcal{A}$ for which
$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h(z)
$$

The classes $\mathcal{S}^{*}(h)$ and $\mathcal{C}(h)$ include several well-known subclasses of starlike and convex function as special case. The concept of subordination is generalized in 1970 by Robertson [18] through introducing a new concept of quasi-subordination.

For two analytic functions f and h, the function f is quasi subordination to h written as

$$
\begin{equation*}
f(z) \prec_{q} h(z) \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

if there exist analytic functions ϕ and ω, with $|\phi(z)| \leq 1, \omega(0)=0$ and $|\omega(z)|<1$ such that

$$
\frac{f(z)}{\phi(z)} \prec h(z)
$$

which is equivalent to

$$
f(z)=\phi(z) h(\omega(z)) \quad(z \in \mathbb{U})
$$

Observe that if $\phi(z)=1$, then $f(z)=h(\omega(z))$, so that $f(z) \prec h(z)$ in \mathbb{U}, also if $\omega(z)=z$, then $f(z)=\phi(z) h(z)$ and it is said that $f(z)$ is majorized by $h(z)$ and written as $f(z) \ll h(z)$ in \mathbb{U}. Hence it is obvious that the quasi-subordination is a generalization of the usual subordination as well as majorization. The work on quasi - subordination is quite extensive which includes some recent investigations [2,7,8,10,12,17,18].

In 1967, Lewin [8] investigated the class Σ of bi-univalent functions and obtained the bound for the second coefficient a_{2}. Brannan and Taha [3] considered certain subclasses of bi-univalent functions similar to the familiar subclasses of univalent functions consisting of starlike, strongly starlike and convex functions. They introduced the bi-starlike function, bi-convex function classes and obtained non sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Recently Ali et al. [1], Deniz [4], Tang et al. [19], Peng et al. [14] Ramchandran et al. [16], Murugusundaramoorthy et al. [11]etc. have introduced and investigated Ma-Minda type subclasses of bi-univalent functions class Σ. Further generalization of Ma Minda type subclasses of class Σ have been made several authors including ([6], [13], [10], [20]) by means of quasi - subordination. Motivated by work in [7, 12] on quasi- subordination, we introduce and study here certain new subclasses of class Σ.

Throughout this paper it is assumed that $h(z)$ is analytic in \mathbb{U} with $h(0)=1$ and let

$$
\begin{equation*}
\phi(z)=A_{0}+A_{1} z+A_{2} z^{2}+\cdots \quad(|\phi(z)| \leq 1, z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=1+B_{1} z+B_{2} z^{2}+\cdots \quad\left(B_{1} \in \mathbb{R}^{+}\right) \tag{1.4}
\end{equation*}
$$

Definition 1.1. For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$, if the following two conditions are satisfied:

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right) \prec_{q}(h(z)-1) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right) \prec_{q}(h(w)-1) \tag{1.6}
\end{equation*}
$$

where $g=f^{-1}$ and h is given by (1.5) and $z, w \in \mathbb{U}$.
It follows that a function f is in the class $\mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$ if and only if there exists an analytic function ϕ with $|\phi(z)| \leq 1,(z \in \mathbb{U})$ such that

$$
\begin{equation*}
\frac{\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)}{\phi(z)} \prec(h(z)-1) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right)}{\phi(w)} \prec(h(w)-1), \tag{1.8}
\end{equation*}
$$

where $g=f^{-1}$ and h is given by (1.5) and $z, w \in \mathbb{U}$.
Definition 1.2. For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$ is said to be in the class $\mathcal{K}_{\Sigma}^{q}(\lambda, \gamma, h)$, if the following two conditions are satisfied:

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right) \prec_{q}(h(z)-1) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right) \prec_{q}(h(w)-1) \tag{1.10}
\end{equation*}
$$

where $g=f^{-1}$ and h is given by (1.5) and $z, w \in \mathbb{U}$.
In the present paper, we find estimates on the Taylor- MacLaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for function f belonging in the classes $\mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$ and $\mathcal{K}_{\Sigma}^{q}(\lambda, \gamma, h)$. Several known and new consequences of these results are also pointed out.

In order to derive our main results, we have to recall here the following wellknown Lemma:

Lemma 1.3.[15] Let $p \in \mathcal{P}$ be family of all functions p analytic in \mathbb{U} for which $\Re\{p(z)\}>0$ and have the form $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ for $z \in \mathbb{U}$, then $\left|p_{n}\right| \leq 2$ for each n.

2. Coefficient bounds for the function class $\mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$

Theorem 2.1. Let $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}|\gamma|\left|A_{0}\right|}{(2-\lambda)}, \sqrt{\frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|\gamma|\left|A_{0}\right|}{\lambda^{2}-3 \lambda+3}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min & \left\{\frac{|\gamma|}{\lambda^{2}-3 \lambda+3}\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+\frac{|\gamma|}{(3-\lambda)}\left|A_{1}\right| B_{1}\right. \\
& \left.\frac{|\gamma|}{(3-\lambda)}\left[\frac{|\gamma| \lambda B_{1}^{2}}{2-\lambda}\left|A_{0}\right|^{2}+\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+B_{1}\left|A_{1}\right|\right]\right\} \tag{2.2}
\end{align*}
$$

Proof. Let $f \in \mathcal{S}_{\Sigma}^{q}(\lambda, \gamma, h)$. In view of Definition1.1, there exist then Schwarz functions $r(z), s(z)$ and an analytic function $\phi(z)$ such that

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\phi(z)(h(r(z))-1) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right)=\phi(w)(h(s(w))-1) \tag{2.4}
\end{equation*}
$$

Define the functions $p(z)$ and $q(z)$ by

$$
\begin{equation*}
p(z)=\frac{1+r(z)}{1-r(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=\frac{1+s(z)}{1-s(z)}=1+d_{1} z+d_{2} z^{2}+\cdots \tag{2.6}
\end{equation*}
$$

which are equivalently

$$
\begin{equation*}
r(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right] \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
s(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[d_{1} z+\left(d_{2}-\frac{d_{1}^{2}}{2}\right) z^{2}+\cdots\right] . \tag{2.8}
\end{equation*}
$$

It is clear that $p(z), q(z)$ are analytic and have positive real parts in \mathbb{U}. In view of (2.3), (2.4), (2.7) and (2.8), clearly

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\phi(z)\left[h\left(\frac{p(z)-1}{p(z)+1}\right)-1\right] \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right)=\phi(w)\left[h\left(\frac{q(w)-1}{q(w)+1}\right)-1\right] \tag{2.10}
\end{equation*}
$$

The series expansions for $f(z)$ and $g(w)$ as given in (1.1) and (1.2) respectively, provide us

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right)=\frac{1}{\gamma}\left[(2-\lambda) a_{2} z+\left[(3-\lambda) a_{3}-\lambda(2-\lambda) a_{2}^{2}\right] z^{2}+\cdots\right] \tag{2.11}
\end{equation*}
$$

and
$\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right)=\frac{1}{\gamma}\left[(\lambda-2) a_{2} w+\left[(3-\lambda)\left(2 a_{2}^{2}-a_{3}\right)-\lambda(2-\lambda) a_{2}^{2}\right] w^{2}+\cdots\right]$.
Using (2.5) and (2.6) together with (1.4) and (1.5)
$\phi(z)\left[h\left(\frac{p(z)-1}{p(z)+1}\right)-1\right]=\frac{1}{2} A_{0} B_{1} c_{1} z+\left[\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} c_{1}^{2}}{4}\right] z^{2}+\cdots$
and
$\phi(w)\left[h\left(\frac{q(w)-1}{q(w)+1}\right)-1\right]=\frac{1}{2} A_{0} B_{1} d_{1} z+\left[\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} d_{1}^{2}}{4}\right] z^{2}+\cdots$

Now equating (2.11) and (2.13) in view of (2.9) and comparing the coefficients of z and z^{2}, we obtain

$$
\begin{equation*}
\frac{2-\lambda}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} c_{1} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(3-\lambda) a_{3}-\lambda(2-\lambda) a_{2}^{2}}{\gamma}=\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} c_{1}^{2}}{4} . \tag{2.16}
\end{equation*}
$$

Similarly (2.10) gives us

$$
\begin{equation*}
-\frac{2-\lambda}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} d_{1} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(3-\lambda)\left(2 a_{2}^{2}-a_{3}\right)-\lambda(2-\lambda) a_{2}^{2}}{\gamma}=\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} d_{1}^{2}}{4} . \tag{2.18}
\end{equation*}
$$

From(2.15) and (2.17), we find that

$$
\begin{equation*}
a_{2}=\frac{A_{0} B_{1} c_{1} \gamma}{2(2-\lambda)}=-\frac{A_{0} B_{1} d_{1} \gamma}{2(2-\lambda)} \tag{2.19}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|A_{0} \gamma\right| B_{1}}{2-\lambda} \tag{2.20}
\end{equation*}
$$

Adding (2.16) and (2.18), we obtain

$$
\begin{equation*}
\frac{2\left(\lambda^{2}-3 \lambda+3\right)}{\gamma} a_{2}^{2}=\frac{A_{0} B_{1}}{2}\left(c_{2}+d_{2}\right)+\frac{A_{0}\left(B_{2}-B_{1}\right)}{4}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{2.21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{\left|A_{0} \gamma\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{\lambda^{2}-3 \lambda+3} \tag{2.22}
\end{equation*}
$$

hence, using (2.20) and (2.22) we get the bounds on $\left|a_{2}\right|$ as asserted in (2.1).
Next, in order to find the upper bound for $\left|a_{3}\right|$, by subtracting (2.18) from (2.16), we get

$$
\begin{equation*}
\frac{2(3-\lambda)}{\gamma} a_{3}=\frac{2(3-\lambda)}{\gamma} a_{2}^{2}+\frac{A_{1} B_{1}}{2}\left(c_{1}-d_{1}\right)+\frac{A_{0} B_{1}}{2}\left(c_{2}-d_{2}\right) \tag{2.23}
\end{equation*}
$$

by using Lemma1.2 and (2.21) in (2.23), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq\left[\frac{\left|A_{0}\right| B_{1}}{\lambda^{2}-3 \lambda+3}+\frac{\left|A_{0}\left(B_{2}-B_{1}\right)\right|}{\lambda^{2}-3 \lambda+3}+\frac{\left|A_{1}\right| B_{1}}{3-\lambda}\right]|\gamma| . \tag{2.24}
\end{equation*}
$$

Next, from (2.15) and (2.16), we have

$$
\frac{(3-\lambda) a_{3}}{\gamma}=\frac{\lambda \gamma A_{0}^{2} B_{1}^{2} c_{1}^{2}}{4(2-\lambda)}+\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1} c_{2}+\frac{1}{4} A_{0}\left(B_{2}-B_{1}\right) c_{1}^{2}
$$

which implies

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|}{3-\lambda}\left[B_{1}\left(\frac{\lambda}{2-\lambda}\left|A_{0}\right|^{2}|\gamma| B_{1}+\left|A_{1}\right|+\left|A_{0}\right|\right)+\left|A_{0}\left(B_{2}-B_{1}\right)\right|\right] \tag{2.25}
\end{equation*}
$$

Further, from (2.15) and (2.18), we deduce that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|}{3-\lambda}\left[B_{1}\left(\frac{\lambda^{2}-4 \lambda+6}{(2-\lambda)^{2}}\left|A_{0}\right|^{2}|\gamma| B_{1}+\left|A_{1}\right|+\left|A_{0}\right|\right)+\left|A_{0}\left(B_{2}-B_{1}\right)\right|\right] \tag{2.26}
\end{equation*}
$$

and thus we obtain the conclusion (2.2) of our theorem.
Remarks 2.2. (i) For $\lambda=1$, Theorem 2.1 provides improvement over the estimates obtained in [[10], Corollary 9, p 5].
(ii) For $\lambda=\gamma=1$, Theorem 2.1 reduces to a result in [[13], Theorem 3.2, p. 8].
(iii) For $\lambda=0, \gamma=1$, Theorem 2.1 reduces to a result in [[13], Corollary 2.4, p.8].

For $\phi(z) \equiv 1$, the above theorem reduces to following corollary:
Corollary 2.3.For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, if $f \in \mathcal{A}$ of the form (1.1) satisfy the following subordination:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}-1\right) \prec h(z) \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}-1\right) \prec h(w) \tag{2.28}
\end{equation*}
$$

where $g=f^{-1}$ and h is given by (1.5) and $z, w \in \mathbb{U}$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}|\gamma|}{(2-\lambda)}, \sqrt{\frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|\gamma|}{\lambda^{2}-3 \lambda+3}}\right\} \tag{2.29}
\end{equation*}
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{|\gamma|}{\lambda^{2}-3 \lambda+3}\left(B_{1}+\left|B_{2}-B_{1}\right|\right), \quad \frac{|\gamma|}{(3-\lambda)}\left(\frac{|\gamma| \lambda}{2-\lambda} B_{1}^{2}+B_{1}+\left|B_{2}-B_{1}\right|\right)\right\}$.
For $\lambda=\gamma=1$, Corollary 2.4 gives the coefficient estimates for Ma-Minda bistarlike functions. Remark 2.4. For $\lambda=0$ and $\gamma=1$ Corollary 2.4 reduces to a result in [1, Theorem 2.1, p. 345].

3. Coefficient bounds for the function Class $\mathcal{K}_{\Sigma}^{q}(\lambda, \gamma, h)$

Theorem 3.1. Let $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If $f \in \mathcal{A}$ of the form (1.1) belonging to the class $\mathcal{K}_{\Sigma}^{q}(\lambda, \gamma, h)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}|\gamma|\left|A_{0}\right|}{2(2-\lambda)}, \sqrt{\frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|\gamma|\left|A_{0}\right|}{4 \lambda^{2}-11 \lambda+9}}\right\} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min \{ & \frac{|\gamma|}{4 \lambda^{2}-11 \lambda+9}\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+\frac{|\gamma|}{3(3-\lambda)}\left|A_{1}\right| B_{1} \\
& \left.\frac{|\gamma|}{3(3-\lambda)}\left[\frac{|\gamma| \lambda B_{1}^{2}}{2-\lambda}\left|A_{0}\right|^{2}+\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+B_{1}\left|A_{1}\right|\right]\right\} \tag{3.32}
\end{align*}
$$

Proof. Let $f \in \mathcal{K}_{\Sigma}^{q}(\lambda, \gamma, h)$. In view of Definition1.2, there exist then Schwarz functions $r(z), s(z)$ and an analytic function $\phi(z)$ such that

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right)=\phi(z)(h(z)-1) \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right)=\phi(z)(h(w)-1) \tag{3.34}
\end{equation*}
$$

where $r(z)$ and $s(z)$ are defined by (2.7) and (2.8) respectively. Under the same restrictions for $p(z), q(z), c_{i}$ and d_{i} as mentioned in Theorem2.1, obviously we have

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right)=\phi(z)\left[h\left(\frac{p(z)-1}{p(z)+1}\right)-1\right] \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right)=\phi(w)\left[h\left(\frac{q(w)-1}{q(w)+1}\right)-1\right] \tag{3.36}
\end{equation*}
$$

The series expansions for $f(z)$ and $g(w)$ as given in (1.1) and (1.2) respectively, provides us
$\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right)=\frac{1}{\gamma}\left[2(2-\lambda) a_{2} z+\left((3-\lambda) a_{3}-4 \lambda(2-\lambda) a_{2}^{2}\right) z^{2}+\ldots\right]$
and
$\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right)=\frac{1}{\gamma}\left[-2(2-\lambda) a_{2} w+\left(3(3-\lambda)\left(2 a_{2}^{2}-a_{3}\right)-4 \lambda(2-\lambda) a_{2}^{2}\right) w^{2}+\ldots\right]$.
Now using (2.13) and (3.7) in (3.5) and comparing the coefficients of z and z^{2}, we get

$$
\begin{equation*}
\frac{2(2-\lambda)}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} c_{1} \tag{3.39}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(3(3-\lambda) a_{3}-4 \lambda(2-\lambda) a_{2}^{2}\right)=\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} c_{1}^{2}}{4} \tag{3.40}
\end{equation*}
$$

Similarly (2.14), (3.6) and (3.8) yields

$$
\begin{equation*}
-\frac{2(2-\lambda)}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} d_{1} \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(3(3-\lambda)\left(2 a_{2}^{2}-a_{3}\right)-4 \lambda(2-\lambda) a_{2}^{2}\right)=\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2} d_{1}^{2}}{4} \tag{3.42}
\end{equation*}
$$

From (3.9) and (3.11), we have

$$
\begin{equation*}
a_{2}=\frac{\gamma A_{0} B_{1} c_{1}}{4(2-\lambda)}=-\frac{\gamma A_{0} B_{1} d_{1}}{4(2-\lambda)} \tag{3.43}
\end{equation*}
$$

further by adding (3.10) and (3.12), we obtain

$$
\begin{equation*}
\frac{2\left(4 \lambda^{2}-11 \lambda+9\right)}{\gamma} a_{2}^{2}=\frac{A_{0} B_{1}}{2}\left(c_{2}+d_{2}\right)+\frac{A_{0}\left(B_{2}-B_{1}\right)}{4}\left(c_{1}^{2}+d_{1}^{2}\right) . \tag{3.44}
\end{equation*}
$$

On using the Lemma1.3 in (3.13) and (3.14), we can get the desired bounds on $\left|a_{2}\right|$ as given in (3.1). Next, in order to find the upper bound for $\left|a_{3}\right|$, by subtracting (3.12) from (3.10) and using (3.14), we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|}{4 \lambda^{2}-11 \lambda+9}\left[\left|A_{0}\right| B_{1}+\left|A_{0}\left(B_{2}-B_{1}\right)\right|\right]+\frac{|\gamma|}{3(3-\lambda)}\left|A_{1}\right| B_{1} \tag{3.45}
\end{equation*}
$$

For another bound on $\left|a_{3}\right|$, we substitute the value of a_{2}^{2} from (3.9) into (3.10) and use the Lemma1.3, which gives us

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|}{3(3-\lambda)}\left[\frac{|\gamma| \lambda B_{1}^{2}}{2-\lambda}\left|A_{0}\right|^{2}+\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+B_{1}\left|A_{1}\right|\right] . \tag{3.46}
\end{equation*}
$$

With the help of (3.9) and (3.12) we obtain one more bound on $\left|a_{3}\right|$ that is

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|}{3(3-\lambda)}\left[\frac{|\gamma| B_{1}^{2}\left(2 \lambda^{2}-7 \lambda+9\right)}{2(2-\lambda)^{2}}\left|A_{0}\right|^{2}+\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\left|A_{0}\right|+B_{1}\left|A_{1}\right|\right] . \tag{3.47}
\end{equation*}
$$

Obviously the RHS of (3.17) is greater than the RHS of (3.16), so the desired bound on $\left|a_{3}\right|$ is obtained from (3.15) and (3.16). For $\phi(z) \equiv 1$, the above theorem reduces to following corollary: Corollary 3.2.For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \backslash\{0\}$, if $f \in \mathcal{A}$ of the form (1.1) satisfy the following subordinations:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right) \prec(h(z) \tag{3.48}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right) \prec h(w) \tag{3.49}
\end{equation*}
$$

where $g=f^{-1}$ and h is given by (1.5) and $z, w \in \mathbb{U}$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}|\gamma|}{2(2-\lambda)}, \sqrt{\frac{\left(B_{1}+\left|B_{2}-B_{1}\right|\right)|\gamma|}{4 \lambda^{2}-11 \lambda+9}}\right\} \tag{3.50}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min \{ & \frac{|\gamma|}{4 \lambda^{2}-11 \lambda+9}\left(B_{1}+\left|B_{2}-B_{1}\right|\right) \\
& \left.\frac{|\gamma|}{3(3-\lambda)}\left(\frac{|\gamma| \lambda}{2-\lambda} B_{1}^{2}+B_{1}+\left|B_{2}-B_{1}\right|\right)\right\} \tag{3.51}
\end{align*}
$$

Remarks 3.3. (i) For $\lambda=1$, Theorem 3.1 provides improvement over the estimates obtained in [[10], Corollary 11, p 5].
(ii) For $\lambda=\gamma=1$, Theorem 3.1 provides improvement over the estimates obtained in [13], Theorem 3.3, p. 9].
Other interesting corollaries and consequences of Theorem 3.1 could be derived by specializing the parameters.

References

[1] R.M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25(3), 344-351, 2012.
[2] O. Altintas and S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Jpn. Acad. Ser. A 68(7), 181 - 185, 1992.
[3] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2), 70-77, 1986.
[4] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Ana. 2(1), 49-60, 2013.
[5] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
[6] S. P. Goyal, O. Singh and R. Mukherjee, Certain results on a subclass of analytic and biunivalent functions associated with coefficient estimates and quasi-subordination, Palestine Journal of Mathematics, 5(1), 79-85, 2016.
[7] S. Y. Lee, Quasi-subordinate functions and coefficient conjectures, J. Korean Math. Sco. 12(1), 43-50, 1975.
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, 1967.
[9] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, (Tianjin,1992), Conference Proceedings Lecturer Notes Analysis, International Press, Cambridge, Mass, USA, vol. 1, 157-169, 1994.
[10] N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bistarlike and biconvex functions based on quasi - subordination, Abstract and analysis, 2016 Art. ID3102960, 6 pages ,2016.
[11] G. Murugusundaramoorthy, T. Janani and N. E. Cho, Bi-univalent functions of complex order based on subordinate conditions involving Hurwitz Lerch Zeta function, East Aasian Math. J. 32(1), 47-59, 2016.
[12] T. Panigrahi and R. K. Raina, Fekete-Szego coefficient functional for quasi-subordination class, Afro. Mat. DOI 10.1007/s13370-016-0477-1, 10 pages, 2017.
[13] A. B. Patil, and U. H. Naik, Estimates on initial coefficients of certain subclasses of biunivalent functions associated with quasi-subordination, Global Journal of mathematical Analysis, 5(1), 6-10, 2017.
[14] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, Journal of Complex analysis, 2014 Art.ID 693908, 6 pages, 2014.
[15] Ch. Pommerenke, Univalent Functions. Vandenhoeck and Ruprecht, Gottingen, 1975.
[16] C. Ramachandran, R. Ambroseprabhu, and N. Magesh, Initial coefficient estimates for certain subclasses of bi-univalent functions of Ma-minda type, Applied Mathematical Sciences, 9(47), 2299-2308, 2015.
[17] F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subodrdinate functions, Bull. Austral. Math. Soc. 43(2), 317-324,1991.
[18] M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76, 1-9, 1970.
[19] H. Tang, G. Deng and S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Ineq. Appl. 2013 Art. 317, 10 pages, 2013.
[20] P. P. Vyas and S. Kant, Certain Subclasses of bi-univalent functions associated with quasisubordination, Journal of Rajasthan Academy of Physical Sciences, 15(4), 315 - 325, Dec. 2016.

Shashi Kant
Department of Mathematics, Government Dungar College, Bikaner-334001, IndiA
E-mail address: drskant.2007@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. quasi - Subordination, bi - univalent function, coefficent estimates . Submitted March 11, 2017.

