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EXISTENCE OF SOLUTIONS FOR HADAMARD FRACTIONAL

HYBRID DIFFERENTIAL EQUATIONS WITH IMPULSIVE AND

NONLOCAL CONDITIONS

P. KARTHIKEYAN, R.ARUL

Abstract. In this paper, we study the existence of solution for Hadamard
Fractional Hybrid Differential equations with impulsive and nonlocal condi-
tions. The main result is proved by means of a fixed point theorem. Finally,
an example is also presented.

1. Introduction

In the last few decades, fractional differential equations (FDE) have gained con-
siderably more attention and attracted by many researchers in fields of such as
physics, mechanics, chemistry, aerodynamics and the electrodynamics of complex
media. It comes from the fact that they have been proved to be valuable tools in
the mathematical models for systems. For more details on fractional calculus and
fractional differential equations theory, one can refer to the monographs of Kilbas,
Srivastava and Trujillo [15], Lakshmikatham et al [19], Podlubny [9], Baleanu et al
[5] and the references given therein.

The quadratic perturbation of nonlinear differential equations has considered
more importance and served as special cases of dynamical systems. The details of
different types of perturbations for a nonlinear differential and integral equations
are given in Dhage [10].

The existence of solutions for an initial-value problem of nonlinear hybrid dif-
ferential equations of Hadamard type has been discussed by B.Ahmad and S.K.
Ntouyas in [4]. Very recently, JinRong Wang [12] has studied the existence results
for nonlinear fractional order differential impulsive systems with Hadamard deriv-
ative. in Kilbas et al. [15], proved the existence and uniqueness of the solution
of Cauchy problems for fractional differential equations involving the Hadamard
derivatives involving in a nonsequential setting. Klimek [18] investigated existence
and uniqueness of the solution of sequential fractional differential equations with
Hadamard derivative by using the contraction principle and a new, equivalent norm.
Wang et al. [23] discussed the existence of solutions and UlamHyers stability of
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fractional differential equations with Hadamard derivative by using some classical
methods. Further, in [2] and [20], the authors studied two dimensional fractional
differential systems with Hadamard derivative. [13, 14], the authors discussed Im-
pulsive Fractional Integro-Differential Equations.

Inspired by above works, we study in this paper, a new existence results for
Hadamard fractional hybrid differential equations with impulsive and nonlocal con-
ditions

HDα
( x(t)

f(t, x(t))

)
= g(t, x(t)), t ∈ (1, T ], α ∈ (0, 1), (1)

x(t+k ) = x(t−k ) + yk, k = 1, 2, ...,m, yk ∈ X

HJ1−αx(1) + η(x) = x0,

where HDα is the Hadamard fractional derivative, f ∈ C([1, T ] × X,X \ {0}),
g : C([1, T ]×X,X) and η : C(C, I) → X, HJ (·) is the Hadamard fractional integral
and x0 ∈ X. tk satisfy 1 = t0 < t1 < ... < tm < tm+1 = T, x(t+k ) = lim

ϵ→0+
x(tk + ϵ)

and x(t−k ) = lim
ϵ→0−

x(tk + ϵ) represent the right and left limits of x(t) at t = tk.

In section 2 is devoted to preliminaries facts related to the existence of solution.
The proof of main results of the paper discussed in section 3. Finally, an example
is illustrated in the section 4.

2. Preliminaries

Let C([1, T ],X) denote the Banach space of all continuous real-valued functions
defined on [1, T ] with the norm ∥x∥ = sup{|x(t)| : t ∈ [1, T ]}. For t ∈ [1, T ], we
define xr(t) = (log t)rx(t), r ≥ 0.

Let Cr([1, T ],X) be the space of all continuous functions x such that xr ∈
C([1, T ],X) which is indeed a Banach space endowed with the norm ∥x∥C =
sup{(log t)r|x(t)| : t ∈ [1, T ]}.

Let 0 ≤ γ < 1 and Cγ,log[1, T ] denote the weighted space of continuous functions
defined by

Cγ,log[1, T ] = {g(t) : (log t)γg(t) ∈ C[1, T ], ∥y∥Cγ,log
= ∥(log t)γg(t)∥C}.

In the following we denote ∥y∥Cγ,log
by ∥y∥C .

Definition 1[[15]]

The Hadamard fractional integral of order q for a continuous function g is defined
as

HJqg(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1 g(s)

s
ds, q > 0.

Definition 2[[15]]

The Hadamard derivative of fractional order q for a continuous function g : [1,∞)
→ X is defined as

HDqg(t) =
1

Γ(n− q)

(
t
d

dt

)n
∫ t

1

(
log

t

s

)n−q−1 g(s)

s
ds,

n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) = loge(·).
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Lemma 1 [[15, Theorem 3.28 p.213]]

Let α > 0, n = −[−α] and 0 ≤ γ < 1. Let G be an open set in R and let
f : (a, b]×G → X be a function such that: f(x, y) ∈ Cγ,log[a, b] for any y ∈ G, then
the problem

HDαy(t) = f(t, y(t)), α > 0, (2)

HJα−ky(a+) = bk, bk ∈ R, (k = 1, . . . , n, n = −[−α]), (3)

satisfies the Volterra integral equation

y(t) =
n∑

j=1

bj
Γ(α− j + 1)

(
log

t

a

)α−j

+
1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s, y(s))
ds

s
, (4)

for t > a > 0; i.e., y(t) ∈ Cn−α,log[a, b] satisfies the relations (2)-(3) if and only if it
satisfies the Volterra integral equation (4).

In particular, if 0 < α ≤ 1, problem (2)-(3) is equivalent to the equation

y(t) =
b

Γ(α)

(
log

t

a

)α−1

+
1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s, y(s))
ds

s
, s > a > 0. (5)

Further details can be found in [15]. From Lemma 1 we have the following result.

Lemma 2 [15, Theorem 3.28 p.213]

Given y ∈ C([1, T ],R), the integral solution of initial-value problem

HDα
( x(t)

f(t, x(t))

)
= y(t), 0 < t < 1,

x(t+k ) = x(t−k ) + yk, k = 1, 2, ...,m, yk ∈ X

HJ1−αx(1) + η(x) = x0,

is given by

x(t) =



f(t, x(t))
(

x0−η(x)
Γ(α) (log t)α−1 + 1

Γ(α)

∫ t

1

(
log t

s

)α−1
y(s)
s ds

)
, for t ∈ (1, t1]

f(t, x(t))
(

x0−η(x)+y1

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
y(s)
s ds

)
, for t ∈ (t1, t2]

f(t, x(t))
(

x0−η(x)+y1+y2

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
y(s)
s ds

)
, for t ∈ (t2, t3]

...

f(t, x(t))
(x0−η(x)+

m∑
i=0

yi

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
y(s)
s ds

)
, for t ∈ (tm, T ]

(6)

Proof.

Assume that x satisfies equation (1). If t ∈ (1, t1], then HDα
(

x(t)
f(t,x(t))

)
= y(t), t ∈

(1, t1] with HJ1−αx(1) + η(x) = x0, By virtue of lemma 1, one can obtain

x(t) = f(t, x(t))
(x0 − η(x)

Γ(α)
(log t)α−1 +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1 y(s)

s
ds
)
, for t ∈ (1, t1]
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If t ∈ (t1, t2] then HDα
(

x(t)
f(t,x(t))

)
= y(t), t ∈ (t1, t2] with x(t+1 ) = x(t−1 ) + y1. Then

we have

x(t+1 ) = f(t, x(t))
(
x0 − η(x) +

∫ t1

0

y(s)
ds

s
+ y1

)
. By Lemma 1, we get

x(t) = f(t, x(t))
(x(t+1 )− η(x)

Γ(α)
(log t)α−1 +

∫ t1
1

y(s)dss
Γ(α)

(log t)α−1 +
1

Γ(α)

∫ t

1

(log
t

s
)α−1 y(s)

s
ds
)

= f(t, x(t))
(x0 − η(x)

Γ(α)
(log t)α−1 +

y1
Γ(α)

(log t)α−1 +
1

Γ(α)

∫ t

1

(log
t

s
)α−1 y(s)

s
ds
)
,

= f(t, x(t))
(x0 − η(x) + y1

Γ(α)
(log t)α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1 y(s)

s
ds
)
, t ∈ (t1, t2]

without loss of generality, for t ∈ (ti, ti+1], i = 1, 2, ...,m, we get

x(t) = f(t, x(t))
(x0 − η(x) +

m∑
i=1

yi

Γ(α)
(log t)α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1 y(s)

s
ds
)
, t ∈ (ti, ti+1]

On the otherhand, assume that x satisfies the fractional integral equation (6). If

t ∈ (1, t1], then HJ1−αx(1) + η(x) = x0 :, we get HDα
(

x(t)
f(t,x(t))

)
= y(t). Similarly,

if t ∈ (ti, ti+1], we obtain HDα
(

x(t)
f(t,x(t))

)
= y(t) and x(t+k ) = x(t−k ) + yk, k =

1, 2, ...,m,. This completes the proof.

Theorem 1[10]
Let S be a non-empty, closed convex and bounded subset of the Banach algebra

X let A : X → X and B : S → X be two operators such that:

(a) A is Lipschitzian with a Lipschitz constant k,
(b) B is completely continuous,
(c) x = AxBy ⇒ x ∈ S for all y ∈ S, and
(d) Mk < 1, where M = ∥B(S)∥ = sup{∥B(x)∥ : x ∈ S}.

Then the operator equation x = AxBx has a solution.

3. Existence Result

We introduce the following assumptions:

(H1) the function f : [1, T ]×X → X\{0} is bounded continuous and there exists
a positive bounded function ϕ with bound ∥ϕ∥ such that

||f(t, x(t))− f(t, y(t))|| ≤ ϕ(t)||x(t)− y(t)||,
for t ∈ [1, T ] and for all x, y ∈ X;

(H2) there exist a function p ∈ C([1, T ],X+) and a continuous nondecreasing
function Ω : [0,∞) → (0,∞) such that

||g(t, x(t))|| ≤ p(t)Ω(||x||), (t, x) ∈ [1, T ]× X;

(H3) there exists a number r > 0 such that

r ≥ K
[ m∑
i=0

|yi|+
|x0 +G|
Γ(α)

+ log T
1

Γ(α+ 1)
∥p∥Ω(r)

]
. (7)
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where |f(t, x)| ≤ K, ∀(t, x) ∈ [1, T ]× X and

∥ϕ∥
[ m∑
i=0

|yi|+
|x0|+G

Γ(α)
+ log T

1

Γ(α+ 1)
∥p∥Ω(r)

]
< 1.

Theorem 2

The assumptions assume that [H1], [H2] and [H3] are satisfied. Then the problem
(1) has at least one solution on [1, T ].

Proof

Set X = C([1, T ],X) and define a subset S of X as

S = {x ∈ X : ∥x∥C ≤ r},

where r satisfies inequality (7).
Clearly S is closed, convex and bounded subset of the Banach space X and

G = sup
x∈X

|η(x)|. By Lemma 2, the initial-value problem (1) is equivalent to the

integral equation

x(t) =



f(t, x(t))
(

x0−η(x)
Γ(α) (log t)α−1 + 1

Γ(α)

∫ t

1

(
log t

s

)α−1
g(s,x(s))

s ds
)
, for t ∈ (1, t1]

f(t, x(t))
(

x0−η(x)+y1

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
g(s,x(s))

s ds
)
, for t ∈ (t1, t2]

f(t, x(t))
(

x0−η(x)+y1+y2

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
g(s,x(s))

s ds
)
, for t ∈ (t2, t3]

...

f(t, x(t))
(x0−η(x)+

m∑
i=0

yi

Γ(α) (log t)α−1 + 1
Γ(α)

∫ t

tm

(
log t

s

)α−1
g(s,x(s))

s ds
)
, for t ∈ (tm, T ]

(8)
Define the operators A : X → X and B : S → X

Ax(t) = f(t, x(t)), t ∈ (tm, T ], (9)

Bx(t) =
x0 − η(x) +

m∑
i=0

yi

Γ(α)
(log t)α−1+

1

Γ(α)

∫ t

tm

(
log

t

s

)α−1 g(s, x(s))

s
ds, t ∈ (tm, T ].

(10)
Then x = AxBx. We shall show that the operators A and B satisfy all the condi-
tions of Theorem 1 For the sake of clarity, we split the proof as follows.

Step: 1
We first show that A is a Lipschitz on X, i.e. (a) of Theorem 1 holds.
Let x, y ∈ X. Then by (H1) we have

|(log t)1−αAx(t)− (log t)1−αAy(t)| = (log t)1−α|f(t, x(t))− f(t, y(t))|
≤ ϕ(t)(log t)1−α|x(t)− y(t)|
≤ ∥ϕ∥∥x− y∥C , ∀t ∈ (tm, T ]

Taking the supremum over the interval (tm, T ], we get

∥Ax−Ay∥C ≤ ∥ϕ∥∥x− y∥C , ∀x, y ∈ X
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So A is a Lipschitz on X with Lipschitz constant ∥ϕ∥.

Step: 2
The operator B is completely continuous on S, i.e. (b) of Theorem 1 holds.
First we show that B is continuous on S. Let {xn} be a sequence in S converging

to a point x ∈ S. Then by Lebesque dominated convergence theorem,

lim
n→∞

(log t)1−αBxn(t)

= lim
n→∞

(x0 − η(x) +
m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, xn(s))

s
ds
)

=
(x0 − η(x) +

m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 limn→∞ g(s, xn(s))

s
ds
)

=
(x0 − η(x) +

m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))

s
ds
)

= (log t)1−αBx(t), ∀t ∈ (tm, T ]

This shows that B is continuous os S. It is sufficient to show that B(S) is a uniformly
bounded and equicontinuous set in X.

(log t)1−α|Bx(t)| =
∣∣∣x0 − η(x) +

m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))

s
ds
∣∣∣

≤
[ |x0|+G+

m∑
i=0

|yi|

Γ(α)
+ ∥p∥Ω(r)(log T )1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 1

s
ds
]

=

|x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )

1

Γ(α+ 1)
∥p∥Ω(r), ∀t ∈ (tm, T ]

Taking supremum over the interval (tm, T ], then we have,

∥Bx∥C ≤
|x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )

1

Γ(α+ 1)
∥p∥Ω(r), ∀x ∈ S.

This shows that B is uniformly bounded on S.
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Next we show that B is an equicontinuous set in X. Let t1, t2 ∈ (tm, T ] with
t1 < t2 and x ∈ S. Then we have

∣∣(log t2)1−α(Bx)(t2)− (log t1)
1−α(Bx)(t1)

∣∣
≤

∥p∥Ω(r) +
m∑
i=0

yi

Γ(α)

∣∣∣∣∣
∫ t2

1

(log t2)
1−α

(
log

t2
s

)α−1
1

s
ds−

∫ t1

1

(log t1)
1−α

(
log

t1
s

)α−1
1

s
ds

∣∣∣∣∣
≤

∥p∥Ω(r) +
m∑
i=0

yi

Γ(α)

∣∣∣∣∣
∫ t1

1

[
(log t2)

1−α

(
log

t2
s

)α−1

− (log t1)
1−α

(
log

t1
s

)α−1 ]1
s
ds

∣∣∣∣∣
+

∥p∥Ω(r)
Γ(α)

∣∣∣ ∫ t2

t1

(log t2)
1−α

(
log

t2
s

)α−1
1

s
ds
∣∣∣.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ S as t2 − t1 → 0.

Therefore, it follows from the Arzelá-Ascoli theorem that B is a completely con-
tinuous operator on S.

Step: 3
Next we show that hypothesis (c) of Theorem 1 is satisfied. Let x ∈ X and y ∈ S

be arbitrary elements such that x = AxBy. Then we have

(log t)1−α|x(t)| = (log t)1−α|Ax(t)||By(t)|

= |f(t, x(t))|


∣∣∣∣∣∣∣∣∣∣
x0 − η(x) +

m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, y(s))

s
ds

∣∣∣∣∣∣∣∣∣∣



≤ K

∣∣∣∣∣∣∣∣∣∣


x0 − η(x) +

m∑
i=0

yi

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, y(s))

s
ds


∣∣∣∣∣∣∣∣∣∣

≤ K


|x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )1−α∥p∥Ω(r) 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 1

s
ds



≤ K


|x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )

1

Γ(α+ 1)
∥p∥Ω(r)

 .
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Taking supremum for t ∈ (tm, T ], we obtain

∥x∥C ≤ K
[ |x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )

1

Γ(α+ 1)
∥p∥Ω(r)

]
≤ r,

that is, x ∈ S.

Step: 4
Now we show that Mk < 1, that is, (d) of Theorem 1 holds.
This is obvious by (H4), since we have

M = ∥B(S)∥ = sup{∥Bx∥ : x ∈ S} ≤
|x0|+G+

m∑
i=0

|yi|

Γ(α)
+ (log T )

1

Γ(α+ 1)
∥p∥Ω(r)

and k = ∥ϕ∥.
Thus all the conditions of Theorem 1 are satisfied and hence the operator equa-

tion x = AxBx has a solution in S. In consequence, the problem (1) has a solution
on (tm, T ].

This completes the proof.

4. Example

Consider the problem

HD
1
2

( x(t)

f(t, x(t))

)
= g(t, x(t)), t ∈ (1, T ], α ∈ (0, 1), (11)

x(t+k ) = x(t−k ) +
1

4
, HJ1−αx(1) +

m∑
i=1

cix(ti) = 1,

where f(t, x) = 1
5
√
π
(sin t tan−1 x+ π

2 ), g(t, x) =
1
10 (

1
6 |x| +

1
8 cosx + |x|

4(1+|x|) +
1
16 ).

Obviously |f(t, x)| ≤
√
π
5 = K, ||ϕ|| =

√
π
5 and |g(t, x)| ≤ 1

10 (
1
6 |x|+

7
16 ). We choose

||p|| = 1
10 ,Ω(r) =

1
6r +

7
16 . By the condition (H3), it is found that 0.05473 ≤ r <

3
8 (400π − 87). Clearly all the conditions of theorem 2 are satisfied. Hence by the
conclusion of theorem 2, it follows that problem (11) has a solution.
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