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Abstract. Astrocytes actively participate in calcium signaling in nervous sys-

tem. Calcium signalling depends on cytosolic calcium concentration. Calcium

itself is called second messenger. Calcium ions diffuse into the cell due to
concentration difference between synapse and cytosol. This process occurs in

almost all type of nerve cells. Due to presence of aqua medium and verity of
proteins the cross flow of calcium ion takes place using Fick’s law of diffusion.

In this paper we have studied the concentration profile of Ca2+ using frac-

tional calculus. The advantage of using fractional calculus is that next state
of the system depends not only upon the current state but also upon all its

preceding states. A mathematical model is developed to study the effect of

fractional advection diffusion equation (cross flow) for the calcium profile. An-
alytic solution of the fractional advection diffusion equation, arising in study of

diffusion of cytosolic calcium in astrocytes, has been obtained by using integral

transform techniques.

1. Introduction

Fractional calculus (FC) is a mathematical approach dealing with derivatives
and integrals of arbitrary and complex orders. Therefore, it adds a new dimension
to understand and describe basic nature and behavior of complex systems in an
improved way. Many applications of fractional calculus can be found in turbulence
and fluid dynamics, stochastic dynamical system, plasma physics and controlled
thermonuclear fusion, nonlinear control theory, non linear biological system, astro
physics, etc. Mathematical models, using ordinary differential equations with in-
teger order, have been proven valuable in understanding the dynamics of physical
systems. [27, 6, 7, 5, 22, 16, 30]. The modeling of these systems by fractional order
differential equations has more advantages than classical integer-order mathemati-
cal modeling. The most important advantage of using fractional order differential
equation in mathematical modeling is their non-local property. It is a well-known
fact that the integer order differential operator is a local operator whereas the frac-
tional order differential operator is non-local in the sense that the next state of the
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system depends not only upon its current state but also upon all of its proceeding
states [26]. Fractional differentiation are generalizations of notions of integer-order
differentiation, and include n-th derivatives (n denotes an integer number) as par-
ticular cases. Because of this, it would be ideal to have such physical and geometric
interpretations of fractional-order operators, which will provide also a link to known
classical interpretations of integer-order differentiation and integration. We will de-
rive a new class of generalized models for such physical systems.

Fractional (non-integer order) calculus can provide a concise model for the de-
scription of the dynamic events that occur in biological tissues. Such a description
is important for gaining an understanding of the underlying multi-scale processes
that occur when, for example, tissues are electrically stimulated or mechanically
stressed. Fractional calculus also can be apply to build mathematical models in
bio-electrodes, bio-mechanics and bio-imaging (Magin [23]). Fractional calculus
has recently found applications in the analysis of biological systems. Djordjevic
et al. [8] developed a rheological model of airway smooth muscle cells using a
method incorporating FC and a least-squares data fitting technique. They showed
that fractional calculus could be effectively utilized to account for a weak power
law frequency dependence of cell rheological behavior. This effect could not be
explained with traditional viscoelastic theory. Recently, an FC dynamic model has
been applied to generate electrocardiogram (ECG) signals based upon oscillations
and a global optimization scheme. This technique subsequently generates a realis-
tic time series, of the ECG signal, and may find potential applications in modeling
abnormal and irregular patterns of cardiac conduction (Das and Moharatna [24]).
These new models are more adequate than the previously used integer order models,
because fractional order derivatives and integrals describe the memory and hered-
itary properties of different substances. This is the most significant advantage of
the fractional order models in comparison with integer order models in which such
effects are neglected.

Astrocytes actively participate in calcium signalling in nervous system. Cal-
cium signalling depends on cytosolic calcium concentration. Calcium Ca2+ is an
important second messenger, found in almost all cell types. Many theoretical and
experimental studies investigated the main characteristics of local Ca2+ changes
and their possible role in different physiological events. It is used in signal trans-
duction where an electrical signal is converted in the chemical signal. Calcium
signals can also mediate inter-cellular communication by eliciting or coordinating
calcium signals in surrounding cells, for example in the astrocyte networks of the
central nervous system (see for e.g., [18, 11]). Calcium Ca2+ oscillations are ubiqui-
tous signals present in all cells that provide efficient means to transmit intracellular
biological information. Either spontaneously or upon receptor ligand binding, the
otherwise stable cytosolic Ca2+ concentration starts to oscillate.
Woods et al. [13] discovered the calcium oscillations experimentally in 1986 and
large numbers of cells showed calcium oscillations after simulation by an extra-
cellular agonist. Later, the role in calcium signaling by inositol triphosphate was
discovered by Berridge [15] from studies of the control fluid secretion by an in-
sect salivary gland. Kummer et al. [29] proposed fractional-order Ca2+ oscillation
model. This mathematical model consists of the four variables as follows: cytosolic
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Ca2+, endoplasmic Ca2+, concentrations of active subunits of a G protein, and
active PLC (Kummer et al. [29]). The model shows good agreement with exper-
imental observations in two respects. First, each oscillation period starts with a
large, steep spike followed by a number of pulses of decreasing amplitude around
an elevated mean value. Second, varying the model parameters, one finds that the
difference in stimulation nature can induce (periodic or aperiodic) bursting or reg-
ular oscillations.

Choi [28] studied stochastic hybrid modeling of intracellular calcium dynam-
ics using advection diffusion equation. Schäfer [12] gave a memory-efficient finite
volume method for advection-diffusion-reaction systems with non-smooth Sources
which is useful for the long time simulation of calcium ion in heart cells and show its
parallel scaling. The release of calcium ions in a human heart cell is modeled by a
system of reaction-diffusion equations, which describe the interaction of the chemi-
cal species and the effects of various cell processes on them. The release is modeled
by a forcing term in the calcium equation that involves a superposition of many
Dirac delta functions in space; such a non smooth right-hand side leads to diver-
gence for many numerical methods. Hanhart et al. [14] studied a memory-efficient
finite element method for systems of reaction-diffusion equations with non-smooth
forcing. Recently, Agarwal et al. [19] investigated the solutions of generalized space
time fractional reaction diffusion equation associated with Hilfer-Prabhakar time
fractional derivative and the space fractional Laplacian operator.

The Signalling problem, considered in the domain x, t ≥ 0, is an initial boundary-
value problem (IBVP) when the data are assigned both at t = 0+ on the semi-
infinite space axis x > 0 (initial data) and at x = 0+ on the semi-infinite time axis
t > 0 (boundary data); here, the initial data are assumed to be vanishing (see, for
details, Mainardi).

Jha et al. [3] found analytic solution of two dimensional advection diffusion equa-
tion arising in cytosolic calcium concentration distribution. Jha et al. [4] studied
effect of voltage-gated calcium channel on cytosolic calcium concentration in astro-
cytes. Tripathi and Adlakha [1] obtained closed form solution to problem of calcium
diffusion in cylindrical shaped neuron cell in terms of modified Bessel function. In
physics, fractional derivatives are used to model anomalous diffusion, where the
particles spreads differently than the classical Brownian motion model predicts.
The fractional order forms of the advection diffusion equation are similarly useful.
The mathematical formulation of calcium diffusion in astrocytes yields an initial
boundary value problem.
The motive of this paper is to identify the effect of fractional advection and diffusion
on cytosolic calcium profile in absence of internal forces. Graphs for the calcium
concentration profiles have been simulated for certain values of the parameters.
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2. Mathematics Prerequisites

The right-sided Riemann-Liouville fractional integral of order α of function
f(t) ∈ L1(a, b) (Samko et. al [25]) is defined as:

Iαa (f(t)) = aDt
−α(f(t)) =

1

Γ(α)

t∫
a

(t− τ)α−1f(τ) dτ, (t > a) (1)

where <(α) > 0.
The right-sided Riemann-Liouville fractional derivative of order α for f(x) ∈ AC([a, b])
can be defined as:

aD
α
t (f(t)) =

(
d

dt

)n
(In−αa f(t)) (<(α) > 0, n = [<(α)] + 1), (2)

where [y] represents the integral part of the number y.
The following fractional derivative of order <(α) > 0 is introduced by Caputo [10]
as

C
aD

α
t (f(t)) =


1

Γ(m− α)

t∫
a

fm(τ)

(t− τ)α+1−m dτ, m− 1 < α ≤ m,<(α) > 0,m ∈ N
∂m

∂tm
f(t), if α = m

(3)

where fm(τ) = ∂m

∂tm f(t) is the m-th derivative of the function f(t) with respect to
t.
The Laplace transform (see, e.g. Sneddon [9]) of function f(t) with respect to
variable t is defined as

L{f(t)} = f̄(s) =

∞∫
0

e−stf(t) dt, (<(s) > 0, t > 0) (4)

The inverse Laplace transform of function f̄(s) defined using Bromwich’s integral
as

L−1{f̄(s)} = f(t) =
1

2πi

γ+i∞∫
γ−i∞

estf̄(s) ds (5)

where γ being a fixed real number.

The Laplace transform of the Caputo fractional derivative is given by Podlubny
[10] ∫ ∞

0

e−stCaD
α
t (f(t))dt = sαf(s)−

n−1∑
j=0

sα−j−1f(0)
j
(0) (n− 1 < α < n) (6)

Following inversion formula (Povstenko [31, P.4128, Eq. 53]) is required for simpli-
fication:

L−1
{
s−β exp(−λsγ)

}
= tβ−1W (−γ, β;−λt−γ) 0 < γ < 1, λ > 0 (7)

Here W (α, β; z) is the Wright function (Podlubny [10]) defined by series represen-
tation

W (α, β; z) =

∞∑
k=0

zk

Γ(αk + β)k!
(8)
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The relationship between the Wright function and the exponential function is given
by [21, Eq.27]

W

(
−1

2
,

1

2
; z

)
=

1√
π
ez

2/4

(9)

3. Mathematical Modeling of Time Fractional Advection-Diffusion
Equation

Here we consider a chemical species (free calcium ion) Ca2+ whose concentration
C(x, t) varies in time and space, the spatial variation is considered in one spatial
variable x only [18, 11]. This situation is shown in Figure 1, where the chemical
species Ca2+ is contained in a long, thin tube with constant cross-sectional area A.
The conservation of Ca2+ can be expressed in words as:

Figure 1. Mass transfer in domain

Rate of change of the total amount of Ca2+ within R w. r. t time
= Rate at which Ca2+ flows in to R − rate at which Ca2+ flows out of R
+ Rate at which Ca2+ is generated within R − Rate at which Ca2+ is consumed
with in R.

The theoretical analysis follow from the derivation of the following conservation
law in differential form [11]

∂C(x, t)

∂t
− ∂J(x, t)

∂x
= f(x, t, C) (10)

Here C(x, t) is the concentration of Ca2+, J(x, t) is the rate at which Ca2+ moves
across the boundary at position x from left to right at time t, f(x, t, C) denote the
net rate of increase of Ca2+ (production-destruction) per unit volume at location
x and time t. Here it is supposed that there is a uniform macroscopic flow of the
Ca2+, with speed v along the x-axis, which carries additional Ca2+ along with it.
When both diffusive flux and advective flux is incorporated, then the total flux will
be

J(x, t) = vC(x, t)−D∂C(x, t)

∂x
(11)

where the proportionality constant D is called the diffusion constant.
Using this constitutive relation is called Fick’s law, and states that Ca2+ moves from
regions of high concentration to regions of low concentration, at a rate proportional
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to the concentration gradient. The eq. (10) becomes a reaction advection diffusion
equation,

∂C(x, t)

∂t
− ∂(vC(x, t))

∂x
−D∂C(x, t)

∂x
= f(x, t, C) (12)

Therefore the homogeneous advection diffusion equation for one dimensional case
in Cartesian coordinates is given by:

∂C(x, t)

∂t
+
∂(uC(x, t))

∂x
= Dca

∂2C(x, t)

∂x2
(13)

Initial and boundary conditions are given by:

lim
x→0

(
Dca

dC(x, t)

dx

)
= σca for t > 0, (14)

lim
x→∞

C(x, t) = 0 for t ≥ 0, (15)

C(x, t)|t=0 = 0 for 0 ≤ x <∞. (16)

For one-dimension advection diffusion problem we consider without pipe flow of the
calcium. The injected tracer calcium spreads equally in both direction describing
Gaussian distribution over the time. If calcium is allowed to flow in a pipe then we
expect the center of mass of the tracer cloud to move with mean flow velocity in
the pipe. If we move our frame of reference with mean velocity and assume inviscid
case, then our coordinate transformation for the moving system will be:

η = x− (x0 + ut), (17)

τ = t, (18)

where η is moving reference frame spatial coordinate. For the sake of convenience,
we assume origin as the mouth of calcium channel in cytosol (plasma-membrane)
i.e. x0 = 0 is the injector point of tracer. u is mean velocity of flow of Ca2+ and
ut is distance traveled by the center of mass of cloud at time t.
This coordinate transform (17) and (18) can be substituted in (13) using chain rule
as follows:

∂C

∂τ

∂τ

∂t
+
∂C

∂η

∂η

∂t
+ u

(
∂C

∂τ

∂τ

∂x
+
∂C

∂η

∂η

∂x

)
(19)

= Dca

(
∂

∂τ

∂τ

∂x
+

∂

∂η

∂η

∂x

)(
∂C

∂τ

∂τ

∂x
+
∂C

∂η

∂η

∂x

)
, (20)

which reduces to
∂C(η, τ)

∂τ
= Dca

∂2C(η, τ)

∂η2
, (21)

subject to the initial and boundary conditions:

lim
η→0

(
Dca

∂C(η, τ)

∂η

)
= σca τ ≥ 0, (22)

lim
η→∞

C(η, τ) = C∞ τ ≥ 0 (23)

and

C(η, τ)τ=0 = C∞ 0 ≤ η <∞. (24)
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Note that the standard version of advection-diffusion equation does not allow for
predicting the the concentration on cytosolic calcium profile in absence of internal
force accurately. It is then important to investigate a possible analytical partial
differential equation that can describe better this problem.

In present work, we consider a new model in the form of fractional partial dif-
ferential equation

C
aD

α
t C(η, τ) = Dca

∂2C(η, τ)

∂η2
, 0 < α ≤ 1, τ ≥ 0, η ≥ 0 (25)

where C
aD

α
t is Caputo derivative given in (3). The relevant initial and boundary

conditions are as follows:

lim
η→0

(
Dca

∂C(η, τ)

∂η

)
= σca, τ ≥ 0, (26)

lim
η→∞

C(η, τ) = C∞ τ ≥ 0 (27)

and

C(η, τ)τ=0 = C0 0 ≤ η <∞. (28)

Here C∞ is calcium concentration at infinity. We assume that at initial state of
time and at a long distance calcium concentration vanishes or becomes zero. The
integro-differential equation does contain the additional parameter α, which can be
viewed as new physical parameters that characterize the cytosolic calcium ion in
astrocytes. If we consider α = 1 then equation (25) reduces to the classical heat
equation (21).
Remarks: 1. The Riemann-Liouville definition (1) could lead to unphysical re-
sults when applied to simulate dynamics of cytosolic calcium ion. To overcome this
problem, a modified method is presented to define the fractional diffusion with the
Caputo derivatives (3).
2. The fractional derivatives are considered in Caputo sense. Many numerical so-
lutions of the fractional advection diffusion equation were derived from a fractional
derivative based on the Riemann-Liouville or the Grünwald-Letnikov definitions.
Podlubny [10], Gorenflo et al. [20], and Butzer and Westphal [17] have pointed out
that the Caputo fractional derivative represents a short of regularization in the time
origin for the Riemann-Liouville fractional derivative and satisfies the requirements
of being zero when applied to a constant. Besides, the Caputo definition does not
use the fractional order derivative in the initial condition, thus is convenient in
physical and engineering applications where the initial conditions are usually given
in terms of the integer-order derivatives.

4. Solution of the Problem

Applying Laplace transform (6) for n = 1 to (25), yields

sαC̄(η, s)− sα−1C(η, 0) = Dca
∂2

∂η2
C̄(η, s). (29)
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Using the initial condition C(η, 0) = 0 in (29), we get

∂2

∂η2
C̄(η, s)− sα

Dca
C̄(η, s) = 0. (30)

Applying Laplace transform on the boundary conditions, (26) and (27) we get:

∂

∂η
C̄(0, s) =

σca
Dcasα

, (31)

lim
n→∞

C̄(η, s) = 0. (32)

The solution of equation (30) is given by:

C̄(η, s) = C1e
√
sα/Dcaη + C2e

−
√
sα/Dcaη. (33)

The C1 and C2 are obtained by using the relations (31) and (32) as given below:

C1 = 0 and C2 =
σca√
Dca

1

sα/2
(34)

and hence (33) becomes

C̄(η, s) =
σca√
Dca

1

sα/2
e−
√
sα/Dcaη. (35)

Taking inverse Laplace transform of equation (35) and using eq. (7) therein, we get

C(η, τ) =
σca√
4Dca

τ
α
2−1W

[
−α

2
,
α

2
;− η√

Dca

τ−
α
2

]
. (36)

Transforming variables back to original variables using (17) and (18) in equation
(36), we get

C(x, t) =
σca√
4Dca

t
α
2−1W

[
−α

2
,
α

2
;− (x− ut)√

Dca

t−
α
2

]
. (37)

In particular, with the help of (9), for α = 1 (37) reduces to the following result
obtained by Jha et al. [3].

C(x, t) =
σca√

4Dcaπt
exp

[
− (x− ut)2

4Dcat

]
. (38)

5. Result and Discussion

From the past observations [3, 2, 4] the range for the numerical values of bio-
physical parameters used for computation of results, are given below in Table 1.

Table 1

Symbol Parameter Values
Dca Diffusion Coefficient 200-300 µm2/s
σca Source Amplitude 1.5 µM−1s−1

u Velocity of Flux 10-40 µm/s

The solution (37) represents the variation in calcium concentration due to time
fractional advection diffusion in cytosol, which represent the calcium concentration
at distance x in the positive direction from mouth of the channel for any time t > 0.
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The solution is in the form of Wright function given by eq. (8), which is general-
ization of exponential function.

The concentration profile simulated with the values Dca = 225µm2/s, σca =
1.5µM−1s−1, u = 25µm/s and for the different values of α (0 < α ≤ 1) as shown
in Figures 2 and 3 below
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Figure 2. Calcium distribution in cytosol with respect to time at
the source x = 0 for different values of α.
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Figure 3. Calcium distribution in cytosol along x direction spec-
ified point of t = 9ms for different values of α.

Figure 2 shows the variation at different values of α in calcium concentration near
the source x = 0 with respect to time. It is observed that the calcium concentration
is high initially at the mouth of the channel then it falls sharply and there after it
achieves steady state.
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Figure 3 shows the calcium distribution at different values of α along X- direction at
the time t = 9ms. Here calcium concentration Ca2+ decreases and tend to 0.1µM
for x > 400µm which is independent of α.

To access the effect of the fractional order derivative into the solution of the
advection-diffusion equation, we compare both solutions (37) and (38) with the
theoretical values. We note that the solution of the model, with various values of
α, continuously depends on the time-fractional derivative but achieves steady state.
We should also note that although the steady state points are very near for both
integer-order and fractional-order models, the solution of the fractional order model
tends to the steady state over a longer period of time. From the graphs, we can
see that fractional order differential equations have rich dynamics and are better
descriptors of physical systems than traditional integer-order mode.
The solutions of fractional advection diffusion are not only function of time and
space but also a function of the order of the derivative. If these orders are integer,
we recover the standard advection diffusion equation. Figures show that the order
of the derivative can be used to simulate the real-world problem and this makes the
fractional version of advection diffusion equation better than the advection diffusion
equation.

6. Conclusion

The mathematical modeling plays very important role for signal transduction in
astrocytes. Fractional advection diffusion is new invention in mathematical model
for astrocytes cell. Efficient model can be developed further to study the relation-
ship among various biophysical parameters like buffers, pumps, leaks, gates, source
in flux, diffusion, coefficients etc and the effect of fractional advection diffusion on
calcium distribution in presence of internal process.

Formally, fractional diffusion equations are obtained from their ordinary counter-
parts by replacing the first order time derivatives, by derivatives of fractional order
with 0 < α < 1 for fractional diffusion.
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