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ON SOLUTIONS TO FRACTIONAL NEUTRAL DIFFERENTIAL

EQUATIONS WITH INFINITE DELAY

RAJIB HALOI

Abstract. In this article, we prove the sufficient conditions for the existence,

uniqueness and continuous dependence of mild solutions to fractional neutral
differential equations in a Banach space with infinite delay. The results are
obtained by using the theory of semigroup of almost sectorial operators and
the fixed point theorems. Example is discussed to illustrate the results.

1. Introduction

Let (X, ∥ · ∥) be a complex Banach space. We study the existence, uniqueness
and continuous dependence of mild solutions to the following problem in X:

cD
α
t [u(t) + g(t, ut)] +Au(t) = f(t, ut), t ∈ J = [0, a], 0 ≤ α ≤ 1

u(t) = ϕ(t), (−∞, 0],

}
(1.1)

where the functions f : J × B → X, f : J × B → X are non-linear and satisfy
some appropriate conditions. Here cD

η
t denotes the Caputo fractional derivative

of order η with respect to t and A : D(A) ⊂ X → X is a linear operator. The
resolvent of A satisfies a growth of order −γ, −1 < γ < 0 in a sector of the
complex plane. Let ut(·) denotes an element of the abstract phase space B defined
as ut(θ) = u(t+ θ), θ ∈ (−∞, 0].

A systems in which the information is never transferred from the input to the
output is called the system with infinite delay. This system can be modeled as a
state space model where output is disconnected with the states. The initial value
problem for fractional differential equations with infinite delay also describes models
in some scientific areas, such as population dynamics, biology and epidemiology
[20, 19]. The plentiful application of fractional differential equations with delay
motivates the rapid development and gained much attention in the recent years.
We refer to [2, 24, 25, 33, 29, 30, 32] for more details.

We consider the following fractional Cauchy problem in X :

cD
η
t u(t) +Au(t) = f(t) , t ∈ [0,∞), 0 ≤ η ≤ 1,

u(0) = u0,

}
(1.2)
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where u0 ∈ X, f : [0,∞) → X and A : D(A) ⊂ X → X is a linear operator. Here

cD
η
t denotes the Caputo fractional derivative of order η with respect to t. Problem

(1.2) has studied by many authors [10, 2, 37, 17, 26, 27] using the theory of analytic
semigroup as well as the theory of sectorial operators.

Recently, the concept of almost sectorial operator has introduced by Wahl [38].
Subsequently, lots of results have established for the abstract theory of Cauchy
problems for linear and non-linear differential equations with almost sectorial oper-
ators for integer and fractional order derivatives [4, 5, 6, 12, 16, 31, 37]. Hernández
[23] has established the existence of mild solution to following problem in (X, ∥ · ∥)
with finite delay:

u′(t) = Au(t) + f(t, ut), t ∈ [0, a],
u(0) = ϕ ∈ Ω,

}
(1.3)

where A : D(A) ⊂ X → X is an almost sectorial operator, Ω ⊂ B, B is the phase
space and f : [0, a]× Ω → X is an appropriate function.

Further, Wang et al.[37] have established the existence theorems of solutions to
the following semi-linear Cauchy problem in X :

cD
η
t u(t) = Au(t) + f(t, u(t)), t ∈ [0,∞), 0 ≤ η ≤ 1,
u(0) = u0,

}
(1.4)

where cD
η
t denotes the Caputo fractional derivative of order η, A : D(A) ⊂ X → X

is a almost sectorial operator and f : [0,∞) × X → X satisfies some appropriate
conditions. The results can be proved under a weaker assumption on A, for more
details, we refer the readers to Favini and Yagi [17, Section 3]. It is to be mentioned
that Kostić [27] had studied the results of Wang et. al.[37] for abstract degenerate
differential equations.

As delay differential equations occur in many processes including biology and
engineering, the qualitative study of solutions for integer-order as well as fractional
order are carried out by many authors [8, 36, 3, 18, 1, 2, 7, 9, 13, 14, 15, 35, 22, 28].
Ye et al.[36] have studied the following problem in a Banach space X,

cD
η
t [u(t)− g(t, ut)] = Au(t) + f(t, ut,

∫ t

0
k(t, s, us)ds), t ∈ J = [0, a],

u(t) = ϕ(t), (−∞, 0],

where the functions f : J×B → X, f : J×B×B → X are non-linear and satisfy some
appropriate conditions. Here cD

η
t denotes the Caputo fractional derivative of order

η ∈ [0, 1] with respect to t and A : D(A) ⊂ X → X is the infinitesimal generator of
an analytic semigroup of uniformly bounded linear operators {T (t)}t≥0 on X and
ut(·) denotes an element of the abstract phase space B defined as ut(θ) = u(t+θ), θ ∈
(−∞, 0]. The existence results are established by the resolvent operator technique
and Krasnoselskii’s fixed point theorem. With this motivation from Ye et al.[36]
and Wang et al [37] , we study the existence, uniqueness and continuous dependence
of mild solutions to Problem (1.1) when A is an almost sectorial operator. The main
results generalizes some results in [36, 13].

The article is organized as follows. The definition of the Caputo fractional de-
rivative, Riemann-Liouville integral, the theory of semigroup of bounded a linear
operators and some lemmas are recalled in Section 2. The existence and uniqueness
of mild solutions to Problem are proved in Section 3. The continuous dependence
on the initial data of the solution has established in Section 4. Finally, we discuss
the results by an example.
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2. Preliminaries and assumptions

In this section, we collect the basic definitions, notations, Lemmas that will be
used in the remaining part of the article. We use D(A) for the domain of a operator,
σ(A) for its spectrum, ρ(A) : C \ σ(A) for its resolvent, R(λ;A), λ ∈ ρ(A) for the
resolvent operator, L(Y, Z) for the space of all bounded linear operators between
two normed spaces Y and Z, L(Y ) for Y = Z.

The choice of the phase space B plays an importnat role in problems with infinite
delay. We deal with all spaces satisfying a given set of axioms rather than working in
a fixed phase space which is known as classical axiomatic approach. The approach
for functional differential equations with infinite delay has nicely described in [21].
The space (B, ∥·∥B) is a semi-normed space consisting of functions v : (−∞, 0] → X
satisfying the following assumptions:

(A1) If v : (−∞, a] → X is continuous on J = [0, a] and v0 ∈ B, then for every
t ∈ J, the following conditions hold:
(a) vt ∈ B,
(b) ∥v(t)∥ ≤ L∥vt∥B,
(c) ∥vt∥B ≤ p1(t) sup0≤s≤t ∥v(s)∥+ p2(t)∥v0∥B,
where L ≥ 0 is a constant, p1 : [0,∞) → [0,∞) is continuous, p2 : [0,∞) →
[0,∞) is locally bounded which are independent of v. Let k1 = supt∈J p1(t)
and k2 = supt∈J p2(t).

(A2) For the function v defined in (A1), the function vt is a B−valued continuous
function on J.

(A3) The phase space B is complete.

Next we recall the following definition of almost sectorial operator was introduced
by Wahl [38].

Definition 2.1. For −1 < γ < 0 and 0 < ω < π/2, we say that a closed linear
operator A : D(A) ⊂ X → X is an almost sectorial operator on X if

(1) σ(A) ⊂ Σω = {z ∈ C \ {0} : | arg z| ≤ w} ∪ {0}
(2) for every ω < µ < π, there exists a positive constant Cµ such that

∥R(z,A)∥ ≤ Cµ|z|γ for all z ∈ C \ Σµ. (2.5)

We denote the family of all almost sectorial operators by Fγ
ω(X).

Example 2.2. We consider the following example from [37, 4]. Let Ω be the union
of two bounded domain in Rn, n ≥ 2 with smooth boundaries. Let B(·, ·) be defined
as

B(u, v) = (−∆u+ u,−1

g
(gv′)′) for (u, v) ∈ D(B), (2.6)

where D(B) is a dense subset of Lp(Ω)⊕Lp
g(0, 1)(1 ≤ p < ∞) for a smooth function

g : [0, 1] → (0,∞) and ∆ is the Laplacian with Neumann boundary condition. The
domain D(B) is endowed with the norm

∥(u, v)∥ =

(∫
Ω

|u|p +
∫ 1

0

g|v|p
)1/p

.
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If p > n/2, then B is a closed linear operator with compact resolvent. We note that
B is not sectorial and the resolvent operator R(z;−B) satisfies

∥R(z;−B)∥ ≤ C

|z|γ
for z ∈ Σµ \ {0},

where Σµ = {z ∈ C \ {0} : | arg z| ≤ π − µ} ∪ {0}} ⊂ ρ(−B) for µ ∈ (0, π/2),
0 < γ < 1−n/2p and some positive constant C. The operator B is almost sectorial.
Details can be found in [37, 4, 5, 6].

We make the following assumption on A.

(B1) The operator A : D(A) ⊂ X → X is almost sectorial and A ∈ Fγ
ω(X) for

−1 < γ < 0. Further, we assume that R(λ;−A) is compact for each λ > 0.

It follows from the assumptions (B1) that A generates an analytic semigroup {T (t) :
t ≥ 0} of bounded linear operators on X with growth 1 + γ in an open sector of
the complex plane C (see Lemma 2.3). We note that T (t) is discontinuous at t = 0
in the strong operator topology [31, 37].

For 0 < µ < π, let Σ0
µ =

{
z ∈ C \ {0} : | arg z| < µ

}
be the open sector. If

t ∈ Σ0
π/2−ω and ω < ϕ < µ < π

2 − | arg t|, then the family

T (t) = e−tz(A) =
1

2πi

∫
γϕ

e−tzR(z;A)dz, (2.7)

where γϕ = {R+e
iϕ} ∪ {R+e

−iϕ}, forms an analytic semigroup of growth order
−γ − 1. For β > 1 + γ, A−β is a bounded linear operator on X. We define
Xβ = D(Aβ) for β > 1 + γ, endowed with the norm

∥x∥β = ∥Aβx∥ for x ∈ Xβ .

Then Xβ is a Banach space endowed with the norm ∥ · ∥β . For more on analytic
semigroups, we refer the readers to Tanaka [34]. The following properties of T (t)
will be used.

Lemma 2.3. [31, 37] For −1 < γ < 0 and 0 < ω < π
2 , let A ∈ Fγ

ω(X).

(i) The operator T (t) is analytic in Σ0
π/2−ω and dn

dtnT (t) = (−A)nT (t) (t ∈
Σ0

π/2−ω);

(ii) T (s+ t) = T (s)T (t) for all s, t ∈ Σ0
π/2−ω;

(iii) There exists a constants C(γ) > 0 such that ∥T (t)∥ ≤ C(γ)t−γ−1 for t > 0;
(iv) For t ∈ Σ0

π/2−ω, the range R(T (t)) ⊂ D(Aβ) for all β ∈ C with Reβ > 0,

we have

AβT (t)x =
1

2πi

∫
γϕ

zβe−tzR(z;A)xdz for all x ∈ X

and there exists a constant C∗(γ, β) > 0 such that

∥AβT (t)∥ ≤ C∗t−γ−Reβ−1 t > 0;

(v) For β > 1 + γ, we have D(Aβ) = {x ∈ X : lim
t→0+

T (t)x = x}.

The generalized Mittag-Leffler function Eα,β is defined as

Eα,β :=
∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
χ

λα−βeλ

λα − z
dλ for α, β > 0, z ∈ C,
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where χ is a contour starts and ends at −∞ and encircles the disc |λ| ≤ |z|1/α
counterclockwise. We denote

Eα(z) := Eα,1(z), eα(z) := Eα,α(z).

The function of Wright-type is defined as

Ψα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

1

π

∞∑
n=1

(−z)n

(n− 1)!
Γ(nα) sin(nπα) for z ∈ C

if 0 < α < 1.
For t ∈ Σ0

π/2−ω and ω < ϕ < µ < π/2− | arg t|, we define

Sα(t) =
1

2πi

∫
γϕ

Eα(−ztα)R(z;A)dz,

Pα(t) =
1

2πi

∫
γϕ

eα(−ztα)R(z;A)dz,

where γϕ = {R+e
iϕ} ∪ {R+e

−iϕ} is oriented counter-clockwise. We note that

Sα(t) =

∫ ∞

0

Ψα(α)T (st
α)x ds, x ∈ X, (2.8)

Pα(t) =

∫ ∞

0

αsΨα(α)T (st
α)x ds, x ∈ X. (2.9)

Lemma 2.4. [37, Theorem 3.1] If t ∈ Σ0
π/2−ω and ω < π/2 − | arg t|, then Sα(t)

and Pα(t) are bounded linear operators on X. Furthermore,

∥Sα(t)x∥ ≤ ks(α, γ)t
−α(1+γ)∥x∥, ∀t > 0,∀x ∈ X, (2.10)

∥Pα(t)x∥ ≤ kp(α, γ)t
−α(1+γ)∥x∥, ∀t > 0,∀x ∈ X (2.11)

where ks(α, γ) = C0
Γ(−γ)

Γ(1−α(1+γ)) and kp(α, γ) = αC0
Γ(1−γ)
Γ(1−αγ) for some positive con-

stant C0.

Lemma 2.5. [37, Theorem 3.2] For t > 0, the operators Sα(t) and Pα(t) are
continuous in the uniform operator topology. Further, the continuity is uniform on
[r,∞) for every r > 0.

Lemma 2.6. [37, Theorem 3.5] If R(λ;−A) is compact for every λ > 0, then Sα(t)
and Pα(t) are compact for every t > 0.

We recall the definition of fractional integral and derivative of a function.

Definition 2.7. The Riemann-Liouville fractional integral of order η of h ∈ L1(I;X)
with the lower limit zero is defined as

Jη
t h(t) =

1

Γ(η)

∫ t

0

h(s)

(t− s)1−η
ds, t > 0, η > 0

provided that the right hand side is defined pointwise on [0,∞), where Γ(·) is the
Gamma function.

Definition 2.8. Let h ∈ Cm−1(I;X) and (Jη
t h)

(m) ∈ L1(I;X). The Caputo de-
rivative of order η of h is defined as

cD
η
t h(t) = Dm

t Jm−η
t

(
h(t)−

m−1∑
k=0

tk

k!
h(k)(0)

)
, t > 0, m− 1 < η < m,
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where Dm
t = dm

dtm .

Lemma 2.9. [37, Theorem 3.4] The following properties hold.

(i) Let β > 1 + γ. For all x ∈ D(Aβ), lim
t→0+

Sα(t)x = x;

(ii) For all x ∈ D(A), t > 0, Dα
t Sα(t)x = −ASα(t)x;

We consider the following fractional Cauchy problem:

cD
α
t u(t) +Au(t) = f(t), t > 0,

u(0) = u0,

}
(2.12)

where u0 ∈ X and f : (0,∞) → X.

Definition 2.10. A continuous function u : (0,∞) → X is said to be a mild
solution of problem (2.12) if u satisfies the following integral equation

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.

Theorem 2.11. Let A ∈ Fγ
ω(X), where 0 < ω < π

2 . Suppose that f ∈ D(A) and
Af(t) ∈ L∞((0, T ];X). Then for each u0 ∈ X, Problem (2.12) has a unique mild
solution on (0, t0] for some 0 < t0 ≤ T.

For a proof of the theorem we refer to Wang et. al [37, Theorem 4.1]. Further,
we remark that [37, Theorem 4.1] has been exteded in Kostić [27, Theorem 4.3].
We use the following notion.

Let S be the set defined by

S = {u| u : (−∞, a] → X,u|(−∞,0] ∈ B, u|J ∈ C(J,X)}.

Definition 2.12. A function u ∈ S is called a mild solution to problem (1.1) if

(i) u0 = ϕ ∈ B on (−∞, 0],
(ii) the function Pα(t− s)Ag(s, us) is integrable for each s ∈ [0, t],
(iii) u satisfies the following integral equation

u(t) = Sα(t)[ϕ(0) + g(0, ϕ)]− g(t, ut)

+

∫ t

0

(t− s)α−1Pα(t− s)Ag(s, us)ds

+

∫ t

0

(t− s)α−1Pα(t− s)f(s, us)ds, t ∈ [0, a]. (2.13)

We make the following assumptions on f and g.

(B2) Let f : J × B → X be a Carathéodory function and for any r > 0 there
exist functions mr(t) ∈ Lp(J ;R+) such that

∥f(t, x)∥ ≤ mr(t) and lim
r→+∞

∥mr(t)∥Lp(J)

r
= ρ < ∞ (2.14)

∥f(t, x)∥B ≤ cf (∥x∥B + 1). (2.15)

(B3) Let g : J × B → X1 be a continuous map such that

∥g(t, x)∥1 ≤ cg(∥x∥B + 1), (2.16)

∥g(t, x1)− g(s, x2)∥1 ≤ Lg∥x1 − x2∥B (2.17)

for all x1, x2 ∈ B and s, t ∈ J and for some positive constants cg and Lg.
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We also recall the Krasnoselskii’s fixed point theorem. We refer the reader for proof
to Burton [11].

Theorem 2.13. Let P be a map from a closed bounded convex subset S of X into
S. Suppose that Px = P1x + P2x for x ∈ S and P1u + p2v ∈ S for every pair
u, v ∈ S. If P1 is contraction and P2 is compact, then the equation P1u + p2u = u
has a solution in S.

3. Existence and uniqueness of mild solution

The following theorem gives the existence of a mild solutions to Problem (1.1).

Theorem 3.1. Let the assumptions (B1)-(B3) hold and ϕ(0) ∈ D(A) with ∥ϕ(0)∥D(A) ≤
LB∥ϕ∥B. Then Problem (1.1) has a mild solution on (−∞, t0] for some 0 < t0 ≤ a
if

cgk1
(
1 + kp(α, γ)a

−αγ
)
+ kp(α, γ)ρ

{
a1−(1+αγ)q

1− (1 + αγ)q

} 1
q

< 1, (3.18)(
k1Lg∥A−1∥+ Lgkp(α, γ)k1

a−αγ

−αγ

)
< 1 (3.19)

Proof. We define a map z : (−∞, a] → X defined as

z(t) =

{
ϕ(t) for t ∈ (−∞, 0],
Sα(t)ϕ(0) for t ∈ J.

This implies that z0 = ϕ. Let u(t) = y(t) + z(t), −∞ < t ≤ a. Then u satisfies
(2.13) if and only if y satisfies y0 = 0 and

y(t) = Sα(t)g(0, ϕ)− g(t, yt + zt)

+

∫ t

0

(t− s)α−1Pα(t− s)Ag(s, ys + zs)ds

+

∫ t

0

(t− s)α−1Pα(t− s)f(s, ys + zs)ds, t ∈ J. (3.20)

Let S0 be the set defined by

S0 = {y ∈ S : y0 = 0}.

Then (S0, ∥ · ∥S0) is a Banach space equipped with the seminorm ∥ · ∥S0 defined as

∥y∥S0 = ∥y0∥B + sup
t∈J

∥y(t)∥ = sup
t∈J

∥y(t)∥ for y ∈ S0.

For r ≥ 0, let Br = {u ∈ S0 : ∥u∥ ≤ r}. Then Br is uniformly bounded and for
y ∈ Br, we have

∥yt + zt∥B ≤ ∥yt∥B + ∥zt∥B
≤ k1 sup

s∈[0,t]

∥y(s)∥+ k2∥y0∥B + k1 sup
s∈[0,t]

∥z(s)∥+ k2∥z0∥B

≤ k1r + ∥A−1∥ks(α, γ)t−α(1+γ)∥ϕ(0)∥D(A) + ∥ϕ∥B
≤ k1r + ∥A−1∥ks(α, γ)t−α(1+γ)

0 LB∥ϕ∥B + ∥ϕ∥B = r′(say),
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where 0 < t0 ≤ a. Next, we define a map Q : S0 → S0 by

Qy(t) =


0, t ∈ (−∞, 0],
Sα(t)g(0, ϕ)− g(t, yt + zt)

+
∫ t

0
(t− s)α−1Pα(t− s)Ag(s, ys + zs)ds

+
∫ t

0
(t− s)α−1Pα(t− s)f(s, ys + zs)ds, t ∈ J.

We claim that Q(Br) ⊂ Br for some r > 0. Suppose this is not the case, then for

each r > 0, there exists ỹ ∈ Br and t̃ ∈ J such that ∥Qỹ(t̃)∥ > r. By assumption
(B2)− (B3) and the estimates (2.10), (2.11) (see Lemma 2.4), we have

r < ∥Qỹ(t̃)∥

≤ ∥Sα(t̃)g(0, ϕ)∥+ ∥g(t̃, yt̃ + zt̃)∥+
∫ t̃

0

∥(t̃− s)α−1Pα(t̃− s)Ag(s, ys + zs)∥ds

+

∫ t̃

0

∥(t̃− s)α−1Pα(t̃− s)f(s, ys + zs)∥ds

≤ k sup
t∈J

∥Sα(t̃)∥cg(∥ϕ∥B + 1) + cg

(
k1r + ∥A−1∥ks(α, γ)t−α(1+γ)

0 LB∥ϕ∥B + ∥z∥B
)

+ cgkp(α, γ)

∫ t̃

0

(t̃− s)−1−αγ(1 + ∥ys + zs∥B)ds+ kp(α, γ)

∫ t̃

0

(t̃− s)−1−αγmr(s)ds

≤ k sup
t∈J

∥Sα(t̃)∥cg(∥ϕ∥B + 1) + cg

(
k1r + ∥A−1∥ks(α, γ)t−α(1+γ)

0 LB∥ϕ∥B + ∥z∥B
)

+

[
k1r + ∥A−1∥ks(α, γ)t−α(1+γ)

0 LB∥ϕ∥B + ∥z∥B
]
cgkp(α, γ)a

−αγ

+ kp(α, γ)∥mr∥Lp(0,a)

{
a1−(1+αγ)q

1− (1 + αγ)q

} 1
q

,

where q = p
p−1 and k is some constant. Making r → ∞, we obtain that

1 < cgk1
(
1 + kp(α, γ)a

−αγ
)
+ kp(α, γ)ρ

{
a1−(1+αγ)q

1− (1 + αγ)q

} 1
q

,

which gives a contradiction to (3.18). Thus for r > 0, we have Q(Br) ⊂ Br. Now
we decompose the map Q as Q = Q1 +Q2, where

Q1y(t) = Sα(t)g(0, ϕ)− g(t, yt + zt) +

∫ t

0

(t− s)α−1Pα(t− s)Ag(s, ys + zs)ds,

Q2y(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s, ys + zs)ds.
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We claim that the operator equation y = Q1y + Q2y has solution in Br. Step I:
We show that Q1 is contraction on Br. For any u, v ∈ Br, we have

∥Q1u(t)−Q1v(t)∥
≤ ∥g(t, ut + zt)− g(t, vt + zt)∥

+

∫ t

0

(t− s)α−1∥Pα(t− s)∥∥g(s, us + zs)− g(s, vs + zs)∥1ds

≤ Lg∥A−1∥∥ut − vt∥B + Lgkp(α, γ)∥ut − vt∥B
∫ t

0

(t− s)α−1−α(1+γ)∥Pα(t− s)∥ds

≤ k1Lg∥A−1∥ sup
0≤s≤t

∥u(s)− v(s)∥+ Lgkp(α, γ)k1 sup
0≤s≤t

∥u(s)− v(s)∥a
−αγ

−αγ

=

(
k1Lg∥A−1∥+ Lgkp(α, γ)k1

a−αγ

−αγ

)
sup

0≤s≤t
∥u(s)− v(s)∥.

Taking the supremum over t ∈ J , we obtain that

∥Q1u−Q1v∥S0 ≤ C∥u− v∥S0 ,

where C =

(
k1Lg∥A−1∥+ Lgkp(α, γ)k1

a−αγ

−αγ

)
. By assumption (3.19), Q1 is a con-

traction on Br.
Step II: To show that the operator Q2 is completely continuous on Br. We

begin with showing that the operator Q2 is continuous. Let {y(n)(t)} be sequence
in Br such that y(n) → y as n → ∞ in S0 for some y ∈ Br. By hypothesis (B2), we
have

∥f(t, y(n)t + zt)− f(t, yt + zt)∥ → 0 as t → ∞

and

∥f(t, y(n)t + zt)− f(t, yt + zt)∥ ≤ 2mr(t)

for a. e. t ∈ J. Thus

(t− s)α−1∥Pα(t− s)f(t, y
(n)
t + zt)∥ ≤ kp(α, γ)(t− s)−1−αγmr(t) ∈ L1(J).

It follows from the dominated convergence theorem that

∥Q2y
(n)(t)−Q2y(t)∥

≤ kp(α, γ)

∫ t

τ

(t− s)α−1∥Pα(t− s)∥∥f(t, y(n)t + zt)− f(t, yt + zt)∥ds → 0

as n → ∞. That is lim
n→∞

∥Q2y
(n) −Q2y∥ = 0. So Q2 is continuous in Br.

Step III: We show that the set {Q2u(t) : t ∈ J, u ∈ Br} is equicontinuous. Let
0 < τ < t ≤ a and δ > 0 small enough. Form Lemma 2.5 and hypothesis (B2), it
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follows that

∥Q2y(t)−Q2y(τ)∥

≤
∫ t

τ

(t− s)α−1∥Pα(t− s)f(s, ys + zs)∥ds

+

∫ τ−δ

0

(t− s)α−1∥[Pα(t− s)− Pα(τ − s)]f(s, ys + zs)∥ds

+

∫ τ

τ−δ

(t− s)α−1∥[Pα(t− s)−Pα(τ − s)]f(s, ys + zs)∥ds

+

∫ τ

0

|(t− s)α−1 − (τ − s)α−1|∥Pα(t− s)f(s, ys + zs)∥ds

≤ kp(α, γ)

(
(t− τ)(1+αγ)q

1− (1 + αγ)q

) 1
q

∥mr∥Lp(J)

+ sup
s∈[0,τ−δ]

∥Pα(t− s)− Pα(τ − s)∥
(∫ τ−δ

0

(τ − s)qα−qds

) 1
q

∥mr∥Lp(J)

+ kp(α, γ)

∫ τ

τ−δ

(τ − s)α−12(τ − s)−α(γ+1)mr(s)ds

+ kp(α, γ)

(∫ τ

0

(τ − s)−q(αγ+1) − (t− s)−q(αγ+1)

) 1
q

∥mr∥Lp(J)

≤ kp(α, γ)

(
(t− τ)(1+αγ)q

1− (1 + αγ)q

) 1
q

∥mr∥Lp(J)

+ sup
s∈[0,τ−δ]

∥Pα(t− s)− Pα(τ − s)∥
(
τ1+q(α−1) − δ1+q(α−1)

1 + q(α− 1)

) 1
q

∥mr∥Lp(J)

+ kp(α, γ)

(
δ1−(αγ+1)q

1− (αγ + 1)q

) 1
q

∥mr∥Lp(J)

+ kp(α, γ)

(
(t− τ)1−(αγ+1)q

1− (αγ + 1)q
+

τ1−(αγ+1)q − t1−(αγ+1)q

1− (αγ + 1)q

) 1
q

∥mr∥Lp(J)

→ 0

as t → τ and δ → 0. Thus for y ∈ Br, we obtain

∥Q2y(t)−Q2y(τ)∥ → 0 as t → τ .

By Lemma 2.4 and assumption (B2), we have∫ t

0

(t− s)α−1∥Pα(t− s)f(s, ys + zs)∥ds ≤ kp(α, γ)

(
t1−(αγ+1)q

1− (αγ + 1)q

) 1
q

∥mr∥Lp(J).

Hence
∥Q2y(t)∥ → 0

as t → 0, where the limit is independent of y ∈ Br. Finally, we show that the set
S1 = {Q2y(t) : y ∈ Br, t ∈ [0, a]} is precompact in X. Let t ∈ (0, a] be fixed and
ϵ, η > 0. We define the following map

Pϵ,ηy(t) =

∫ t−ϵ

0

∫ ∞

δ

ατ(t− s)α−1Ψα(τ)T ((t− s)ατ)f(s, ys + zs)ds
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for y ∈ Br. We note that hypothesis (B1) and Lemma 2.6 imply that {T (t) : t > 0}
is compact. Thus for each t ∈ (0, a] and 0 < ϵ < t, the set S1 is precompact in X.
Further, it follows from hypothesis (B2) and (2.8), (2.9) that

∥Q2y(t)− Pϵ,ηy(t)∥

≤

∥∥∥∥∥
∫ t

0

∫ δ

0

ατ(t− s)α−1Ψα(τ)T ((t− s)ατ)f(s, ys + zs)ds

∥∥∥∥∥
+

∥∥∥∥∫ t

t−ϵ

∫ ∞

δ

ατ(t− s)α−1Ψα(τ)T ((t− s)ατ)f(s, ys + zs)ds

∥∥∥∥
≤ kp(α, γ)

∫ t

0

(t− s)−1−αγmr(s)ds

∫ δ

0

τ−γΨα(τ)dτ

+ kp(α, γ)

∫ t

t−ϵ

(t− s)−1−αγmr(s)ds

∫ ∞

δ

τ−γΨα(τ)dτ

≤ kp(α, γ)

(
a1−(αγ+1)q

1− (αγ + 1)q

) 1
q

∥mr∥Lp(J)

∫ δ

0

τ−γΨα(τ)dτ

+ kp(α, γ)

(
ϵ1−(αγ+1)q

1− (αγ + 1)q

) 1
q

∥mr∥Lp(J)
Γ(1− γ)

Γ(1− γα)
.

It follws that

∥Q2y(t)− Pϵ,ηy(t)∥ → 0 as ϵ, δ → 0+.

Thus there are precompact sets arbitrarily close to the set S1. Hence for each
t ∈ [0, a], the set {Q2y(t) : y ∈ Br} is precompact in X. By the Arzela-Ascoli
theorem, Q2 is compact operator.

By the Krasnoselskii’s fixed point theorem, Q = Q1 + Q2 has a fixed point on
Br. This completes the proof.

�

The uniqueness of mild solution is proved with a stronger condition on the func-
tion f.

(B2)′ There exists a positive constant Lf such that the continuous map f : J ×
B → X satisfies

∥f(t, x1)− f(t, x2)∥ ≤ Lf (∥x1 − x2∥) (3.21)

for all x1, x2 ∈ B, and t ∈ J .

Theorem 3.2. Let the assumptions (B1), (B2)′ and (B3) hold. Then Problem
(1.1) has a

unique mild solution on [0, t0] with 0 < t0 ≤ a for each ϕ(0) ∈ D(A) if(
k1Lg∥A−1∥+ k1Lgkp(α, γ)

a−αγ

−αγ
+ k1Lfkp(α, γ)

a−αγ

−αγ

)
< 1. (3.22)

Proof. As in Theorem 3.1, we define a map Q : S0 → S0 by

Qy(t) =


0, t ∈ (−∞, 0],
Sα(t)g(0, ϕ)− g(t, yt + zt)

+
∫ t

0
(t− s)α−1Pα(t− s)Ag(s, ys + zs)ds

+
∫ t

0
(t− s)α−1Pα(t− s)f(s, ys + zs)ds, t ∈ J.
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For u, v ∈ S0 and t ∈ J , we have

∥Qu(t)−Qv(t)∥
≤ ∥g(t, ut + zt)− g(t, vt + zt)∥

+

∫ t

0

(t− s)α−1∥Pα(t− s)∥∥Ag(s, us + zs)−Ag(s, vs + zs)∥ds

+

∫ t

0

(t− s)α−1∥Pα(t− s)∥∥f(s, us + zs)− f(s, vs + zs)∥ds

≤ Lg∥A−1∥(∥ut − vt∥B) + Lgkp(α, γ)

∫ t

0

(t− s)−αγ−1∥(∥us − vs∥B)ds

+ Lfkp(α, γ)

∫ t

0

(t− s)−αγ−1(∥us − vs∥B)ds

≤ Lg∥A−1∥k1(∥u− v∥S0) + Lgkp(α, γ)

∫ t

0

(t− s)−αγ−1k1(∥u− v∥S0)ds

+ Lfkp(α, γ)

∫ t

0

(t− s)−αγ−1k1(∥u− v∥S0)ds

≤
(
k1Lg∥A−1∥+ k1Lgkp(α, γ)

a−αγ

−αγ
+ k1Lfkp(α, γ)

a−αγ

−αγ

)
∥u− v∥S0 .

By the condition (3.22), the map Q is a contraction on S0. By the Banach fixed
point theorem, Q has a fixed point on S0. Thus Problem (1.1) has a unique mild
solution. �

4. Continuous dependence of solutions

The section is devoted to show the continuous dependence of the mild solution
to the phase space.

Theorem 4.1. Let ϕ1, ϕ2 ∈ B such that ∥ϕ1(0)− ϕ2(0)∥D(A) ≤ LB∥ϕ1 − ϕ2∥B for
some constant LB > 0. Suppose that hypotheses of Theorem 3.2 are satisfied. If
u1(t) and u2(t) are two solutions to the problem

cD
α
t [u(t) + g(t, ut)] +Au(t) = f(t, ut), t ∈ J = [0, a],

u(t) = ϕi(t), (−∞, 0], i = 1, 2,

}
(4.23)

then we have

∥u1t − u2t∥B ≤
(
k1

C

1−D
+ ks(α, γ)t

−α(1+γ)
0

)
∥ϕ1 − ϕ2∥B.

Proof. As in the proof of Theorem 3.1, we write ui as ui = yi+zi, 0 ≤ t ≤ a, where
yi and zi are defined as in Theorem 3.1. Furthermore we have uit = yit + zit, 0 ≤
t ≤ a, and yi satisfies

yi(t) =


0, t ∈ (−∞, 0],
Sα(t)g(0, ϕi)− g(t, yit + zit)

+
∫ t

0
(t− s)α−1Pα(t− s)Ag(s, yis + zis)ds

+
∫ t

0
(t− s)α−1Pα(t− s)f(s, yis + zis)ds, t ∈ J.
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For t ∈ [0, a], we have

∥y1(t)− y2(t)∥
≤ ∥Sα(t)[g(0, ϕ1)− g(0, ϕ2)]∥+ ∥[g(t, y1t + z1t)− g(t, y2t + z2t)]∥

+

∫ t

0

(t− s)α−1∥Pα(t− s)∥∥[Ag(s, y1s + z1s)−Ag(s, y2s + z2s)]∥ds

+

∫ t

0

(t− s)α−1∥Pα(t− s)∥∥[f(s, y1s + z1s)− f(s, y2s + z2s)]∥ds

≤ Lgks(α, γ)∥A−1∥t−α(1+γ)
0 ∥ϕ1 − ϕ2∥B + Lg∥A−1∥

(
∥y1t − y2t∥B + ∥z1t − z2t∥B

)
+ (Lg + Lf )kp(α, γ)

a−αγ

−αγ

(
∥y1t − y2t∥B + ∥z1t − z2t∥B

)
≤ Lgks(α, γ)∥A−1∥t−α(1+γ)

0 ∥ϕ1 − ϕ2∥B +

(
Lg∥A−1∥+ (Lg + Lf )kp(α, γ)

a−αγ

−αγ

)
×

(
k1∥y1 − y2∥S0

+ k1 sup
t∈J

∥z1(t)− z2(t)∥+ k2∥ϕ1 − ϕ2∥B
)

≤ Lgks(α, γ)∥A−1∥t−α(1+γ)
0 ∥ϕ1 − ϕ2∥B +

(
Lg∥A−1∥+ (Lg + Lf )kp(α, γ)

a−αγ

−αγ

)
×
(
k1∥y1 − y2∥S0

+ k1ks(α, γ)t
−α(1+γ)
0 ∥ϕ1 − ϕ2∥B + k2∥ϕ1 − ϕ2∥B

)
= C∥ϕ1 − ϕ2∥B +D∥y1 − y2∥S0 ,

where

C = Lgks(α, γ)∥A−1∥t−α(1+γ)
0

+

(
Lg∥A−1∥+ (Lg + Lf )kp(α, γ)

a−αγ

−αγ

)
(k1ks(α, γ)t

−α(1+γ)
0 + k2)

and D =

(
Lg∥A−1∥+ (Lg + Lf )kp(α, γ)

a−αγ

−αγ

)
k1. It follows that

∥y1 − y2∥S0 ≤ C

1−D
∥ϕ1 − ϕ2∥B. (4.24)

Again we have uit = yit + zit, t ∈ J . Using (4.24), we obtain,

∥u1t − u2t∥B ≤ ∥y1t − y2t∥B + ∥z1t − z2t∥B
≤ k1∥y1 − y2∥S0 + ks(α, γ)t

−α(1+γ)
0 ∥ϕ1 − ϕ2∥B

≤
(
k1

C

1−D
+ ks(α, γ)t

−α(1+γ)
0

)
∥ϕ1 − ϕ2∥B

which completes the proof. �

5. Application

To apply the results obtained in the previous section, we consider the following
problem in X = Cl([0, 1])(the space of all complex valued Hölder continuous func-
tions on [0, 1], 0 < l < 1). For 0 < T < 1 and (x, t) ∈ (0, 1) × (0, T ), we consider



90 RAJIB HALOI JFCA-2018/9(2)

the following problem in X [1],

∂α

∂tα

[
u(t, x)−

∫ 0

−∞
R1(θ, u(t+ θ, x))dθ

]
− ∂2u

∂x2
=

∫ 0

−∞
R2(θ, u(t+ θ, x))dθ,

u(t, 0) = u(t, 1) = 0,
u(θ, x) = u0(θ, x), −∞ < θ ≤ 0,

(5.25)
where ∂α

∂tα denotes the Caputo fractional derivative of order α, 0 < α < 1, R1, R2 :
(−∞, 0]× R → R, v0 : (−∞, 0]× [0, 1] → R are continuous functions.

Let us define the set Bη as

Bη =

{
ϕ | ϕ : (−∞, 0] → X is continuous and lim

θ→−∞
eθηϕ(θ)exists

}
.

Then Bη is a Banach space endowed with the norm ∥ϕ∥η = sup
θ≤0

(eθη||ϕ(θ)||) and

(A1), (A2), (A3) are satisfied [1]. Let u(t, ·) = v(t)(·),

Av = −d2u

dx2
, v ∈ D(A), (5.26)

where D(A) = {u ∈ C2+l[0, 1] : u(0) = u(1) = 0}. We note that [37]

(a) the domain of A is not dense X;
(b) there exists θ, δ > 0 such that

σ(A+ θ) ⊂ Σπ
2 −δ = {λ ∈ C \ {0} : | arg λ| ≤ π

2
− δ} ∪ {0}

∥R(λ;A+ θ)∥L(Cl[0,1]) ≤
C

λ1−l/2
, λ ∈ C \ Σπ

2 −δ

for some positive constant C.

This implies that the operator A ∈ F−1+l/2
π
2 −δ (X). Then Problem (5.25) can be put

in the following form

cD
α
t [v(t) + g(t, vt)] +Av(t) = f(t, vt),

v(0) = ϕ ∈ Bη,

}
(5.27)

where g(t, ϕ)(x) = −
∫ 0

−∞ R1(θ, v(θ)(x))dθ and f(t, ϕ)(x) = −
∫ 0

−∞ R2(θ, v(θ)(x))dθ.
Furthermore, we assume the following conditions

(i) R1 and R2 are nonnegative integrable functions functions on (−∞, 0] such
that

|Ri(θ, ξ1)−Ri(θ, ξ1)| ≤ c∥ξ1 − ξ2∥

for some constant c > 0.
(ii) limθ→−∞ eθηv0(θ, x) exists uniformly for x ∈ [0, 1].
(iii) v0(0, ·) ∈ D(A). Assumption (i) implies that, for

It follows from assumption (i) that f and g satisfy assumptions (B2)′ and (B3).

Theorem 5.1. For each v0 ∈ D(A), Problem (5.27) has a unique mild solution.
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