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THE QUALITATIVE ANALYSIS OF A RATIONAL SYSTEM OF
DIFFERENCE EQUATIONS

M. GUMUS AND O. OCALAN

ABSTRACT. The purpose of this paper is to study the dynamical behavior of
positive solutions for a system of rational difference equations of the following
form
QUn—1 v _ a1VUn—1

Bvhol T B bl
where the parameters o, 8,7, a1, 81,71,P,¢,P1,q1 are positive real numbers
and the initial values u_;,v_; are non-negative real numbers for i = 0,1, 2.
Some examples are given to demonstrate the effectiveness of results obtained.

Un41 = n=0,1,..

1. INTRODUCTION

In the last two decades, many papers appeared focusing on the investigation of
the qualitative analysis of solutions of difference equations and their systems (see
[T, B, @, ol 7, 8 M1, 12, 06, 17, 19, 20, 21, 22]). One of the reasons for this is a
necessity for some techniques which can be used in investigating equations arising
in mathematical models describing real-life situations in physics, computer sciences,
population biology, economics, probability theory, genetics and so on. That is, the
theory of difference equations gets a central position in applicable analysis. Hence,
it is very valuable to study the behavior of solutions of rational difference equations
(or their systems) and to discuss the local aysmptotic stability of their equilibrium
points and global behavior of solutions.

In [16], Kurbanl et al. studied the behavior of positive solutions of the following
system of difference equations

LTn—1 Yn—1

—, = = 07 ]. s
YnTp—1 +1 Yt ’

— Il =
TnYn—1+1
where the initial conditions are arbitrary non-negative real numbers.
In [23], Zhang et al. studied the dynamical behavior of positive solutions for a
system for third-order rational difference equations
Tn—2 _ Yn—2
B+ ynynflyn72’ it = A + TnTn—1Tn—2

Tn41 =

Tny1 = ,n=0,1,....

2010 Mathematics Subject Classification. 39A10, 39A30.

Key words and phrases. Difference equations, steady states, stability, rate of convergence,
invariant interval.

Submitted Sep. 27, 2017.



114 M. GUMUS AND O. OCALAN JFCA-2018/9(2)

In [], Din et al. studied the dynamics of a system of fourth-order rational
difference equations

QTn—3 _ A1Yn—3
B+ YYnYn-1Yn—2Yn-3 b1 =BF NTnTr—1Tn—2Tn—3
In [20], Touafek and Elsayed investigated the behavior of solutions of systems of
difference equations

Tpyl = ,n=20,1,...

Tn—3 _ Yn—3
1tz sum 1 T 1y, sen
with a non-zero real number’s initial conditions.

In [5], El-Owaidy et al. investigated the global behavior of the following differ-
ence equation

Tyl = ,n=0,1,...

ATp—1
B+yxh o
with non-negative parameters and non-negative initial values. Also, in [9] 0] the

authors studied the global behavior of positive solutions for a system of difference
equations of the following form

T+l = n=20,1,...

QTp—1 y. _ BYn—1
1+y;11_27 n+1 1+x%_27

where the parameters a, 8, ¢ and the initial conditions are positive.

Motivated by the discussion, in this paper we investigate the equilibrium points,
the local asymptotic stability of these points, the global behavior of positive solu-
tions, the existence unbounded solutions and the existence of the prime two-periodic
solutions and the rate of convergence of positive solutions of the following system

Tp+1 = :0,1,...

QUp—1 v o Q1Un—1
p.q o ‘ntl — D1, q1
B+ YUnUp,_o b1+ 1un Uy o

where the parameters «, 8,7, a1, 81,71, P, ¢, P1,q1 are positive and the initial con-
ditions u_g, u_1,uq,v_2, v_1,v9 € (0,00) which can be thought of as an extension
of the difference equation in [5] to the system of difference equations. Thus, we say
that our results extend and complement some results in the literature.

If the initial conditions w; = v; in the system for i € {-2,-1,0} and
a=a, B =70,v=,p=Dp, ¢ = q, then one obtain that u, = v, for all
n > —2, hence, the system reduces to the difference equation

QlUp—1
B+ yunug, o

which was studied by Ahmed in [2]. Therefore, here we consider the case u; # v;
for i € {—2,—1,0} and we investigate the system basing on this condition.

It is clear that the system can be reduced to the following system of differ-
ence equations

Up41 = ,nm=0,1,... (1.1)

Upy1 = ,n=0,1,...

TTp—1 SYn—1
Tyl = ——nL N e T 1.2
T T T TR, 0
. P 1/pitaqr 5\ /Pta .
by the change of variables u,, = 71 z, and v, = 5 Yn With r = %
and s = % So in order to study the system 1’ we investigate the system 1)

As far as we examine, there is no paper dealing with system (|1.1)). Therefore in
this paper, we focus on system (|1.1)) in order to fill in the gap.
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2. PRELIMINARIES

For the completeness in the paper, we find useful to remind some basic concepts
of the difference equations theory as follows:
Let us introduce the six-dimensional discrete dynamical system

Tpt+1 = fl(xnyl'n—lvxn—Qaymyn—lvyn—Q)» (2 1)
Yn4+1 = fQ(xnvxnflaxnfbynvynflvyn72)v ’

n € N where f; : I$ x I3 — I and fy : I{ x I3 — I5 are continuously differentiable

functions and Iy, I are some intervals of real numbers.Then, for every initial con-

ditions (z;,y;) € I1 X I3, for i = —2,—1,0 the system (2.1) has a unique solution

{(@n, yn) oz 2

Definition 2.1. An equilibrium point of system is a point (T,7) that satisfies
T = H(E@7T79797)

y = f2(x7xa'r7y7y7y)'
Together with the system , if we consider the associated vector map

F= (fla Tny Tn—1,Tn-2, f27 Yns Yn—1, yn72)7
then the point (Z,7) is also called a fixed point of the vector map F.
Definition 2.2. Let (Z,7) be an equilibrium point of the system .

(i) An equilibrium point (T,7) is said to be stable if for every € > 0, there exists
0 > 0 such that for every initial values (x—;,y—;) € I1 x I, for i € {0,1,2} with

0 0
Sz =T <6, Y. |y — gl <9, implies |x, —T| < ¢, |y, — Y| < e forn € N.
i=—2 i=—2

(i) If an equilibrium point (T,7) is not stable, then it is said to be unstable.
(i4i) If an equilibrium point (T,7) is stable and there exists v > 0 such that

0 0

Do lwi—T <y Do li—vl <

i=—2 i=—2
and (Tpn,yn) = (T,7) as n — oo, then it is said to be asymptotically stable.
() If (xn,yn) — (T,7) as n — oo, then an equilibrium point (Z,7) is said to be a
global attractor.
(v) If an equilibrium point (T,7) is both global attractor and stable, then it is said
to be globally asymptotically stable.

Definition 2.3. If (Z,7) be an equilibrium point of a map

= (fla Ty Tn—1, Tn—2, f2, Yn, Yn—1, yn—2)
where f1 and fo are continuously differentiable functions at (Z,y). The linearized
system of about the equilibrium point (T,g) is
Xn+1 = F(Xn) = BX,
where
Ty
Tn—1
Tn—2
X, = "
" Yn
Yn—1
Yn—2
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and B is a Jacobian matrix of the system about the equilibrium point (T,7).

Definition 2.4. For the system X,,11 = F(X,), n = 0,1, ..., of difference equations
such that X is a fived point of F. If no eigenvalues of the Jocobian matriz B about
X has absolute value equal to one, then X is called hyperbolic. If there exists an
eigenvalue of the Jocobian matriz B about X with absolute value equal to one, then

X is called non-hyperbolic.

The following result, known as the Linearized Stability Theorem, is very useful
in determining the local stability character of the equilibrium point (Z, ) of system

E1).

Theorem 2.1. For the system X, 41 = F(X,,), n =0,1,..., of difference equations
such that X is a fized point of F. If all eigenvalues of the Jocobian matriz B about
X lie inside the open unit disk |\| < 1, then X is locally asymtotically stable. If
one of them has a modulus greater than one, then X is unstable.

For more details about definitions and results, we refer the reader to [13| 14} [15].

3. MAIN RESULTS

In this section we will prove our main results.
Theorem 3.1. We have the following cases for the equilibrium points of ;

i (To,yy) = (0,0) is always the equilibrium point of system (|1.2)).
ii If r > 1 and s > 1, then system (1.2) has the equilibrium point (Z1,7;) =
((s — 1)1/pl+ql7 (r — 1)1/p+q).
iii If » > 1 and s = 1, then system (1.2]) has the equilibrium point (Z2,7,) =
(0, (r — 1)t/P+9).
iv if r =1 and s > 1, then system (1.2)) has the equilibrium point (Z3,73) =
((s — 1)Y/pta ).
vifre(0,1), s=1and ﬁ is an even positive integer, then system |D
has the equilibrium point (Z4,7,) = (0, (r — 1)'/P*9).
. o 1 . e .
viIfr=1,s€(0,1) and prgr 1s an even positive integer, then system |D
has the equilibrium point (Ts,75) = ((s — 1)}/P191 0).
vii If r,s € (0,1) and pqu, pliql € 277, then it also has the positive equilib-
vium point (7, ) = (5 — 1)YPier, (¢ — 1)1/rta),

Proof. The proof is clear from the definition of equilibrium point. O

Theorem 3.2. Assume that {(z,,y.)} be a positive solution of system , one
has
k+1 _
r" e, n=2k+1
< <
Om"{ r*tley  n=2k+2
and
Ty, n=2k+1
< <
0<yn< { sPtlyy  n=2k+2

for all k > 0.
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Proof. It is clear that this assertion is true for & = 0. Assume that it is true for
k = kg. Also we have for k = kg + 1 that
o = & T2kt 1)+ STTo(ko41)-1 = TT2ko+1 S rrkotly 0 n=2(ko+1)+1
" To(ko+1)+2 < TT2(ko+1)+1-1 = TTaket2 < 17°0 T ag, n=2(ko + 1) + 2
and
Yn = { Ya(ho+1)4+1 < SYa(ko+1)—1 = SY2kot1 < 88Ty 1, m=2(kg + 1) +1
" Ya(kot1)+2 < SY2(kot1)41—1 = SYako42 < 8870 lyg, n=2(ko + 1) + 2
This completes our inductive proof. O

Corollary 3.3. Ifr < 1 and s < 1, then by Theorem [3.4 {(xn,yn)} converges
exponentially to the equilibrium point Py = (0,0).

Before we give the following theorems about the local asymptotic stability of the
above equilibrium points, we build the corresponding linearized form of the system
(1.2) and consider the following transformation:

(xnaxnfla xn72,yn7yn717yn72) - (fa fla f2vgvglg2)

TTn—1 _ _ _ SYn—1 — —
Tl 1= B 2 = Tty 9= T, 01 = Yny 92 = Y- The

Jacobian matrix about the fixed point (Z,%) under the above transformation is as
follows:

where f =

r TP@P‘FII*l rq@P‘FII*l
0 T 0 “wrr 0 T
1 0 0 0 0 0
_ 0 1 0 0 0 0
B(z,y) = sprgaP1tar—1 squyEP1 a1 s
~Tiiermz 0 (i) 0 Trarira 0
0 0 0 1 0 0
0 0 0 0 1 0

Where T8 PD,4,P1,q1 S (07 OO)
We summarize the local asymptotic stability of the equilibria of system (1.2)) as
follows:

Theorem 3.4. Ifr < 1 and s < 1, then the zero equilibrium point (To,T,) is locally
asymptotically stable.
Proof. The linearized system of about the equilibrium point (Zo,7,) = (0,0)
is given by

Xn+1 = B(fmgo)Xm
where X,, = (T, Tn—1, Tn—2, Yn> Yn—1,Yn—2) " and

0O 00 0O

1 0 0 0 0 O

_ 01 0 0 00
B($0790) = 0 0 0 0 s O
0O 001 00O

0 00 0 10

The characteristic equation of B(Zo,7,) is as follows;
PA) =X — (r+s)A* +7s0? = 0.

The roots of P(X\) are A2 = £4/s, Ag4 = 0, A5 6 = /7. Since all eigenvalues of
the Jacobian matrix B about (0,0) lie inside the open unit disk |A| < 1, the zero
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equilibrium point (Zg, 7,) is locally asymptotically stable. Thus, this completes the
proof. ([

Theorem 3.5. (i) If r > 1 and s > 1, then the positive equilibrium point (Z1,7;)
is locally unstable.

(i) If r < 1, s < 1 and ﬁ,pliql € 277, then the positive equilibrium point
(Ts,Tg) is locally unstable.

Proof. (i) The linearized system of (1.2)) about the equilibrium point (Z;,7;) =
((s — 1)V/Prtar (p —1)1/PH9) is given by

Xn+1 = B(Elvyl)Xnv

— T
where Xn - (mnaxnfla xn72aynayn717ynf2) and

0O 1 0 pxr 0 gqgx

1 0 0 0 0 O

_ 0 1 0 0 0 O
B('rlvyl) - py 0 qu O 1 0
0 0 O 1 0 O

0 0 0 0 1 0

The characteristic equation of B(Z1,7;) is as follows:

P(A) = M4 (—azyp® — 2) A +(1 — 2pgry) N>+ (pgzy (zyp® + 2) — ¢°xy — pazy — py (qypa® + qz))

where

s—1 P1<1H11 r—1 p:grgl
r=—
r
and R
r—1 7+ s—1 plplilql
Yy=—-
S

It is clear that P(\) has a root in the interval (1, 00) since
P(1) = pqry (zyp® +2) — pzy — ¢*zy — 3pqay — py (qyp°a® + qz)
2
—zy(p+q)

. ((s—l)miﬂ (r‘l)pﬂ;) (“JW(S_Um) o

_ _<(S—1)(7“—1) 5

)(p+q)2 <0, forr,s>1,p,q>0

TS
and
lim P(\) = 0.
A—00
This completes the proof.
(ii) The proof is similar to the proof of (i), so it will be omitted. O

Theorem 3.6. (i) If r > 1 and s = 1, then the equilibrium point (Ta,Yy) is non-
hyperbolic.

(i) If r =1 and s > 1, then the equilibrium point (T3, ys) is non-hyperbolic.

(i) If r <1, s =1 and ﬁ is an even positive integer, then the equilibrium point
(T4,74) ts non-hyperbolic.

(i) Ifr=1, s <1 and lequl 18 an even positive integer, then the equilibrium point
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(Z5,7s5) s non-hyperbolic.

Proof. (i) The linearized system of (1.2) about the equilibrium point (Z2,7,) =
(0, (r — 1)Y/P*9) is given by

Xn+1 = B(f%yZ)Xnv

where Xn = (mn,l'nfl;xnf%ynaynflvyn*Q)T and
01000 0
100000
o 01000 0
B@xm)=1 0 0 0 0 s 0
0007100
000010

The characteristic equation of B(T2,,) is as follows:

PO =X — (s+ D)X + A2 =0.
The roots of P(A) are A1 o = ++/s, Agq4 = 0, As6 = 1. Thus, the equilibrium
point (Za,7,) = (0, (r — 1)}/P+4) is non-hyperbolic point.

(ii) The proof is similar to the proof of (i), so it will be omitted.
(iii) It is clear from the proof of (i).
(iv) It is clear from the proof of (i). O

Now, we will study the global behavior of zero equilibrium point.

Theorem 3.7. If r < 1 and s < 1, then the zero equilibrium point (To,T,) is
globally asymptotically stable.

Proof. We know by Theorem that the equilibrium point (Zg,7,) of the system
(1.2)) is locally asymptotically stable. So, it suffices to prove for any {(zn,yn)}nZ _o
solution of system (|1.2)) that

lim (z,,y,) = (0,0).

n—oo
Since
TTp—1
0<2p41 = ——FF— <TTp_1
" 14 yﬁyi_g "
and
SYn—1
0< = ——F——— < SYn—
S YUn+d 1 +13?7,1$Z1_2 Yn—1,

we obtain by induction

Ton—1 < r"z_1 and xo, < r'xg
and

Yon—1 < $"y_1 and yo, < $"yo-
Thus, for r < 1 and s < 1, we obtain

lim (xnayn) = (070)

n— oo

This completes the proof. (I
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Theorem 3.8. Consider system and suppose that
r>1ands>1.

Then, we obtain the following invariant intervals, for i € {0,1,2};

i) If (z_i,y—i) € (0,(s — 1)M/Prtar) 5 ((r — 1)V/P44 o0), then (zn,yn) € (0, (s —
D/pitary s ((r — 1)+ 00) forn > 1.

i) If (x_s,y_i) € ((s — HYPrHa o0) x (0, (r — 1)/PF9), then (zn,yn) € ((s —
DY/Pita oo) x (0, (r — 1)/P+9) forn > 1.

Proof. i) Let (z_;,y_;) € (0,(s — 1)/Prta) 5 ((r — 1)V/P+4 o0) for i € {0,1,2}.
From system (1.2]), we have

_ rT—1 rT1 — 7, — 1/p1+q1
T = < =T =(s—1)
L+yoyly ~ 14+781
and _
5Y—1 sy —
y1 =T = (-

= P1,.q1 —pi1+gq
1+ zy'zh, 14z

We prove by induction that

(s yn) € (0, (s — 1)Y/Prrary 5 ((r — 1)Y/PF9 o0), for all n > 1. (3.1)
Suppose that (3.1)) is true for n = k& > 1. Then, from system (|1.2]), we have
_ TTk-1 rZ1 N S— 1/p1i+aq1
Tyl = — =T =(s—1)
L+ ypyioe 14707
and _
SYk— S _
Ye+1 = o s =g, = (r—1)"rHe.

L+aPal, — 14z te
Therefore, (3.1) is true for all n > —2. This completes the proof of (¢). Similarly,

we can obtain the proof of (i7) which will be omitted. O
Corollary 3.9. Consider system and suppose that

1 1
r<l,s<1and — €27"

pta m+a
hold. Then, we obtain the following invariant intervals, for i € {0,1,2};
Q) If (w-iyy-i) € (0, (s — )M/PrHa) s ((r — )P, 00), then (zn,yn) € (0,(s —
DY/pitan) s ((r — 1)Y/PH9 00) forn > 1.
i) If (x_s,y_i) € ((s — )Y/PrHa o0) x (0, (r — 1)/P9), then (2, yn) € ((s —
DY/Pitar oo) x (0, (r — 1)Y/P+a) forn > 1.

Theorem 3.10. Assume that r,s € (1,00), then there exists unbounded solutions
of system .

Proof. From Theorem we can assume without loss of generality that the solu-
tion {&n,yn} of system ([1.2)) is such that

T, < Ty = (s — 1)YPH and y, > 7, = (r — )YPH for n > 2.

Then
r = TXn—1 < TXn—-1 — )
T gyl T4 (r—1) T
and
_ SYn—1 SYn—1 _
Yn+1 = = Yn—1,

14+ahtzl 7 1+ (s—1)
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from which it follows that

lim z, =0and lim y, = c.
n—oo n— o0

This completes the proof. O

Corollary 3.11. Assume that r,s € (0,1) and ﬁ, pliql € 277, then there exists
unbounded solutions of system .

Theorem 3.12. If r = s = 1, then system possesses the prime period two
solution which is one of the following forms;

with x,y, z,w > 0.
Proof. Suppose that
M (x? y)? (Z7 w)7 (:L" y)’ (Z’ w)? R

be a prime period-two solution of system (|1.2)). Then we have

T rYy

T 1_|_wp+q’y: 1+ zpta (3.2)
and
sz sw
= 1+ yprta’ - 14 gpita (3.3)

such that « # y and z # w. Firstly, we consider the case both x # 0 and y # 0.
Then, we obtain from that z = w = (r — 1)/P+4 which is a contradiction.
Similarly, the case both z # 0 and w # 0 is impossible with . Thus, one of
them must be equal to zero. Then, we can assume that t =0,y #0, z =0, w # 0.

In this sense, we obtain from (3.2)) and (3.3) that » = s = 1. Therefore,

-+ (0,9), (0,w), (0, 9), (0,w), ...

is a prime two periodic solution of system with y,w > 0. The other cases are
similar and will be omitted.

In contrast, if 7 = s = 1 and choose the initial conditions such as x_o = g =
Yy_2=1yo=0,x_1 =6 and y_1 = 61, then we can see by induction that

(6,0), (81,0), (8,0), (61,0), ...

is the prime period two solution of system (1.2]). The other cases are similar and
will be omitted. Thus, the proof is completed. (I
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4. RATE OF CONVERGENCE

In this section, we will study the rate of convergence of a solution that converges
to the equilibrium point (0,0) of the system (1.2)). The following result gives the
rate of convergence of the solution of a system of difference equations:

Xnt1 =[A+ B(n)]X, (4.1)

where X,, is an m-dimensional vector, A € C™*™ is a constant matrix and B :
ZF — C™*™ is a matrix function satisfying

|B(n)|| = 0, when n — oo, (4.2)
where ||| denotes any matrix norm which is associated with the vector norm.

Proposition 4.1. [I8] Assume that condition holds, if X,, is a solution of
, then either X,, = 0 for all large n or

0= lim ¥/[X,|
n— oo
or

. ||Xn+1||
0= lim ————
=00 ”anl

exists and 0 is equal to the modulus of one the eigenvalues of the matriz A.

Assume that lim, , 2z, = T and lim, oy, = ¥, we will find a system of
limitting equations for the system (L.2)). The error terms are given as

2

2
Tyl —T = oA =T+ ) Bi(yn—i —7)

2 2
Ynt1 —Y = Zi:o Ci(xp—i —T) + Zz‘:o D;(Yn—i — 7).

=y, — y; therefore, it follows that

1 2 1 2 2
Gl = izoAi€n7i+§ .o Bien—i

2 2 1 2 2
il = Y —o Ciep_i+ ) o Dien—i

Set el =2, -7, e

where
A = 0, A1=— —  Ay=0
L+ynys o ’
(1 + ynyn—Q) (1 + ynyn—Q)
o — *Splyn_lfﬁlq_llle_Qy im0, Cy = 78(11%—;?52;?2?__217
(L+an'ay_5)? (1+an'ay_5)?
Dy = 0, D, o Dy =0.

= P1 .91
1+axn'z, 4
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If we consider the limitting case, it is clear that

nh_>rr;o Ay = 0, nlggo Al = TW and nh_}n;o Ay =0

nler;OBO = —%, nhﬁn;o By =0 and nleréoBg = —m,
lim Co = —W, lim Gy =0and lim Cy = —%
nll)néo Dy = 0, nh_)n;(} D, = Tt and nh_}rréo Dy =0

Thus, the limitting system of error terms at (0,0) can be written as follows:

En+1:KEn7
where
en
6%-1
e
E, = 22—2
6271
2
€n—2 6x1
and
0O 00 0O
1 0 00 0 O
01 0 0 0 O
K=Jr00) =14 6 0 0 s 0
0 001 00
0 00 01O

6x6
Using Theorem [4.1] we have the following result.

Theorem 4.2. Let {(Zn,yn)}52_5 be a solution of the system such that

lim z, =7 and lim y, =7
n—oo n—oo

where (Z,y) = (0,0). Then, the error vector E,, of every solution of the system
satisfies both of the following asymptotic relations:

E,
lim Y/|[E.| = [AJp(0,0)], lim [ B

= |AJr(0,0)]

where AJg(0,0) is equal to the modulus of one the eigenvalues of the Jacobian
matriz evaluated at the equilibrium point (0, 0).

5. NUMERICAL EXAMPLES

In order to verify our theoretical results we consider several interesting numerical
examples in this section. These examples represent different types of qualitative
behavior of solutions of the system . All plots in this section are drawn with
Mathematica.

Example (1) Consider the system with the initial values x_5 = 0.6,
x_1=2,20=0.1,y_2=0.2,y_1 =1, yo = 0.8. Also, if we choose the parameters
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asr =0.5,s=01p=2 qg=25,p =4, g1 =3, then we obtain the following
system
0.51‘7171 O-lynfl

TIn+l = 775 5 o Yn+1 = 77— 3
1+92yp o) T+ahad

The plot of system is shown in Figure 1.

Example (2) Consider the system with the initial values x_s = 0.6,
r_1=2,20=0.1,y_2=0.2,y_1 =1, yo = 0.8. Also, if we choose the parameters
asr =205, s=11,p=2qg=5, p1 =4, ¢ = 3, then we obtain the following
system

,n=0,1,... (5.1)

0.52,_1 1.1y
=" =—— n=0,1,... 5.2
Tn+1 1+y721y151727 Yn+1 1+.’L’%(E§l727 n P ( )

The plot of system (5.2)) is shown in Figure 2.
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FIGURE 1. The plot of FIGURE 2. The plot of
system (5.1) system (5.2)

Example (3) Consider the system with the initial values x_5 = 0.6,
r_1=2,20=0.1,y_0=0.2,y_1 =1, yo = 0.8. Also, if we choose the parameters
asr =12,s=11,p=2,qg=5,p =4, ¢ =3, then we obtain the following
system

1.2.73n_1 1-1yn—1
il = —— Ypyp1 = ————=—,n=0,1,.... 5.3
Tt T Y2Ys s It T +anay_s " (53)

The plot of system is shown in Figure 3.

Example (4) Consider the system with the initial values z_o = 0.6,
r_1=2,20=0.1,y_2=02,y_1 =1, yo = 0.8. Also, if we choose the parameters
asr=1,s=1,p=2,9g=05, p1 =4, ¢ = 3, then we obtain the following system

Tn—1 Yn—1
—_ =— 7 n=0,1,.. 5.4
1+y2ys Ynt1 14 z223 (5-4)

nvn—2
The plot of system (5.4)) is shown in Figure 4.

Tn4+1 =

6. CONCLUSIONS

This paper is a natural extension of the articles [2,[5, [0 [10]. We have studied some
dynamics of a six dimensional discrete system. We have investigated the steady
states of the system in detail. Also, we have studied the stability character of
these points using the linearization method . The main aim of dynamical systems
theory is to approach the global behavior and the rate of convergence. So, here
we have studied the global asymptotic stability and the rate of convergence of the
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FiGUureE 3. The plot of FiGURE 4. The plot of
system (5.3) system (5.4)

zero equilibrium point of the system. Also, the existence unbounded solutions and
the periodic nature of positive solutions of this system are investigated. Even if it
will be possible to obtain analytical conditions, it would be quite difficult to deal
with them. So, numerical simulations have been used to verify the correctness of
analytical results.
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