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NEW NUMERICAL APPROACH FOR SOLVING FRACTIONAL

DIFFERENTIAL- ALGEBRAIC EQUATIONS

HODA F. AHMED, MARINA B. MELAD

Abstract. This paper introduces a new approach for solving fractional differ-

ential algebraic equations (FDAEs) by using the operational matrix of Riem-
man Liouville (RL) fractional integral of the shifted Gegenbauer polynomials.

By using the new shifted Gegenbauer operational matrix (SGOM) of RL frac-
tional integral, the FDAEs are transformed into a system of algebraic equations

which are easily to solve. Numerical examples associated by numerical com-

parisons with other methods in the literature are introduced to illustrate the
efficiency and accuracy of the proposed approach.

1. Introduction

Recently, fractional calculus (FC) has made a scientific revolution in the tradi-
tional calculus. This is due to its several applications in many different scientific
fields like physics, chemistry, engineering, and etc. These applications are expressed
in the form of fractional differential equations (FDEs) or fractional differential- al-
gebraic equations (FDAEs) [1]-[4]. Many numerical methods are investigated to
present accurate numerical solutions for such problems, since most of these prob-
lems don’t have exact solutions. The methods such as Adomian decomposition
method [5]-[7], variational iteration method [8]-[10], spectral methods [11, 12] are
widely used in solving FDEs and FDAEs. Many physical applications are obviously
designated by systems of DAEs. These types of systems follow in the modeling of
power systems, electrical networks, optimal control, mechanical systems subject
to constraints, chemical process and in other numerous applications. Various nu-
merical approaches for approximating the solutions of DAEs have been presented
in [13]-[18]. Many important mathematical models can be expressed in terms of
FDAEs. So various numerical techniques are developed to solve these problems. In
this respect we refer to [19]-[23]. For more decades, spectral methods have obtained
a great interest in solving differential equations. These methods are characterized
by their precision for any number of unknowns. There are three main spectral
images, they are the Galerkin, collocation and Tau methods [24]. In the spectral
methods, the explicit formula for operational matrices of fractional integrals and
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derivatives for classical orthogonal polynomials are needed. Orthogonal functions
have attacked significant importance in dealing with various problems of differential
equations (DEs). By using these functions, the DEs are transformed into systems
of algebraic equations. Some types of orthogonal polynomials have been introduced
as basis functions of the operational matrices of fractional derivatives and integrals
which are used to solve ordinary and partial fractional differential equations [25]-
[32]. Ultraspherical (Gegenbauer) polynomials have many useful properties. They
achieve rapid rates of convergence for small range of the spectral expansion terms
[33]-[37]. This encourages many authors for applying these polynomials for solving
different kinds of DEs and FDEs. In this respect, we refer to [38]-[41] and [42, 43]
respectively.

In the present paper we investigate the operational matrix of the RL fractional
integral of the shifted Gegenbauer polynomials and use it with the Tau method to
present a numerical solution to the following FDAEs

Dνiyi(t) = f(t, y1, ..., yn, y
′

1, ..., y
′

n), i = 1, 2, ...,m− 1, t ≥ 0, 0 ≤ νi ≤ 1, (1)

yi(t) = gi(t, y1, ..., yn), i = m,m+ 1, ..., n, (2)

with the initial conditions

yi(0) = di, i = 1, ..., n, (3)

Where Dν is the RL fractional derivative. The analysis of the existence and unique-
ness of the FDEs and FDAEs have been introduced in [44]-[46] and [47], respectively.

The paper is organized as follows. In section 2 we review some necessary defini-
tions and properties of fractional calculus and ultraspherical (Gegenbauer) polyno-
mials. In section 3 the SGOM of fractional integration is derived. In section 4 the
convergence of the proposed method is discussed. In section 5 the proposed mecha-
nism of applying SGOM of fractional integration for solving FDAEs is discussed. In
section 6 the proposed method is used to solve several problems of FDAEs. Finally
conclusions are given in section 7.

2. Preliminaries and Definitions

2.1 Fractional Calculus Definitions
Definition 1 One of the popular definitions of fractionl integral is the RL, which
is defined by

Iνf(x) =
1

Γ(ν)

∫ x

0

(x− ξ)ν−1f(ξ)dξ,m− 1 < ν < m,m ∈ N, ν > 0, x > 0,

I0f(x) = f(x).

(4)

For more properties about RL fractional integral, see [48], we just recall the next
property

Iνtβ =
Γ(β + 1)

Γ(ν + β + 1)
tν+β . (5)

Definition 2 Dν is the RL fractional derivative of order ν which defined by

Dνf(t) =
dm

dtm
(Im−νf(t)),m− 1 < ν ≤ m,m ∈ N, ν ∈ R, (6)

where m is the smallest integer order greater than ν.
Lemma 1 If m− 1 < ν ≤ m, m ∈ N, then

(DνIν) f(t) = f(t),
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(IνDν) f(t) = f(t)−
m−1∑
i=0

f (i)(0+)
ti

i!
, t > 0. (7)

2.2 Shifted ultraspherical (Gegenbauer) polynomials and their proper-
ties
The ultraspherical (Gegenbauer) polynomials C

(α)
j (t), of degree j ∈ Z+, and as-

sociated with the parameter (α > −1
2 ) are a sequence of real polynomials in the

finite domain [−1, 1]. They are a family of orthogonal polynomials which has many
applications.
Definition 1 The ultraspherical (Gegenbauer) polynomials are a special class of

Jacobi polynomials P
(α,β)
j , with α = β = α− 1

2 so that

C
(α)
j (t) =

Γ(α+ 1
2 )Γ(j + 2α)

Γ(2α)Γ(j + α+ 1
2 )
P

(α− 1
2 ,α−

1
2 )

j (t), j = 0, 1, 2, ........

• There are useful relations to the Chebyshev polynomials of the first kind
Tj(t), second kind Uj(t) and the Legender polynomials Lj(t) with the
Gegenbaure polynomials as follows

Tj(t) ≡
j

2
lim
α→0

α−1C
(α)
j (t), j ≥ 1,

Uj(t) ≡ (j + 1)C
(1)
j (t),

and

Lj(t) ≡ C
( 1
2 )
j (t),

respectively.
• Ultraspherical polynomials are eigenfunctions of the following singular Sturm-

Liouville equation

(1− t2)
d2

dt2
φj(t)− (2α+ 1)t

d

dt
φj(t) + j(j + 2α)φj(t) = 0,

and may be generated using the recurrence equation

(j + 2α)C
(α)
j+1(t) = 2(j + α)tC

(α)
j (t)− jC(α)

j−1(t), j = 1, 2, ..........

with

C
(α)
0 (t) = 1, C

(α)
1 (t) = t.

• The ultraspherical polynomials can be obtained from the Rodrigues′ for-
mula

C
(α)
j (t) = (

−1

2
)j

Γ(α+ 1
2 )

Γ(j + α+ 1
2 )

(1− t2)
1
2−α

dj

dtj

[
(1− t2)j+α−

1
2

]
.

• The orthogonality relation of the Gegenbauer polynomials is given by the
weighted inner product〈

C
(α)
i (t), C

(α)
j (t)

〉
=

∫ 1

−1
C

(α)
i (t)C

(α)
j (t)ω(α)(t)dt = λ

(α)
j δi,j ,

where ω(α)(t) is the weight function, it is an even function given from
relation

ω(α)(t) = (1− t2)α−
1
2 ,
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and

λ
(α)
j = ‖C(α)

j (t)‖2 =
21−2απΓ(j + 2α)

j!(j + α)Γ2(α)
,

is the normalization factor and δi,j is the Kronecker delta function.
• To use these polynomials in the interval [0, L], the shifted Gegenbauer poly-

nomials are formed by replacing the variable t with 2t
L − 1, 0 ≤ t ≤ L. All

results of ultraspherical polynomials can be easily transformed to give the
corresponding results for their shifted ones. The shifted Gegenbauer can
be written as

C
(α)
S,j (t) = C

(α)
j (

2t

L
− 1), C

(α)
S,0 (t) = 1, C

(α)
S,1 (t) =

2t

L
− 1.

• It’s analytical form is given by

C
(α)
S,j (t) =

j∑
k=0

(−1)j−k
Γ(α+ 1

2 )Γ(j + k + 2α)

Γ(k + α+ 1
2 )Γ(2α)(j − k)!k!Lk

tk,

C
(α)
S,j (0) = (−1)j

Γ(j + 2α)

Γ(2α)j!
.

(8)

• The orthogonal relation of shifted Gegenbauer polynomials is getting from〈
C

(α)
S,i (t), C

(α)
S,j (t)

〉
=

∫ L

0

C
(α)
S,i (t)C

(α)
S,j (t)ω

(α)
S (t)dt = λ

(α)
S,j δi,j , (9)

where ω
(α)
S (t) is the weight function, it is an even function given from the

relation

ω
(α)
S (t) = (tL− t2)α−

1
2 ,

and

λ
(α)
S,j =

(
L

2

)2α

λ
(α)
j .

• These polynomials recover the shifted Chebyshev polynomials of the first

kind TS,j(t) ≡ C(0)
S,j(t), the shifted Legendre polynomials LS,j(t) ≡ C

( 1
2 )

S,j (t),

and the shifted Chebyshev polynomials of the second kind C
(1)
S,j(t) ≡

1
j+1US,j(t).

• The q times repeated derivative of the shifted Gegenbauer polynomials
given from the relation

DqC
(α)
S,j (t) =

22q(α+ q − 1)!

(α− 1)!
C

(α+q)
S,j−q (t), (10)

by substituting t = 0 at (10), we get a bout the relation

DqC
(α)
S,j (0) =

(−1)j−q22q(α+ q − 1)!Γ(j + q + 2α)

(α− 1)!Γ(2α+ 2q)(j − q)!
. (11)

• The square integrable function y(t) in [0, L] can be approximated by shifted
Gegenbauer polynomials as:

yN (t) =

N∑
j=0

ỹjC
(α)
S,N,j(t), (12)
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where the coefficients ỹj are computed from

ỹj = (λ
(α)
S,j )
−1
∫ L

0

y(t)ω
(α)
S (t)C

(α)
S,N,j(t)dt. (13)

• The approximation of function y(t) can be written in the vector form as

yN (t) = Y Tφ(t), (14)

where Y T = [ỹ0, ỹ1, ..., ỹN ] is the shifted Gegenbauer coefficient vector, and

φ(t) =
[
C

(α)
S,N,0(t), C

(α)
S,N,1(t), ..., C

(α)
S,N,N (t)

]T
(15)

is the shifted Gegenbauer vector.
• The q times repeated integration of the Gegenbauer vector is computed

from

Iqφ(t) ' P qφ(t), (16)

where P q is called the operational matrix (OM) of the integration of order
q.

3. Operational Matrix of Fractional Integration of the Shifted
Gegenbauer Polynomials

In this section, shifted Gegenbauer operational matrix (SGOM) of RL fractional
integral will be proved.
Theorem 1 Let φ(t) be the shifted Gegenbauer vector and ν > 0 then

Iνφ(t) ' P (ν)φ(t), (17)

where t ∈ [0, L] and P (ν) is called OM of fractional integration of order ν in the RL
sense, it is a square matrix of order (N + 1)× (N + 1) and is written as follows:

P (ν) =



∑0
k=0 ξ0,0,k

∑0
k=0 ξ0,1,k . . .

∑0
k=0 ξ0,N,k∑1

k=0 ξ1,0,k
∑1
k=0 ξ1,1,k . . .

∑1
k=0 ξ1,N,k

. . .

. . . . . .

. . .∑i
k=0 ξi,0,k

∑i
k=0 ξi,1,k . . .

∑i
k=0 ξi,N,k

. . .

. . . . . .

. . .∑N
k=0 ξN,0,k

∑N
k=0 ξN,1,k . . .

∑N
k=0 ξN,N,k


(18)

where ξi,j,k is given by:

ξi,j,k = Ξ×Υ,

where

Ξ =

i∑
k=0

(−1)i−k
Γ(α+ 1

2 )Γ(i+ k + 2α)

Γ(k + α+ 1
2 )Γ(2α)Γ(k + ν + 1)(i− k)!Lk

,

Υ =

j∑
f=0

(−1)j−f
j!(j + α)Γ2(α)Γ2(α+ 1

2 )Γ(2α+ j + f)Γ(ν + k + f + α+ 1
2 )

2(1−4α)πΓ(2α+ j)Γ(2α)Γ(α+ f + 1
2 )(j − f)!f !Γ(ν + k + f + 2α+ 1)Lk

(19)
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Proof. From relation (8) and by using Eqs. (4) and (5), we can write

IνC
(α)
S,i (t) =

i∑
k=0

(−1)i−k
Γ(α+ 1

2 )Γ(i+ k + 2α)

Γ(k + α+ 1
2 )Γ(2α)(i− k)!k!Lk

Iν(tk), t ∈ [0, L]

=

i∑
k=0

(−1)i−k
Γ(α+ 1

2 )Γ(i+ k + 2α)

Γ(k + α+ 1
2 )Γ(2α)(i− k)!Γ(ν + k + 1)Lk

tk+ν , i = 0, 1, 2, ...., N.

(20)
The function tk+ν can be written as a series of N + 1 terms of Gegenbauer polyno-
mial,

tk+ν =

N∑
j=0

t̃jC
(α)
S,j (t), (21)

Where

t̃j =

j∑
f=0

(−1)j−f
j!(j + α)Γ2(α)Γ2(α+ 1

2 )Γ(2α+ j + f)Γ(ν + k + f + α+ 1
2 )

2(1−4α)πΓ(2α+ j)Γ(α+ f + 1
2 )(j − f)!f !Γ(2α)Γ(ν + k + f + 2α+ 1)Lk

.

(22)
Now, by employing equations (20)-(22) we obtain

IνC
(α)
S,i (t) =

i∑
k=0

N∑
j=0

(−1)i−k
Γ(α+ 1

2 )Γ(i+ k + 2α)

Γ(k + α+ 1
2 )Γ(2α)(i− k)!Γ(ν + k + 1)Lk

t̃jC
(α)
S,j (t),

=

N∑
j=0

(
i∑

k=0

ξi,j,k

)
C

(α)
S,j (t), i = 0, 1, ...., N, (23)

where ξi,j,k is given in Eq. (19). Writing the last equation in a vector form gives

IνC
(α)
S,i (t) '

[
i∑

k=0

ξi,0,k,

i∑
k=0

ξi,1,k, ...,

i∑
k=0

ξi,N,k

]
φ(t), i = 0, 1, ..., N, (24)

which finishes our proof.

4. Error and Convergence Analysis

4.1 Error Bound
Theorem 2 Suppose that H = L2[0, 1] is the Hilbert space, and let Y be a

closed subspace of H such that Y = Span
{
C

(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t)

}
. Let f(t) ∈

Cn+1[0, 1], if
∑N
j=0 t̃jC

α
S,j(t) is the best approximation of f(t) out of Y then:

‖ f(t)−
N∑
j=0

t̃jC
α
S,j(t) ‖≤

h
2n+3

2 R

(n+ 1)!
√

2n+ 3
, t ∈ [ti, ti+1] ⊆ [0, 1],

where R = maxt∈[ti,ti+1] |f (n+1)(t)| and h = ti+1 − ti.
Proof. We set

y1(t) = f(ti) + f
′
(ti)(t− ti) + f

′′
(ti)

(t− ti)2

2!
+ ...+ f (n)(ti)

(t− ti)n

n!
.

From Taylor′s expansion it is clear that

|f(t)− y1(t)| ≤ |f (n+1)(ξt)|
(t− ti)n+1

(n+ 1)!
,
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where ξt ∈ [ti, ti+1]. Since
∑N
j=0 t̃jC

α
S,j(t) is the best approximation of f(t) out of

Y and y1(t) ∈ Y, then we have

‖ f(t)−
N∑
j=0

t̃jC
α
S,j(t) ‖22≤‖ f(t)− y1(t) ‖22=

∫ ti+1

ti

|f(u)− y1(u)|2du,

≤
∫ ti+1

ti

‖ f (n+1)(ξt) ‖2
(u− ti)(n+1)

(n+ 1)!
du,

≤ h2n+3R2

((n+ 1)!)2(2n+ 3)
.

Taking the square root of both sides, we have

‖ f(t)−
N∑
j=0

t̃jC
α
S,j(t) ‖2≤

h
2n+3

2 R

((n+ 1)!)
√

(2n+ 3)
.

which is the desired result. Hence we conclude that at each subinterval [ti, ti+1], i =

1, 2, ..., n. f(t) has a local error bound of O(h
2n+3

2 ). Thus, f(t) has a global error of

O(h
2n+1

2 ) on the whole interval [0, 1].

In the following theorem, the error estimate for the approximated functions will
be expressed in terms of Gram determinant [49].

Theorem 3 Let y(t) be an arbitrary element of H and y∗(t) be the unique best
approximation of y(t) out of Y , then

‖ y(t)− y∗(t) ‖2=
Gram(y(t), C

(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

Gram(C
(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

(25)

where
Gram(y(t), C

(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

=

< y(t), y(t) > < y(t), C
(α)
S,0 (t) > . . . < y(t), C

(α)
S,N (t) >

< C
(α)
S,0 (t), y(t) > < C

(α)
S,0 (t), C

(α)
S,0 (t) > . . . < C

(α)
S,0 (t), C

(α)
S,N (t) >

< C
(α)
S,1 (t), y(t) > < C

(α)
S,1 (t), C

(α)
S,0 (t) > . . . < C

(α)
S,1 (t), C

(α)
S,N (t) >

. . .

. . . . . .

. . .

< C
(α)
S,N (t), y(t) > < C

(α)
S,N (t), C

(α)
S,0 (t) > . . . < C

(α)
S,N (t), C

(α)
S,N (t) >

4.2 Convergence Analysis
Consider the error, EIν of the operational matrix of integration in the RL sense as

EIν = P νΦ(t)− IνΦ(t),

where

EIν = [EIν ,0, EIν ,1, ., ., ., EIν ,N ]
T
,
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is an error vector. From Eq. (20), we had approximated tk+ν as
∑N
j=0 t̃jC

α
S,j(t).

From theorem 3 we have∥∥∥∥∥∥tk+ν −
N∑
j=0

t̃jC
α
S,j(t)

∥∥∥∥∥∥
2

=

(
Gram(tk+ν , C

(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

Gram(C
(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

) 1
2

(26)

From Eq. (23), we obtain the upper bound of the operational matrix of integration
as follows

‖EIν,i‖2 =

∥∥∥∥∥∥IνCαS,i(t)−
N∑
j=0

(
i∑

k=0

ξi,j,k

)
C

(α)
S,j (t)

∥∥∥∥∥∥ , i = 0, ..., N, (27)

≤
i∑

k=0

∣∣∣∣ Γ(α+ 1
2 )Γ(i+ k + 2α)

Γ(k + α+ 1
2 )Γ(2α)(i− k)!Γ(ν + k + 1)

∣∣∣∣
(
Gram(tk+ν , C

(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

Gram(C
(α)
S,0 (t), C

(α)
S,1 (t), ..., C

(α)
S,N (t))

) 1
2

(28)
The following theorem illustrate that with increasing the number of GPs, the

error tends to zero.
Theorem 4 Suppose that function y(t) ∈ L2[0, 1] is approximated by gN (t) as
follows

gN (t) = µ0C
α
S,0(t) + µ1C

α
S,1(t) + ...+ µNC

α
S,N (t),

where

µi =

∫ 1

0

CαS,i(t)y(t)dt, i = 0, ..., N.

Consider

sN (y) =

∫ 1

0

[y(t)− gN (t)]
2
dt,

then we have

lim
N→∞

sN (y) = 0.

For the proof see [50].

5. SGOM of Fractional Integration for Solving Fractional
Differential Algebraic Equations

In this section, we use SGOM of integration to solve FDAEs (1) and (2) with
the initial condition (3). Firstly, we apply the RL integral of order νi on Eqs.(1)
and by using Eq.(7), we get

yi(t)− di = f(Iνit, Iνiy1, ..., I
νiyn, I

νi−1[y1 − d1], ..., Iνi−1[yn − dn]), (29)

Secondly, we approximate yi(t), I
νiyj(t) (j = 1, ..., n) in (29) and (2) by using

shifted Gegenbauer polynomials in (14) and (17), we get

Y Ti φ(t)−di = f(Iνit, Y T1 P
νiφ(t), ..., Y Tn P

νiφ(t), Y T1 P
νi−1φ(t)−d1, ..., Y Tn P νi−1φ(t)−dn),

(30)

Y Ti φ(t) = gi(t, Y
T
1 φ(t), ..., Y Tn φ(t)), (31)

where Iνit can be calculated from relation (4). The initial condition is approximated
as

yi(0) = Y Ti P
νiφ(0) = di, i = 1, 2, ..., n. (32)
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So, the residuals for the system (29) and (2) can be written as

R1N,i(t) =
(
Y Ti − f(Y T1 P

νi , ..., Y Tn P
νi , Y T1 P

νi−1, ..., Y Tn P
νi−1)−QTi

)
φ(t), (33)

R2N,i(t) =
(
Y Ti − gi(Y T1 , ..., Y Tn )

)
φ(t), (34)

where QTi = [qi0, qi1, ..., qiN ] and ΨT
i = [ψi0, ψi1, ..., ψiN ] are known vectors given

from the relation (13), as qi = di − Iνit +
∑n
j=1 dj . By using Tau method, we

generate N algebraic equations as

< R1N,i(t), C
(α)
S,N,j >=

∫ 1

0

R1N,i(t)C
(α)
S,N,j(t)dt = 0, i = 1, ...,m−1, j = 0, 1, ..., N−1.

(35)

< R2N,i(t), C
(α)
S,N,j >=

∫ 1

0

R2N,i(t)C
(α)
S,N,j(t)dt = 0, i = m,m+1, ..., n, j = 0, 1, ..., N−1.

(36)
From Eqs.(35)-(36) and Eq. (32), n(N+1) set of algebraic equations are generated.
This algebraic system can be solved easily. Consequently the approximate solution
yi(t) can be obtained.

6. Illustrative Problems

In this section, some problems are given to illustrate the applicability and accu-
racy of the proposed mechanism.
Problem 1 Consider the following linear FDAEs [21]

Dνy1(t) + y1(t)− y2(t) = − sin (t), 0 < ν ≤ 1, (37)

y1(t) + y2(t) = e−t + sin (t), (38)

with initial conditions
y1(0) = 1,

y2(0) = 0,
(39)

the exact solution is y1(t) = e−t, y2(t) = sin (t) when ν = 1.
The problem can be simplified by substituting Eq. (38) into Eq. (37) to get

Dνy1(t) + 2y1(t) = e−t, (40)

From Eq. (12) the approximate solution with N=9, is written as

y1(t) =

9∑
j=0

ỹ1,jC
(α)
S,N,j(t), (41)

and

e−t =

9∑
j=0

g̃1,jC
(α)
S,N,j(t)

. where g̃1,j are calculated from Eq. (13). By using our proposed technique with
N = 9 and ν = 1 we obtain the following results

ỹ1,0 = 0.632121, ỹ1,1 = −0.310915, ỹ1,2 = 0.0514531,

ỹ1,3 = −0.00512502, ỹ1,4 = 0.000365153, ỹ1,5 = −0.00002025,

ỹ1,6 = 9.3032×10−7, ỹ1,7 = −1.56187×10−8, ỹ1,8 = 1.00461×10−9, ỹ1,9 = −5.90762×10−11.

From Eqs. (41) and (38), y2(t) is obtained.
Figures 1 and 2, illustrate the behavior of the numerical solutions at N=9 and

ν = 0.75, 0.85, 0.95 and 1 with the exact solution of problem (1). At Tables (1) and
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Figure 1. The behavior of y1(t) for N = 9 and ν =
0.75, 0.85, 0.95, 1 with the exact solutions of problem (1)

Figure 2. The behavior of y2(t) for N = 9 and ν =
0.75, 0.85, 0.95, 1 with the exact solutions of problem (1)

(2), exact and approximate value of y1(t), y2(t) for ν = 1 are tabulated in compar-
ison with the results obtained by using ADM, HAM, and VIM methods [21]. It’s
noted that our approximated results are in a good harmony with the results given
in [21]. Also at Tables (3) and (4)the absolute errors of y1(t) and y2(t) for problem
(1) are calculated at different values of N. It’s noted that satisfactory results are
obtained by using small numbers of SGPs and the accuracy of our proposed method
is increased by using more terms of the polynomial.
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t y1 exact y1 SGOM y1 ADM [21] y1 VIM [21] y1 HAM [21]
0 1 1 1 1 1

0.1 0.904837 0.904837 0.904837 0.904837 0.904837
0.2 0.818731 0.818731 0.818730 0.818730 0.818730
0.3 0.740818 0.740818 0.740818 0.740818 0.740818
0.4 0.67032 0.67032 0.670320 0.670320 0.670320
0.5 0.606531 0.606531 0.6006530 0.606530 0.606530
0.6 0.548812 0.548812 0.548811 0.548811 0.548811
0.7 0.496585 0.496585 0.496585 0.496585 0.496585
0.8 0.449329 0.449329 0.449328 0.449328 0.449328
0.9 0.40657 0.40657 0.406569 0.406569 0.406569
1 0.367879 0.367879 0.367879 0.367879 0.367879

Table 1. Numerical results of y1(t) with comparisons to the re-
sults of ADM, HAM and VIM methods [21] for Problem (1) at
ν = 1 and N=9.

t y2 exact y2 SGOM y2 ADM [21] y2 VIM [21] y2 HAM [21]
0 0 −4.38695× 10−17 0 0 0

0.1 0.0998334 0.0998334 0.099833 0.099833 0.099833
0.2 0.198669 0.198669 0.198669 0.198669 0.198669
0.3 0.29552 0.29552 0.295520 0.295520 0.295520
0.4 0.389418 0.389418 0.389418 0.389418 0.389418
0.5 0.479426 0.479426 0.479425 0.479425 0.479425
0.6 0.564642 0.564642 0.564642 0.564642 0.564642
0.7 0.644218 0.644218 0.644217 0.644217 0.644217
0.8 0.717356 0.717356 0.717356 0.717356 0.717356
0.9 0.783327 0.783327 0.783326 0.783326 0.783326
1 0.841471 0.841471 0.841471 0.841471 0.841471

Table 2. Numerical results of y2(t) with comparisons to the re-
sults of ADM, HAM and VIM methods [21] for Problem (1) at
ν = 1 and N=9.

Problem 2 Consider the following non-linear FDAEs [21]

Dνy1(t)− ty
′

2(t) + y1(t)− (1 + t)y2(t) = 0, (42)

y2(t)− sin (t) = 0, 0 < ν ≤ 1, (43)

with initial conditions
y1(0) = 1,

y2(0) = 0,
(44)

with the exact solution is y1(t) = e−t + t sin (t), y2(t) = sin (t) when ν = 1.
The system can be simplified by substituting Eq. (55) into Eq.(54) to get

Dνy1(t) + y1(t) = t cos (t) + (1 + t) sin (t), (45)
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t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=9)
0 1.11022× 10−16 0 0

0.1 3.84005× 10−4 1.07213× 10−6 8.63101× 10−9

0.2 3.74822× 10−4 4.19392× 10−7 2.05988× 10−9

0.3 2.13378× 10−4 2.40478× 10−7 8.59987× 10−9

0.4 5.859× 10−5 5.05009× 10−7 8.99679× 10−9

0.5 4.82868× 10−6 6.12651× 10−7 8.84285× 10−11

0.6 4.06898× 10−5 3.09535× 10−7 3.48959× 10−9

0.7 1.5196× 10−4 6.73149× 10−8 5.57707× 10−9

0.8 2.30822× 10−4 4.64× 10−8 9.99569× 10−9

0.9 1.29377× 10−4 5.28447× 10−7 7.79981× 10−9

1 3.45282× 10−4 8.4157× 10−7 3.27545× 10−8

Table 3. The absolute errors of y1(t) for problem (1) at different
values of N.

t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=9)
0 8.32667× 10−17 3.64292× 10−17 4.38695× 10−17

0.1 3.84005× 10−4 1.07213× 10−6 8.63101× 10−9

0.2 3.74822× 10−4 4.19392× 10−7 2.05988× 10−9

0.3 2.13378× 10−4 2.40478× 10−7 8.59987× 10−9

0.4 5.859× 10−5 5.05009× 10−7 8.99679× 10−9

0.5 4.82868× 10−6 6.12651× 10−7 8.84285× 10−11

0.6 4.06898× 10−5 3.09535× 10−7 3.48959× 10−9

0.7 1.5196× 10−4 6.73149× 10−8 5.57707× 10−9

0.8 2.30822× 10−4 4.64× 10−8 9.99569× 10−9

0.9 1.29377× 10−4 5.28447× 10−7 7.79981× 10−9

1 3.45282× 10−4 8.4157× 10−7 3.27545× 10−8

Table 4. The absolute errors of y2(t) for problem (1) at different
values of N.

From Eq. (12) the approximate solution with N=7, is written as

y1(t) =

7∑
j=0

ỹ1,jC
(α)
S,N,j(t), (46)

and

t cos (t) + (1 + t) sin (t) =

7∑
j=0

g̃1,jC
(α)
S,N,j(t)

where g̃1,j are calculated from Eq. (13). By applying the mechanism described in
section(4), at ν = 1 we obtain the following results

ỹ1,0 = 0.933289, ỹ1,1 = 0.125045, ỹ1,2 = 0.172925, ỹ1,3 = −0.0204415,

ỹ1,4 = −0.00154787, ỹ1,5 = 0.0000723288, ỹ1,6 = 8.38502×10−6, ỹ1,7 = −3.22501×10−7.
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t y1 exact y1 SGOM y1 ADM [21] y1 HAM [21] y1 VIM [21]
0 1 1 1 1 1

0.1 0.914821 0.914821 0.914820 0.914820 0.914820
0.2 0.858465 0.858465 0.858464 0.858464 0.858464
0.3 0.829474 0.829474 0.829474 0.829474 0.829474
0.4 0.826087 0.826087 0.826087 0.826087 0.826087
0.5 0.846243 0.846243 0.846243 0.846243 0.846243
0.6 0.887597 0.887597 0.887597 0.887597 0.887597
0.7 0.947538 0.947538 0.947537 0.947537 0.947537
0.8 1.02321 1.02321 1.023213 1.023213 1.023213
0.9 1.11156 1.11156 1.111563 1.111563 1.111563
1 1.20935 1.20935 1.209350 1.209350 1.209350

Table 5. Numerical results of y1(t) with comparisons to the re-
sults of ADM, HAM and VIM methods [21] for Problem (2) at
ν = 1.

t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7)
0 0 1.11022× 10−16 1.11022× 10−16

0.1 1.77724× 10−3 1.07518× 10−5 8.59441× 10−8

0.2 1.8681× 10−3 5.24695× 10−6 3.95822× 10−8

0.3 1.25709× 10−3 3.79883× 10−6 6.30974× 10−8

0.4 6.23628× 10−4 6.42335× 10−6 7.27392× 10−8

0.5 3.49004× 10−4 7.66675× 10−6 4.27825× 10−8

0.6 5.2971× 10−4 5.06614× 10−6 2.26003× 10−8

0.7 9.96761× 10−4 1.58552× 10−6 4.21027× 10−8

0.8 1.34066× 10−3 2.43485× 10−6 5.56943× 10−8

0.9 9.41495× 10−4 6.74133× 10−6 1.34622× 10−8

1 9.96328× 10−4 5.40103× 10−6 9.14367× 10−8

Table 6. The absolute errors of y1(t) for problem (2) at different
values of N.

In Figure 3, the approximate results of y1(t) at N = 7 are plotted for ν =
0.75, 0.85, 0.95 and 1 with the exact solution. It’s noted that our approximate so-
lutions covers the classical results as the fractional derivatives goes to unity. In
Table (5), the exact solution for ν = 1 and approximate values of y1(t) are shown
with comparisons by ADM, HAM and VIM methods [21]. The results are in a good
harmony with the results given in [21]. In Table (6), The absolute errors of y1(t) for
problem (2) at different values of N are calculated. It’s observed that the efficiency
of our proposed method is increased by increasing N.
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Figure 3. The behavior of y1(t) for N = 7 and ν =
0.75, 0.85, 0.95, 1 with the exact solutions of problem (2)

Problem 3 Consider the following non-linear FDAEs [21]

Dν1y1(t)− ty
′

2(t) + t2y
′

3(t) + y1(t)− (1 + t)y2(x) + (t2 + 2t)y3(t) = 0, (47)

Dν2y2(t)− ty
′

3(t)− y2(t) + (t− 1)y3(t) = 0, (48)

y3(t)− sin (t) = 0, 0 < ν ≤ 1, (49)

with initial conditions
y1(0) = 1,

y2(0) = 1,

y3(0) = 0,

(50)

and the exact solution is y1(t) = e−t + tet,y2(t) = et + t sin (t),y3(t) = sin (t) at
ν = 1. By substituting Eq. (49) into Eqs. (49) and Eq. (47), the problem is
converted to the following system

Dν1y1(t)− ty
′

2(t) + t2 cos (t) + y1(t)− (1 + t)y2(t) + (t2 + 2t)y3(t) = 0, (51)

Dν2y2(t)− t cos (t)− y2(t) + (t− 1) sin (t) = 0, (52)

which is easy to solve.
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t y1 exact y1 SGOM y1 ADM [21] y1 HAM [21] y1 VIM [21]
0 1 1 1 1 1

0.1 1.01535 1.01535 1.01535 1.01535 1.01535
0.2 1.06301 1.06301 1.06301 1.06301 1.06301
0.3 1.14578 1.14578 1.14577 1.14577 1.14577
0.4 1.26705 1.26705 1.26704 1.26705 1.26704
0.5 1.43089 1.43089 1.43089 1.43089 1.43089
0.6 1.64208 1.64208 1.64208 1.64208 1.64208
0.7 1.90621 1.90621 1.90621 1.90621 1.90621
0.8 2.22976 2.22976 2.22976 2.22975 2.22976
0.9 2.62021 2.62021 2.62021 2.62019 2.62021
1 3.08616 3.08616 3.08616 3.08613 3.08616

Table 7. Numerical results of y1(t) with comparisons to the re-
sults of ADM, HAM and VIM methods [21] for Problem (3) at
ν = 1.

t y2 exact y2 SGOM y2 ADM [21] y2 HAM [21] y2 VIM [21]
0 1 1 1 1 1

0.1 1.11515 1.11515 1.11515 1.11515 1.11515
0.2 1.26114 1.26114 1.26113 1.26113 1.26113
0.3 1.43851 1.43851 1.43851 1.43851 1.43851
0.4 1.64759 1.64759 1.64759 1.64759 1.64759
0.5 1.88843 1.88843 1.88843 1.88843 1.88843
0.6 2.16090 2.16090 2.16090 2.16090 2.16090
0.7 2.46471 2.46471 2.46470 2.46470 2.46470
0.8 2.79943 2.79943 2.79942 2.79943 2.79942
0.9 3.1646 3.1646 3.16459 3.16460 3.16459
1 3.55975 3.55975 3.55975 3.55975 3.55975

Table 8. Numerical results of y2(t) with comparisons to the re-
sults of ADM, HAM and VIM methods [21] for Problem (3) at
ν = 1.

Figures 4 and 5, show the approximate results of y1(t) and y2(t) of problem (3)
at N = 7 and ν = 0.75, 0.85, 0.95 and 1 with the exact solution of problem (3).
In Tables (7) and (8), the exact solution and the approximated results of y1(t)and
y2(t) respectively are shown with comparisons to ADM, HAM and VIM methods
[21]. The obtained results are in good agreement with the results given in [21].
In Tables (9) and (10), the absolute errors of y1(t) and y2(t) for problem (3) at
different values of N are calculated.

Problem 4 Consider the following non-linear FDAEs [23]

D0.5y1(t) + 2y1(t)− Γ(7/2)

Γ(3)
y2(t) + y3(t) = 2t5/2 + sin (t), (53)

D0.5y2(t) + y2(t) + y3(t) =
Γ(3)

Γ(5/2)
t3/2 + t2 + sin (t), (54)
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t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7)
0 2.22045× 10−16 1.11022× 10−16 1.11022× 10−16

0.1 4.97105× 10−3 1.92607× 10−5 4.39611× 10−7

0.2 5.30764× 10−3 1.07711× 10−5 1.78988× 10−7

0.3 3.46418× 10−3 1.0193× 10−5 3.03422× 10−7

0.4 1.29887× 10−3 1.75627× 10−5 3.5295× 10−7

0.5 1.37983× 10−5 2.24578× 10−5 1.60322× 10−7

0.6 8.59475× 10−5 1.98912× 10−5 1.57824× 10−8

0.7 1.18782× 10−3 1.59523× 10−5 1.26465× 10−7

0.8 2.09676× 10−3 2.20894× 10−5 2.05662× 10−7

0.9 5.91674× 10−4 3.67764× 10−5 1.19601× 10−7

1 6.66435× 10−3 1.31455× 10−5 4.42899× 10−7

Table 9. The absolute errors of y1(t) for problem (3) at different
values of N.

t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=7)
0 0 0 2.22045× 10−16

0.1 1.49468× 10−3 1.56747× 10−5 9.0206× 10−8

0.2 1.7786× 10−3 1.11145× 10−5 6.33029× 10−8

0.3 1.59374× 10−3 1.11285× 10−5 9.4408× 10−8

0.4 1.41731× 10−3 1.63529× 10−5 1.18315× 10−7

0.5 1.48943× 10−3 2.03916× 10−5 1.11268× 10−7

0.6 1.84769× 10−3 1.9978× 10−5 1.09519× 10−7

0.7 2.36861× 10−3 1.82895× 10−5 1.38119× 10−7

0.8 2.81571× 10−3 2.15997× 10−5 1.66572× 10−7

0.9 2.8941× 10−3 2.95066× 10−5 1.56955× 10−7

1 2.3111× 10−3 1.9018× 10−5 2.26059× 10−7

Table 10. The absolute errors of y2(t) for problem (3) at different
values of N.

2y1(t) + y2(t)− y3(t) = 2t5/2 + t2 − sin (t), t ∈ [0, 1], (55)

with initial conditions

y1(0) = y2(0) = y3(0) = 0. (56)

The exact solution of this problem is

y1(t) = t5/2,

y2(t) = t2,

y3(t) = sin (t).
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Figure 4. The behavior of y1(t) for N = 7 and ν =
0.75, 0.85, 0.95, 1 with the exact solutions of problem (3)

Figure 5. The behavior of y2(t) for N = 7 and ν =
0.75, 0.85, 0.95, 1 with the exact solutions of problem (3)

In Tables (11)- (13), the absolute errors of y1(t), y2(t) and y3(t) for problem (4)
at different values of N are calculated.

Problem 5 Find the solution of the following linear initial value problem,

Dνy1(t) + 5y2(t) = 0, 0 < ν < 1 (57)

y2(t) =
1

5
y1(t), (58)
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t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=9)
0 0 1.30104× 10−17 1.48536× 10−17

0.1 2.3147× 10−3 1.66177× 10−4 3.63967× 10−6

0.2 1.83998× 10−3 3.60104× 10−5 6.72661× 10−6

0.3 7.94018× 10−4 4.53895× 10−5 2.35059× 10−6

0.4 8.99177× 10−5 9.42631× 10−5 3.74093t× 10−6

0.5 2.42102× 10−5 9.10098× 10−5 4.23489× 10−6

0.6 5.07183× 10−4 3.86001× 10−5 1.49777× 10−6

0.7 1.177× 10−3 4.55973× 10−6 2.90314× 10−6

0.8 1.46647× 10−3 4.36063× 10−5 3.3113× 10−6

0.9 6.46246× 10−4 9.66677× 10−5 1.0196× 10−6

1 2.14534× 10−3 1.23426× 10−4 3.84292× 10−6

Table 11. The absolute errors of y1(t) for problem (4) at different
values of N.

t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=9)
0 0 3.67917× 10−17 1.34043× 10−18

0.1 2.45591× 10−4 3.41285× 10−5 2.75641× 10−6

0.2 3.66087× 10−4 3.52352× 10−5 3.1381× 10−6

0.3 3.93023× 10−4 2.92161× 10−5 2.93947× 10−6

0.4 3.57935× 10−4 2.68372× 10−5 1.93389× 10−6

0.5 2.9236× 10−4 2.87508× 10−5 2.56966× 10−6

0.6 2.27833× 10−4 3.05117× 10−5 2.72018× 10−6

0.7 1.95891× 10−4 2.75936× 10−5 1.44028× 10−6

0.8 2.28071× 10−4 2.04057× 10−5 2.18284× 10−6

0.9 3.55907× 10−4 1.93086× 10−5 2.21861× 10−6

1 6.10937× 10−4 4.96308× 10−5 6.07829× 10−6

Table 12. The absolute errors of y2(t) for problem (4) at different
values of N.

with the initial conditions

y1(0) = 1, y2(0) =
1

5
. (59)

The exact solution of this problem is [30]

y1(t) =

∞∑
k=0

(−tν)k

Γ(νk + 1)
.

By substituting Eq. (58) into Eq. (57), the system is converted to the following
system

Dνy1(t) + y1(t) = 0, (60)

which is easy to solve.
Table (14) illustrate absolute errors comparison of y1(t) for N = 10 and different

values of ν = 0.2, 0.4, 0.8 and 1 between our proposed mechanism and the method
mentioned in [30]. From Table 14, we see that as ν approaches an integer value the
error is reduced, as predicted.
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t Absolute errors (N=3) Absolute errors (N=5) Absolute errors (N=9)
0 0 6.28126× 10−17 3.10476× 10−17

0.1 4.3838× 10−3 2.98225× 10−4 4.52292× 10−6

0.2 3.31387× 10−3 3.67855× 10−5 1.03151× 10−5

0.3 1.19501× 10−3 6.15628× 10−5 1.76171× 10−6

0.4 1.781× 10−4 1.61689× 10−4 5.54797× 10−6

0.5 2.43939× 10−4 1.53269× 10−4 5.90013× 10−6

0.6 7.86534× 10−4 4.66884× 10−5 2.75369× 10−7

0.7 2.1581× 10−3 1.84742× 10−5 4.36601× 10−6

0.8 2.70486× 10−3 6.68068× 10−5 4.43977× 10−6

0.9 9.36585× 10−4 1.74027× 10−4 1.79411× 10−7

1 4.90162× 10−3 2.96482× 10−4 1.37641× 10−5

Table 13. The absolute errors of y3(t) for problem (4) at different
values of N.

ν = 0.2 ν = 0.4
t y1 LOM [30] y1 SGOM y1 LOM [30] y1 SGOM

0.1 2.9× 10−1 1.9× 10−1 3.9× 10−1 6.9× 10−2

0.3 4.5× 10−1 1.7× 10−1 5.1× 10−1 5.7× 10−2

0.5 7.4× 10−1 1.6× 10−1 7.3× 10−1 5.2× 10−2

0.7 3.7× 10−1 1.6× 10−1 3.3× 10−1 5.0× 10−2

0.9 2.0× 10−1 1.6× 10−1 2.2× 10−1 4.8× 10−2

ν = 0.8 ν = 1
t y1 LOM [30] y1 SGOM y1 SGOM

0.1 1.1× 10−3 3.9× 10−3 1.5× 10−9

0.3 2.1× 10−4 3.1× 10−3 1.5× 10−9

0.5 8.4× 10−4 2.6× 10−3 2.1× 10−9

0.7 8.7× 10−4 2.4× 10−3 1.0× 10−9

0.9 5.8× 10−4 2.1× 10−3 1.6× 10−10

Table 14. The absolute errors of y1(t) at N = 10 for Problem (5)
at different values of ν in comparison with the results in [30].

7. Conclusions

In this paper, A new numerical mechanism has been derived to find the ap-
proximate solutions of the FADEs, which depends on the SGOM of fractional in-
tegration. The proposed mechanism depends on the shifted Gegenbauer and Tau
method. The applicability, accuracy and rapidity by using few terms of the SGPs of
the proposed mechanism are illustrated by numerical problems. Numerical compar-
isons with other methods in the literature are held which demonstrate the efficiency
of our proposed method.
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