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THEOREM OF EXISTENCE AND UNIQUENESS OF SOLUTION

FOR DIFFERENTIAL EQUATION OF FRACTIONAL ORDER

MAKSIM V. KUKUSHKIN

Abstract. In this paper we proved a theorems of existence and uniqueness

of solutions of differential equation of second order with fractional derivative
in the Kipriyanov sense in lower terms. As a domain of definition of the
functions we consider the n — dimensional Euclidean space. By a simple
reduction of Kipriyanov operator to the operator of fractional differentiation

in the sense of Marchaud these results can be considered valid for the operator
of fractional differentiation in the sense of Riemann-Liouville, because of known
fact coincidence of these operators on the classes of functions representable by

the fractional integral.

1. Brief historical review

In 1960, the famous mathematician Kipriyanov I.A. in his paper [8] devoted to
the properties of the eponymous operator formulated the theorem of existence and
uniqueness of solutions for partial differential equations second order with opera-
tor fractional differentiation in the lower terms. It is noteworthy that the proof of
this theorem did not publish. Mathematicians Djrbashian M.M., Nakhushev A.M.
one of the first in their works researched the differential equation second order with
fractional derivatives in the lower terms. In 1970 published the paper of Djrbashian
M.M. [7], in which is probably the first time considered the problem of eigenval-
ues of the differential operator fractional order. In 1977 published the paper of
Nakhushev A.M. [17]. The author was considering the differential operator second
order with fractional derivatives in the sense of Riemann-Liouville in lower terms.
In this paper proved the theorem, subsequently of great importance, establishing a
relationship between the eigenvalues of homogeneous differential equation of second
order with fractional derivative in lower terms and the zeros of functions Mittag-
Leffler type. Investigations in this direction continued by Aleroev T.S. in 1982
published his paper [1] in which he establishing a relationship between the zeros of
an entire function and eigenvalues of the boundary value problems for differential
equations second order with fractional derivatives in the lower terms. Numerous
research results of the last author published in the period from 1984 to 1994 in
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the series of papers [2]-[4]. Bangti Jean and William Randall in their paper [5]
2012 considered the inverse problem to the Sturm-Liouville problem for differential
operator second order with fractional derivative in the lower terms. Starting from
2013 to 2017 by several authors published a papers devoted to a differential equa-
tions of fractional order: [21],[12],[?],[19],[13]. It remains to note that the theory of
differential equations of fractional order is still relevant today.

2. Introduction

Accepting a notation [10] we assume that Ω is a convex domain of n — dimen-
sional Euclidean space En, P is a fixed point of the boundary ∂Ω, Q(r, e⃗) is an
arbitrary point of Ω; we denote by e⃗ as a unit vector having the direction from
P to Q, using r for notation of Euclidean distance between points P and Q. We
will consider classes of Lebesgue: Lp(Ω), 1 ≤ p < ∞ complex valued functions. In
polar coordinates summability f on Ω of degree p, means that∫

Ω

|f(Q)|pdQ =

∫
ω

dχ

d(⃗e)∫
0

|f(Q)|prn−1dr <∞,

where dχ is an element of the solid angle the surface of a unit sphere in En and ω
is a surface of this sphere, d := d(⃗e) is a length of the segment of ray going from
point P in the direction e⃗ within the domain Ω. Notation Lipλ, 0 < λ ≤ 1 means
the set of functions satisfying the Holder-Lipschitz condition

Lipλ :=
{
ρ(Q) : |ρ(Q)− ρ(P )| ≤Mrλ, P,Q ∈ Ω̄

}
.

The operator of fractional differentiation in the sense of Kipriyanov defined in [8]
by formal expression

Dα(Q) =
α

Γ(1− α)

r∫
0

[f(Q)− f(P + e⃗t)]

(r − t)α+1

(
t

r

)n−1

dt+ C(α)
n f(Q)r−α, P ∈ ∂Ω,

C(α)
n = (n− 1)!/Γ(n− α),

according to theorem 2 [8] acting as follows

Dα :
0

W l
p (Ω) → Lq(Ω), lp ≤ n, 0 < α < l − n

p
+
n

q
, p ≤ q <

np

n− lp
. (1)

If in the condition (1) we have the strict inequality q > p, then for sufficiently small
δ > 0 the next inequality holds

∥Dαf∥Lq(Ω) ≤
K

δν
∥f∥Lp(Ω) + δ1−ν∥f∥Ll

p(Ω), (2)

where

ν =
n

l

(
1

p
− 1

q

)
+
α+ β

l
.

The constant K independents on δ, f and point P ∈ ∂Ω; β is an arbitrar-
ily small fixed positive number. Further we assume that (0 < α < 1). De-
note diamΩ = d; C,Ci = const, i ∈ N0. We use for inner product of points
P = (P1, P2, ..., Pn) and Q = (Q1, Q2, ..., Qn) which belong to En a contracted
notations P · Q = P iQi =

∑n
i=1 PiQi, denote |P − Q| = r as an Euclidean dis-

tance between P and Q. As usually denote Diu as a generalized derivative of the
function u with respect to coordinate variable with index (1 ≤ i ≤ n) and let
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Du = (D1u,D2u, ...,Dnu). Denote e⃗k, (1 ≤ k ≤ n) as an ort on n — dimensional
Euclidean space, and define the difference attitude △h

kv = [v(Q + e⃗kh) − v(Q)]/h.
We will assume that all functions has a zero extension outside of Ω̄. Everywhere
further, if not stated otherwise we will use the notations of [10], [8].

We define the familie of operators ψ−
ε , ε > 0 as follows: D(ψ−

ε ) ⊂ Lp(Ω). In the
right-side case

(ψ−
ε f)(Q) =



d∫
r+ε

f(P + e⃗r)− f(P + e⃗t)

(t− r)α+1
dt, 0 ≤ r ≤ d− ε,

f(Q)

α

(
1

εα
− 1

(d− r)α

)
, d− ε < r ≤ d.

Following [20, p.181] we define a truncated fractional derivative similarly the deriv-
ative in the sense of Marchaud, in the right-side case

(Dα
d−,εf)(Q) =

1

Γ(1− α)
f(Q)(d− r)−α +

α

Γ(1− α)
(ψ−

ε f)(Q).

Right-side fractional derivatives accordingly will be understood as a limit in the
sense of norm Lp(Ω), 1 ≤ p <∞ of truncated fractional derivative

Dα
d−f = lim

ε→0

(Lp)

Dα
d−,εf.

Consider a boundary value problem for differential equation of fractional order,
containing in the left side an uniformly elliptic operator with real-valued coefficients
and fractional derivative in the sense of Kipriyanov in the lower terms

Lu := −Dj(a
ijDiu) + pDαu = f ∈ L2(Ω), i, j = 1, n, (3)

u ∈ H2(Ω) ∩H1
0 (Ω), (4)

aij(Q) ∈ C1(Ω̄), aijξiξj ≥ a0|ξ|2, a0 > 0, p(Q) > 0, p(Q) ∈ Lipλ, λ > α. (5)

We will use a special case of the Green’s formula

−
∫
Ω

v Dj(aijDiu) dQ =

∫
Ω

aijDjv Diu dQ , u ∈ H2(Ω), v ∈ H1
0 (Ω). (6)

In later we will need a following lemma.
Lemma 1 Let u, v ∈ L2(Ω), dist (supp v, ∂Ω) > 2|h|, then we have a following
formula ∫

Ω

△h
kv u dQ = −

∫
Ω

v△−h
k u dQ. (7)

Proof. In assumptions of this lemma we have a following∫
Ω

△h
kv u dQ =

1

h

∫
Ω

[v(Q+ ekh)− v(Q)] u(Q) dQ =

=
1

h

∫
ω

dχ

r∫
0

v(P ′ + ēr)u(P ′ + ēr − ekh) r
n−1dr − 1

h

∫
Ω

v(Q)u(Q) dQ =

=
1

h

∫
Ω′

v(Q′)u(Q′ − ekh) dQ
′ − 1

h

∫
Ω

v(Q)u(Q) dQ, P ′ = P + ekh, Q
′ = P ′ + ēr,
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where Ω′ shift of the domain Ω on the distance h in the direction ek. Note that in
consequence of condition on the set: suppu, we have: suppu1 ⊂ Ω ∩ Ω′, u1(Q

′) =
u(Q′ − ekh). Hence, finally we can rewrite the last relation as a following∫

Ω

△h
kv u dQ =

1

h

∫
Ω

v(Q)[u(Q− ekh)− u(Q)] dQ = −
∫
Ω

v△−h
k u dQ.

The proof is complete.
The theorems of existence and uniqueness which will be proved in the next

section based on the results obtained in the papers [15], [14].

3. Main theorems

Consider the boundary value problem (3),(4). The proved a strong accretive
property for operators of fractional dierentiation provides the opportunity by using
Lax-Milgram theorem to prove the theorem of existence and uniqueness of gener-
alized solution for this problem.
Definition 1 We will call the element z ∈ H1

0 (Ω) as a generalized solution of the
boundary value problem (3),(4) if the following integral identity holds

B(v, z) = (v, f)L2(Ω), ∀v ∈ H1
0 (Ω), (8)

where

B(v, u) =

∫
Ω

[
aijDjvDiu+ (Dα

d−p v)u
]
dQ, u, v ∈ H1

0 (Ω).

Theorem 1 There is an unique generalized solution of the boundary value problem
(3),(4).
Proof. We will Show that the form (8) satisfies the conditions of Lax-Milgram
theorem, particulary we will show that the next inequalities holds

|B(v, u)| ≤ K1∥v∥H1
0
∥u∥H1

0
, ReB(v, v) ≥ K2∥v∥2H1

0
, u, v ∈ H1

0 (Ω), (9)

where K1 > 0, K2 > 0 are constants independents from real functions u, v.
Let us prove the first inequality of (9). Using the Cauchy-Schwarz inequality for a
sum, we have

aijDjvDiu ≤ a(Q)|Dv||Du|, a(Q) =

 n∑
i,j=1

|aij(Q)|2
1/2

.

Hence ∣∣∣∣∣∣
∫
Ω

aijDjvDiu dQ

∣∣∣∣∣∣ ≤ P∥v∥H1
0 (Ω)∥u∥H1

0 (Ω), P = sup
Q∈Ω

|a(Q)|. (10)

In consequence of lemma 1 [15], lemma 2 [15], we have

(Dα
d−p v, u)L2(Ω) = (v,Dαu)L2(Ω,p), u, v ∈ H1

0 (Ω). (11)

Applying the inequality (2), then Jung’s inequality we get∣∣(v,Dαu)L2(Ω,p)

∣∣ ≤ C0∥v∥L2(Ω)∥Dαu∥Lq(Ω) ≤

≤ C0∥v∥L2(Ω)

{
K

δν
∥u∥L2(Ω) + δ1−ν∥u∥L1

2(Ω)

}
≤
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≤ 1

ε
∥v∥2L2(Ω) + ε

(
KC0√
2δν

)2

∥u∥2L2(Ω) +
ε

2

(
C0δ

1−ν
)2 ∥u∥2L1

2(Ω),

2 < q <
2n

2α− 2 + n
, C0 = (messΩ)

q−2
q sup

Q∈Ω
p(Q).

Applying the Friedrichs inequality, finally we have a following estimate

|(Dα
d−p v, u)L2(Ω)| ≤ C∥v∥H1

0
∥u∥H1

0
. (12)

Note that from inequalities (10),(12) follows the first inequality of (9). Using the
inequalities (28) [15], (36) [15], we have

ReB(v, v) ≥ a0∥v∥2L1
2(Ω) + λ−2∥v∥2L2(Ω,p) ≥

≥ a0∥v∥2L1
2(Ω) + λ−2p0∥v∥2L2(Ω), p0 = inf

Q∈Ω
p(Q). (13)

It is obviously that

a0∥v∥2L1
2(Ω) + λ−2p0∥v∥2L2(Ω) ≥ K2

(
∥v∥2L1

2(Ω) + ∥v∥2L2(Ω)

)
=

= K2

∫
Ω

n∑
i=1

|Div|2dQ+

∫
Ω

|v|2dQ

 = K2∥v∥2H1
0
, K2 = min{a0, λ−2p0}. (14)

Hence the second inequality of (9) follows from the inequalities (3), (14).
Since conditions of Lax-Milgram theorem holds, then for all bounded on H1

0 (Ω)
functional F, exist unique element z ∈ H1

0 (Ω) such as

B(v, z) = F (v), ∀v ∈ H1
0 (Ω). (15)

Consider the functional

F (v) = (v, f)L2(Ω), f ∈ L2(Ω), v ∈ H1
0 (Ω). (16)

Applying the Cauchy-Schwarz inequality, we get

|F (v)| = |(v, f)L2(Ω)| ≤ ∥f∥L2(Ω)∥v∥H1
0 (Ω).

Hence the functional (16) is bounded on H1
0 (Ω), then in accordance with (15) we

have equality

B(v, z) = (v, f)L2(Ω), ∀v ∈ H1
0 (Ω). (17)

Therefore in accordance with definition 1 element z is an unique generalized solution
of the boundary value problem (3),(4). The proof is complete.

The theorem 1 allows to prove the theorem of existence and uniqueness of solu-
tion of the boundary value problem (3),(4).
Theorem 2 There is an unique strong solution of the boundary value problem
(3),(4).
Proof. In consequence of theorem 1 exists unique element z ∈ H1

0 (Ω), so that
equality (17) is true. Note that if a generalized solution of the boundary value
problem (3),(4) belongs to a Sobolev space H2(Ω), then applying formulas (6),(11)
we get

(v, Lz)L2(Ω) = B(v, z) = (v, f)L2(Ω), ∀v ∈ C∞
0 (Ω), (18)

hence

(v, Lz − f)L2(Ω) = 0, ∀v ∈ C∞
0 (Ω). (19)
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Since it is well known that there is no non-zero element in the Hilbert space which
is orthogonal to the dense manifold, then z is solution of the boundary value prob-
lem(3),(4).

Let’s prove that z ∈ H2(Ω). Choose the function v in (17) so that (supp v) ⊂ Ω,
performing easy calculation, using equality (11), we get∫

Ω

aijDjvDiz dQ =

∫
Ω

vq dQ, ∀v ∈ H1
0 (Ω), (supp v) ⊂ Ω, (20)

where q = (f −pDαz). In the last equality for 2|h| < dist (supp v, ∂Ω), let’s change

the function v on it difference attitude △−hv = △−h
k v for some 1 ≤ k ≤ n, then

applying lemma 1 we get

−
∫
Ω

aij(Dj△−hv)Diz dQ = −
∫
Ω

(△−hv) q dQ =

= −
∫
Ω

(Dj△−hv)aijDiz dQ =

∫
Ω

Djv△h (aijDiz)dQ.

Using elementary calculation we get

△h
(
aijDiz

)
(Q) = aij(Q+ h e⃗k)(Di△hz)(Q) + [△haij(Q)](Diz)(Q),

hence ∫
Ω

Djv aij(Q+ h e⃗k)(Di△hz) dQ = −
∫
Ω

Dv · g + (△−hv) q dQ,

where g = (g1, g2, ..., gn), gj = (△haij)Diz. Note a last relation, using the Cauchy
Schwarz inequality, finiteness property of function v, lemma 7.23 [6, p.164] we have∣∣∣∣∣∣

∫
Ω

aij(Q+ h e⃗k)Djv (Di△hz) dQ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Ω

Djv aij(Q+ h e⃗k)(Di△hz) dQ

∣∣∣∣∣∣ ≤
≤ ∥Dv∥L2(Ω)∥g∥L2(Ω) + ∥△−hv∥L2(Ω)∥q∥L2(Ω) ≤

≤ ∥Dv∥L2(Ω)

(
∥g∥L2(Ω) + ∥q∥L2(Ω)

)
. (21)

Applying the Cauchy Schwarz inequality for finite sum and integrals, it is easy to
see that

∥g∥L2(Ω) =

∫
Ω

n∑
j=1

|(△haij)Diz|2dQ

1/2

≤

∫
Ω

|Dz|2
n∑

i,j=1

|△haij |2dQ

1/2

≤

≤ sup
Q∈Ω

 n∑
i,j=1

∣∣△haij(Q)
∣∣21/2 ∫

Ω

|Dz|2dQ

1/2

≤ C1∥z∥H1(Ω).

Note that using (2), we have

∥q∥L2(Ω) ≤ ∥f∥L2(Ω) + ∥pDαz∥L2(Ω) ≤ ∥f∥L2(Ω) + C2∥z∥H1(Ω).

Using given above, from (3) we get∣∣∣∣∣∣
∫
Ω

aij(Q+ h e⃗k)Djv (Di△hz) dQ

∣∣∣∣∣∣ ≤ C
(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)
∥Dv∥L2(Ω). (22)
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Note that using condition (5), we can get a following estimate∣∣∣∣∣∣
∫
Ω

aijξjξidQ

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
Ω

aij(ReξjReξi+ImξjImξi)dQ+ı

∫
Ω

aij(ReξiImξj−ReξjImξi)dQ

∣∣∣∣∣∣ =

=


∫

Ω

aij(ReξjReξi+ImξjImξi)dQ

2+
∫

Ω

aij(ReξiImξj−ReξjImξi)dQ

2

1/2

≥

≥
∫
Ω

aij(Reξj Reξi + Imξj Imξi) dQ ≥ k0

∫
Ω

|ξ|2 dQ. (23)

Define the function χ, so that: dist (suppχ, ∂Ω) > 2|h|,

χ(Q) =

{
1, Q ∈ suppχ,

0, Q ∈ Ω̄ \ suppχ.

Suppose that v = χ△hz. Using relations (22), (3), we have two-sided estimate

k0∥χ△hDz∥2L2(Ω) ≤

∣∣∣∣∣∣
∫
Ω

χaij(Q+ h e⃗k)△hDjz△hDiz dQ

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
Ω

aij(Q+ h e⃗k)Dj(χ△hz) (Di△hz) dQ

∣∣∣∣∣∣ ≤
≤ C

(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)
∥χ△hDz∥L2(Ω). (24)

Using the Jung’s inequality, for all positive k we get an estimate

2
(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)
∥χ△hDz∥L2(Ω) ≤

≤ 1

k

(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)2
+ k∥χ△hDz∥2L2(Ω).

Choosing k < 2k0C
−1, we can perform inequality (3) as follows

∥χ△hDz∥2L2(Ω) ≤ C1

(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)2
.

It implies that for all domain Ω′, dist(Ω′, ∂Ω) > 2|h|, we have

∥△h
iDjz∥L2(Ω′) ≤ C2

(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)
, i, j = 1, 2, ..., n.

In consequence of lemma 7.24 [6, p.165], we have that exists generalized derivative
DiDjz and satisfies the condition

∥DiDjz∥L2(Ω) ≤ C2

(
∥z∥H1(Ω) + ∥f∥L2(Ω)

)
, i, j = 1, 2, ..., n.

Hence z ∈ H2(Ω). The proof is complete.
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4. Conclusions

We were guided by a well known, in the classical case of equations with positive-
integer orders, idea of connection between the solvability of a boundary-value prob-
lem and a properties of the corresponding quadratic functional. A project to use
the same approach in the fractional case required a some technique of the frac-
tional calculus theory, in particular we used a strong accretive property of the
fractional differentiation operators. Applying the Lax-Milgram theorem we proved
the existence of a generalized solution of the boundary value problem for differential
equation of fractional order. Was proved the inclusion of a generalized solution in
the Sobolev class of functions, corresponding to the strong solution. Although this
method also is not new in the theory of partial differential equations, it should be
noted that in the proofs of the theorems was used a new technique of fractional
calculus theory. The result is proved for multidimensional operator which has a
reduction to various operators of fractional order.
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