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EXISTENCE AND UNIQUENESS OF SOLUTION FOR SOME

TWO-POINT BOUNDARY VALUE FRACTIONAL

DIFFERENTIAL EQUATIONS

K.I. ISIFE

Abstract. In this paper, we will prove the existence and uniqueness of solu-
tion for some two-point boundary value fractional differential equations, using

the Banach mapping principle. Equally, we will exhibit the stability property
of our problem in the sense of Hyers-Ulam-Rassias.

1. Introduction

In the recent years, the study of fractional differential equations has been in the
limelight by many researchers in the areas of applied sciences, such as engineering,
physics, biology and economics. This is basically because, it finds applications in
several real world problems. For details on the theory and some applications of
fractional differential equations, see the monographs of [[5],[13], [7], [3]]. In the
qualitative theory of (classical and fractional) differential equations, various the-
orems have been extensively deployed by researchers in establishing the existence
and uniqueness of solutions to both the initial and boundary value problems. For a
detailed study on the existence and uniqueness of solutions of fractional equations
, ([see [6],[10],[2],[9],[4]]) and the references therein.

On the one hand, Hyers-Ulam-Rassias stability properties of all kinds of equa-
tions have continued to hold sway in the literature. According to Jung[[11]], what
is today known as Hyers-Ulam-Rassias stability originated in the fall of 1940, when
Ulam proposed a number of problems, of which one of them was on the stabil-
ity of homomorphisms. This was brilliantly answered by Hyers using functional
equations. This attracted a number of research works in the area of stability of
functional equations such as classical and fractional differential equations. Some
of these works can be seen in the papers of Miura et al[[14]], Abbas[[8]], Wang et
al[[12]], and a host of other research papers too numerous to mention here.

In their papers titled, ”New concepts and results in stability of fractional dif-
ferential equations, Wang et al[[15]] introduced some new concepts in stability of
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fractional differential equations from different perspectives. Relying on some fixed
point theorems in a generalized complete metric space, they were able to prove that
a given nonlinear Caputo fractional derivative of order α ∈ (0, 1) has Hyers-Ulam
Rassis stability as well as Hyers Ulam stability. Equally, Wang and Xu [[16]] stud-
ied the Hyers-Ulam stability of two types of linear fractional differential equations
with the Caputo fractional derivatives. By applying Laplace transform method,
they were able to show that the two types of equations has Hyers-Ulam stability.

To the best of our knowledge, there has been very few works on the Hyers-Ulam-
Rassis stability as well as Hyers-Ulam stability of nonlinear two-point boundary
value fractional differential equations with the Riemann-Liouville fractional deriva-
tives. This will be the focus of our paper. We will employ the Banach contaction
mapping principle on a given metric space to prove that our type of equation has a
unique solution and also show that our problem is stable in the sense of Hyers-Ulam
Rassis.

Our work is organized as follows. Some tools of fractional calculus, definitions
of terms and other preliminary facts will be introduced in section 2. In section
three, we present an existence and uniqueness result for our problem using a fixed
point approach. Lastly, in section 4, we are going to prove that our problem has a
Hyers-Ulam Rassis stability.

2. Preliminaries

In this section, we introduce our problem, some tools of fractional calculus, some
notations, definitions, and preliminary facts used in the entire work. First, let us
consider the following fractional boundary value problem:

Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t)) = h(t), t ∈ [a, b], (1)

Dα−1
a+

x(a+) = Dα−1
a+

x(b−), (2)

I2−α
a+

x(a+) = I2−α
a+

x(b−), (3)

I1−β
a+

x(a+) = I1−β
a+

x(b−), (4)

in the space of Wα,β(a, b), where 0 < β < 1 < α < 2, k is a positive con-
stant; Dα

a+
x(t) is the Riemann-Liouville fractional derivative of x, of order α,

Dα−1
a+

x(a+) := limt−→a+ Dα
a+

x(t), h ∈ L
1
β (a, b), g is an L∞− Carathéodory func-

tion.

Wα,β(a, b) =
{
x ∈ C2−α[a, b] : Dα

a+
x(t) ∈ L

1
β (a, b),

}
and C2−α[a, b] =

{
x : x(t− a)2−α ∈ C0[a, b]

}
.

Definition 2.1. [[5]]The Riemann-Liouville fractional integral of a function x,
of order γ > 0, with lower limit a, is defined as

Iγa+
x(t) =

1

Γ(γ)

∫ t

a

(t− s)γ−1x(s)ds, (5)

while the Riemann-Liouvile fractional derivative of a function x, of order γ, with
lower limit as a real number a, is defined as

Dγ
a+

x(t) =
1

Γ(n− γ)

dn

dtn

∫ t

a

(t− s)n−γ−1x(s)ds, n = [γ] + 1. (6)
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It is worthy of note from (5) and (6), that

Dγ
a+

x(t) =
dn

dtn
In−γ
a+

x(t). (7)

Definition 2.2.[[13]] A two-parameter Mittag-Leffler function of z ∈ C, denoted
by Eα,β(z) is defined as

Eα,β(z) =
∞∑
j=0

zj

Γ(αj + β)
,

where α > 0, β > 0.

Definition 2.3.[[?]] The boundary value problem (1)-(4) is said to have Hyers-
Ulam stability if there exists a real number δ(ϵ) > 0, such that for each ϵ > 0 and
a function x ∈ Wα,β(a, b), with

|Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t))− h(t)| ≤ ϵ, (8)

there exists a solution y ∈ Wα,β(a, b) of the differential equation (1) such that

|x(t)− y(t)| < δ(ϵ)

and limϵ−→0 δ(ϵ) = 0. If this statement is also true when we replace ϵ and δ(ϵ)
respectively by F,C : [a, b] −→ [0,∞), where F,C are appropriate functions not
depending on x and y explicitly, then we say that the boundary value problem has
the Hyers-Ulam-Rassias stability.

Definition 2.4. A function f : [a, b] × R −→ R is said to be a Carathéodory
function if it satisfies the following conditions

• f(t, x) is Lebesgue measurable with respect to t in [a, b],
• f(t, x) is continuous with respect to x on R

A function f(t, x) defined on [a, b]×R is said to be an Lp− Carathéodory function,
p ≥ 1, if it is a Carathéodory function and ∀r > 0, there exists hr ∈ Lp(a, b), such
that ∀x ∈ [−r, r] and ∀t ∈ [a, b], then f(t, x) ≤ hr(t).

Lemma 2.5.[[5]] The space ACn[a, b] consists of those and only function f ,
which can be represented in the form

f(x) = Ina+
φ(x) +

n−1∑
k=0

ck(x− a)k, (9)

where φ ∈ L1(a, b), ck(k = 0, 1, 2, · · · , n− 1) are arbitrary constants.

Lemma 2.6.[[5]] If f ∈ L1(a, b) and In−α
a+

f(t) ∈ ACn[a, b], then the equality

Iαa+
(Dα

a+
) = f(x)−

n∑
j=1

Dα−j
a+

f(a+)(x− a)α−j

Γ(α− j + 1)
. (10)

A particular case, where 0 < β < 1 < α < 2, we have that

Iαa+
Dβ

a+
x(t) =

1

Γ(α)

∫ t

a

(t− s)α−1Dβ
a+

x(s)ds

=
1

Γ(α+ 1)

d

dt

∫ t

a

(t− s)αDβ
a+

x(s)ds
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But,

1

Γ(α+ 1)

∫ t

a

(t− s)αDβ
a+

x(s)ds =
1

Γ(α+ 1)

∫ t

a

(t− s)α
d

ds
I1−β
a+

x(s)ds

Using integration by parts on the right-hand side, one obtains

1

Γ(α+ 1)

∫ t

a

(t−s)α
d

ds
I1−β
a+

x(s)ds =
1

Γ(α+ 1)
(t−s)αI1−β

a+
x(s) |ta +

α

Γ(α+ 1)

∫ t

a

(t−s)α−1I1−β
a+

x(s)ds

= − 1

Γ(α+ 1)
(t− a)αI1−β

a+
x(a+) + Iαa+

I1−β
a+

x(t).

Therefore,

Iαa+
Dβ

a+
x(t) =

d

dt
{− 1

Γ(α+ 1)
(t− a)αI1−β

a+
x(a+) + Iαa+

I1−β
a+

x(t)}

= − 1

Γ(α)
(t− a)α−1I1−β

a+
x(a+) + Iα−1

a+
I1−β
a+

x(t)

= Iα−β
a+

x(t)− 1

Γ(α)
(t− a)α−1I1−β

a+
x(a+)

This implies that

Iαa+
Dβ

a+
x(t) = Iα−β

a+
x(t)− 1

Γ(α)
(t− a)α−1I1−β

a+
x(a+). (11)

Lemma 2.7. If x ∈ Wα,β(a, b), then x satisfies the equations (1)- (4) if, and
only if x satisfies the integral equation

x(t)− (t− a)α−1

Γ(α)
Dα−1

a+
x(b−)−

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)+kIα−β
a+

x(t)−k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

= Iαa+
[h(t)− g(t, x(t))].

We note that the above equation is the Volterra-integral equation associated to
equations (1)- (4).

Proof: We first prove the necessity. Let x ∈ Wα,β(a, b), satisfies equations (1)-
(4), we show that x satisfies the above volterra-integral equation. Then by defi-

nition of Wα,β(a, b), Dα
a+

x(t) ∈ L
1
β (a, b). Equally, Dβ

a+
x(t), g(t, x(t)) ∈ L

1
β (a, b) ⊂

L1(a, b). From (7), we have that

Dα
a+

x(t) =
d2

dt2
I2−α
a+

x(t). (12)

By Lemma 2.5, I2−α
a+

x(t) ∈ AC2[a, b]. Thus, we can apply Lemma 2.6 . With this,

we operate Iαa+
to both sides of (1), i.e.,

Iαa+

(
Dα

a+
x(t) + k Dβ

a+
x(t) + g(t, x(t)) = h(t)

)
.

Making use of equations (10) and (11),we have

x(t)−
2∑

j=1

Dα−j
a+

x(a+)(x− a)α−j

Γ(α− j + 1)
+ k

(
kIα−β

a+
x(t)− 1

Γ(α)
(t− a)α−1I1−β

a+
x(a+)

)
+

Iαa+
[h(t)− g(t, x(t))]
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Considering our boundary conditions (2)-(4), then

x(t)− (t− a)α−1

Γ(α)
Dα−1

a+
x(b−)−

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)+kIα−β
a+

x(t)−k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

= Iαa+
[h(t)− g(t, x(t))].

This proves the necessity.

To prove the sufficiency, supposing that x ∈ Wα,β(a, b), satisfies a.e., the Volterra-
integral equation above, then applying the operator Dα

a+
to it, we have

Dα
a+

(x(t)− (t− a)α−1

Γ(α)
Dα−1

a+
x(b−)−

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)+kIα−β
a+

x(t)−k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

= Iαa+
[h(t)− g(t, x(t))]).

This establishes (1). Equally, applying Dα−1
a+

to the volterra equation, we have

Dα−1
a+

x(t)−Dα−1
a+

x(b−) + kI1−β
a+

x(t)− kI1−β
a+

x(b−) = I[h(t)− g(t, x(t))].

Taking the limit as t −→ a+, we obtain that

Dα−1
a+

x(a+) = Dα−1
a+

x(b−).

Similarly, applying I2−α
a+

, I1−β
a+

respectively to the Volterra-integral equation, we

obtain equations (3) and (4) respectively. Thus, our lemma is proved.
Lastly, we introduce a fundamental results of Banach fixed point that will be

used in our main result.

Theorem 2.8.[[16]]((Banach’s contraction principle) Let (X,d) be a complete
metric space, and consider a mapping J : X −→ X, which is strictly contractive,
i.e.,

d(Jx, Jy) ≤ Ld(x, y), ∀x, y ∈ X,

for some (Lipschitz constant) L < 1. Then,

(1) The mapping J has one, and only one, fixed point x⋆ = J(x⋆);
(2) the fixed point x⋆ is globally attractive, i.e.,

lim
n−→∞

Jnx = x⋆;

(3)

d(Jnx, x⋆) ≤ Lnd(x, x⋆), ∀n ≥ 0, ∀x ∈ X;

(4)

d(Jnxn, x⋆) ≤ 1

1− L
d(Jnx, Jn+1x), ∀n ≥ 0, ∀x ∈ X;

(5)

d(x, x⋆) ≤ 1

1− L
d(x, Tx), ∀x ∈ X



JFCA-2019/10(1) ON THE FRACTIONAL-ORDER GAMES 29

3. Existence Results

In this section, using Banach contraction principle, we will prove that the frac-
tional boundary value problem (1)- (4) has a unique solution.

Theorem 3.1. Assume that ∂sg with respect to the second variable is an
L∞− Carathéodory function, and suppose also that there are positive constants
C, k⋆M,L such that

1

Γ(α− β)

∫ t

a

(t− s)2α−3R(s)ds ≤ k⋆R(t), (13)

and (k +M)(b − a)2−α < 1
k⋆ , with R : [a, b] −→ (0,∞). Then equations (1) - (4)

has a unique solution in Wα,β(a, b).

Proof: Define a metric d on Wα,β(a, b) as follows:

d(x, y) = inf
{
C ∈ [0,∞) : (t− a)2−α|x(t)− y(t)| ≤ CR(t).

}
(14)

We claim that (Wα,β(a, b), d) is complete. To verify our claim, let xn be a Cauchy
sequence in (Wα,β(a, b), d). Then, by definition, xn ∈ C2−α[a, b] such that xn(t −
a)2−α ∈ C0[a, b]. This implies that xn ∈ C0[a, b]. Since C0[a, b] is complete, it fol-
lows that xn converges to a point x ∈ C0[a, b], which implies that x(t − a)2−α is
continuous. Therefore, x ∈ C2−α[a, b], which in turn implies that x ∈ Wα,β(a, b).
Hence, Wα,β(a, b) is complete.

Next, we define an operator T : Wα,β(a, b) −→ Wα,β(a, b) by

Tx(t) =
(t− a)α−1

Γ(α)
Dα−1

a+
x(b−)+

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)−kIα−β
a+

x(t)+k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

+Iαa+
[h(t)− g(t, x(t))],

It is easy to see that T is well-defined. We go ahead to show that T is strictly
contractive. For arbitrary x, y ∈ Wα,β(a, b), we pick any constant Cxy ∈ [0,∞)
such that d(x, y) ≤ Cxy. That is to say from equation (14) that,

(t− a)2−α|x(t)− y(t)| ≤ CR(t).

Now,

(t− a)2−α|Tx(t)− Ty(t)| ≤ k(t− a)2−α

Γ(α− β)

∫ t

a

(t− s)α−β−1|x(s)− y(s)|ds

+
(t− a)2−α

Γ(α)

∫ t

a

(t− s)α−1|g(s, x(s))− g(s, y(s))|ds

We observe that since g and ∂sg, with respect to its second variable are L∞−
Caratheódory functions, there exists a positive constant M ∈ L∞ such that

|g(t, x(t))− g(t, y(t))| ≤ M |x(t)− y(t)|.
Therefore,

(t− a)2−α|Tx(t)− Ty(t)| ≤ k(t− a)2−α

Γ(α− β)

∫ t

a

(t− s)α−1|x(s)− y(s)|ds

+
M(t− a)2−α

Γ(α)

∫ t

a

(t− s)α−1|x(s)− y(s)|ds
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≤ (k +M)(t− a)2−α 1

Γ(α− β)

∫ t

a

(t− s)2−α(t− s)2α−3|x(s)− y(s)|ds.

From the definition of our metric in (14) and equation (13), we have that

(t− a)2−α|Tx(t)− Ty(t)| ≤ (k +M)(t− a)2−α 1

Γ(α− β)

∫ t

a

(t− s)2α−3CR(s)ds

≤ (k +M)Ck⋆(t− a)2−αR(t)

≤ (k +M)Ck⋆(b− a)2−αR(t)

This implies that

d(Tx, Ty) ≤ (k +M)Ck⋆(b− a)2−αR(t),

=⇒ d(Tx, Ty) ≤ (k +M)k⋆(b− a)2−αd(x, y)

Therefore,

d(Tx, Ty) ≤ Ld(x, y),

with L = (k+M)k⋆(b−a)2−α < 1. This shows that T is strictly contractive. Hence,
by Theorem 2.8.(1), T has a unique fixed point x0 ∈ Wα,β(a, b), defined by

x0(t) =
(t− a)α−1

Γ(α)
Dα−1

a+
x(b−)+

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)−kIα−β
a+

x0(t)+k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

+Iαa+
[h(t)− g(t, x0(t))].

4. Hyers-Ulam-Rassias stability

In this section, we will show that our problem has a Hyers-Ulam-Rassias stability
using the conclusions of Theorem 2.8.

Theorem 4.1. Suppose that the conditions of Theorem 3.1 hold. Let

|Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t))− h(t)| ≤ R(t)(t− a)α−2,

then there exists a unique solution x0 ∈ Wα,β(a, b) of equations (1)-(4)such that

(t− a)2−α|x(t)− x0(t)| ≤
k⋆(b− a)4−2α

1− (k +M)(b− a)2−α
(15)

Proof: From our assumption that

|Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t))− h(t)| ≤ R(t)(t− a)α−2,

it follows that

−R(t)(t−a)α−2 ≤ Dα
a+

x(t)+k Dβ
a+

x(t)+g(t, x(t))−h(t) ≤ R(t)(t−a)α−2, ∀t ∈ [a, b].

Thus,

Dα
a+

x(t) + k Dβ
a+

x(t) + g(t, x(t))− h(t) ≤ R(t)(t− a)α−2. (16)

Operating Iαa+
to both sides of the inequality (16) and making use of equations (10)

and (11), we have

x(t)− (t− a)α−1

Γ(α)
Dα−1

a+
x(b−)−

(t− a)α−2

Γ(α− 1)
I2−α
a+

x(a+)+kIα−β
a+

x(t)−k
(t− a)α−1

Γ(α)
I1−β
a+

x(b−)

+Iαa+
[g(t, x(t))− h(t)] ≤ 1

Γ(α)

∫ t

a

(t− s)α−1(t− a)2−αR(s)ds.
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From the definition of our map T, the preceding inequality becomes

|x(t)− T (x(t))| ≤ | 1

Γ(α)

∫ t

a

(t− s)α−1(t− a)2−αR(s)ds|.

=⇒ |x(t)− T (x(t))| ≤ (t− a)2−α

Γ(α)

∫ t

a

(t− s)α−1R(s)ds

≤ (t− a)2−α

Γ(α− β)

∫ t

a

(t− s)2α−3R(s)ds.

Thus,

(t− a)2−α|x(t)− T (x(t))| ≤ (b− a)4−2α

Γ(α− β)

∫ t

a

(t− s)2α−3R(s)ds.

From (13), we have that,

(t− a)2−α|x(t)− T (x(t))| ≤ (b− a)4−2αk⋆R(t)

=⇒ d(x, Tx) ≤ (b− a)4−2αk⋆.

Now, from Theorem 3.1, we are guaranteed of an existence of a unique solution
x0 ∈ Wα,β(a, b) of equations (1)-(4). Finally, from Theorem 2.11(5), we obtain
that

d(x, x0) ≤
1

1− (k +M)(b− a)2−α
d(x, Tx)

≤ k⋆(b− a)4−2α

1− (k +M)(b− a)2−α
.

Thus (15) is satisfied and our theorem is proved.
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