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OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR

FIRST-ORDER CONFORMABLE FRACTIONAL DIFFERENTIAL

EQUATIONS

M. ILIE, J. BIAZAR, Z. AYATI

Abstract. In this article, optimal homotopy asymptotic method is presented
to solve linear and nonlinear first-order conformable fractional differential

equations that, is named conformable fractional optimal homotopy asymptotic
method. So conformable fractional relaxation-oscillation and Riccati differen-
tial equations as a linear and nonlinear fractional differential equations, are
solved by the proposed approach, respectively. The results obtained demon-

strate the efficiency of the declared method for fractional equations.

1. Introduction

Many phenomena in our real world are described by fractional differential equa-
tions [3-14]. Fractional differential equations are often seeming perplexing to solve.
Therefore, finding comprehensive methods for solving them sounds of high impor-
tance. Although having the exact solution of fractional equations in analyzing the
phenomena is essential, there are many fractional differential equations, which can-
not be solved exactly. Due to this fact, finding a desired approximate solutions of
fractional differential equations is clearly vital. In recent years, many effective meth-
ods have been proposed for finding approximate solution to fractional differential
equations, such as Adomian decomposition method [14, 15], homotopy perturba-
tion method [16-19], homotopy analysis method [20], optimal homotopy asymptotic
method [21-23], variational iteration method [24], generalized differential transform
method [25], finite difference method [26], semi-disrete scheme and Chebyshev col-
location method [27], wavelet operational [28, 29] and other methods [30-36]. In this
paper, optimal homotopy asymptotic method is utilized to obtain an approximate
solution of linear and nonlinear conformable fractional differential equations. The
relaxation-oscillation and Riccati fractional differential equations, such as a linear
and a nonlinear fractional equations are solved, respectively. The organization of
this paper is as follows: In Section 2, the basic definitions like conformable frac-
tional derivative and integral, is described. In Section 3, the conformable fractional
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homotopy asymptotic method for linear and nonlinear fractional differential equa-
tions, are presented. In Section 4, conformable fractional relaxation-oscillation and
Riccati equations, as illustrative examples, by means of the proposed approach are
solved. Finally, conclusions are given in Section 5.

2. Basic definitions

The purpose of this section is to recall some preliminaries of the proposed
method.

2.1. Conformable fractional derivative (CFD). Given a function f : [0,∞) −→
R. The conformable fractional derivative of f , of order α, is defined by

Tα(f)(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
, (2.1)

for all x > 0, α ∈ (0, 1]. If f is α−differentiable in some interval (0, a), let’s
define Tα(f)(0) = limx→0+ Tα(f)(x), provided that limx→0+ Tα(f)(x) exists. If
the conformable derivative of f of order α exists, then we simply say that f is
α−differentiable (see [1, 2]).

One can easily show that satisfies all the following properties (see [1]):
Let a ∈ (0, 1] and f , g be a-differentiable at a point x > 0, then

A. For a, b ∈ R Tα(af + bg) = aTα(f) + bTα(g),
B. For all p ∈ R Tα(x

p) = pxp−α,
C. For all constant functions f(x) = λ, Tα(λ) = 0,
D. Tα(f.g) = g.Tα(f) + f.Tα(g),

E. Tα

(
f
g

)
= g.Tα(f)−f.Tα(g)

g2 ,

F. Tα(f) = x1−α df
dx .

If α ∈ (n, n + 1] and is n-differentiable at x > 0 , then the conformable fractional
derivative of of order α is defined as follows

Tα (f) (x) = lim
ε→0

f ([α]−1)
(
x+ εx([α]−α)

)
− f ([α]−1) (x)

ε
, (2.2)

where [α] is the smallest integer greater than or equal to α. When is (n + 1)-
differentiable at x > 0 , as a consequence of (2.2), one can have (see [1])

Tα (f) (x) = x[α]−α d
[α]f

dx[α]
.

2.2. Conformable fractional integral. Given a function f : [a,∞) −→ R, a ≥ 0.
The conformable fractional integral of f , is defined by

Iaα(f)(x) =

∫ x

a

f(t)

t1−α
dt, (2.3)

where the integral is the usual Riemann improper integral, and α ∈ (0, 1) (see
[1, 2]). For the sake of simplicity, lets consider I0α(f)(x) = Iα(f)(x). One of the
most useful results is the following statement (see [1]):
For all x ≥ a and any continuous function in the domain of Iaα , we have
Tα (Iaαf (x)) = f (x).
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3. Conformable fractional optimal homotopy asymptotic method

Consider conformable fractional functional equation with initial condition, as
the following

Tα (u) = N (u) + f (t) , u (0) = β, (3.1)

where N is a functional operator, f(t) is a known function, and β is a constant.
The Eq. (3.1) is changed into conformable fractional Riccati differential equation,
when N (u) = g (t)u (t) + h (t)u2 (t) , where g, h are given functions.
IfN (u) = Bu(t) , then Eq. (3.1) is converted into conformable fractional relaxation-
oscillation differential equation, where B is a constant.
According to optimal homotopy asymptotic technique, a homotopy
v (t, p) : Ω× [0, 1] → R can be constructed as the following

(1− p) [Tα (v (t, p))− f (t)]−H (p) [Tα (ν (t, p))−N (ν (t, p))− f (t)] = 0. (3.2)

Where p ∈ [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function
for p ̸= 0 and H(0) = 0, v(t, p) is an unknown function. By substituting p = 0 and
1 in equation (3.2), we have and respectively. Thus as p is changing from zero to
unity, the solution v(t, p) varies continuously from u0(t) to an exact solution u(t).
By substituting p = 0 in Eq. (3.2) the initial approximation u0(t) = v(t, 0) is
obtained as the solution of equation, the following

Tα (u0 (t))− f (t) = 0, u (0) = β. (3.3)

The auxiliary function H(p) can be chose as the following

H (p) = c1p+ c2p
2 + c3p

3 + . . . , (3.4)

where c1, c2, c3, . . . are parameters, that will be determined later. Expanding
v(t, p, c1, c2, . . .) in a Taylor series of p is

ν (t, p, c1, c2, . . .) = u0 (t) +
∞∑
i=1

ui (t, c1, c2, . . . , ci) p
i. (3.5)

Substituting Eqs. (3.4) and (3.5) into equation (3.2) and setting to zero the co-
efficient of like powers of p, then the zero order deformation equation is obtained
as given in Eq. (3.3), and the other order deformation equations are given as the
following

p1; Tα (u1 (t, c1))− Tα (u0 (t)) + f (t)− c1 [Tα (u0 (t))−N (u0 (t))− f (t)] = 0, u1 (0) = 0,

p2; Tα (u2 (t, c1, c2))− Tα (u1 (t, c1))− c2 [Tα (u0 (t))−N (u0 (t))− f (t)]

−c1
[
Tα (u1 (t, c1))− u1 (t, c1)

∂N
∂u0

(u0 (t))
]
= 0, u2 (0) = 0, (3.6)

p3; Tα (u3 (t, c1, c2, c3))− Tα (u2 (t, c1, c2))− c3 [Tα (u0 (t))−N (u0 (t))− f (t)]

−c2
[
Tα (u1 (t, c1))− u1 (t, c1)

∂N
∂u0

(u0 (t))
]

− 1
2
c1

[
2Tα (u2 (t, c1, c2))− u1

2 (t, c1)
∂2N
∂u0

2 (u0 (t))− 2u2 (t, c1, c2)
∂N
∂u0

(u0 (t))
]
= 0, u3 (0) = 0,

.

..

It should be noted that u1, u2, u3, ... are directed by linear equations (3.6), which
can be easily solved. The convergence of the series given in Eq. (3.5 depends upon
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the auxiliary parameters ci for i ≥ 1 If it converges at p = 1 we have,

u (t, c1, c2, . . .) = u0 (t) +
∞∑
i=1

ui (t, c1, c2, . . . , ci) . (3.7)

Generally, the mth order approximate solution of Eq. (3.1), can be denoted as the
following

um (t, c1, c2, . . . , cm) = u0 (t) +

m∑
i=1

ui (t, c1, c2, . . . , ci) . (3.8)

By substitution of Eq. (3.8) into Eq. (3.1), the residual error can be expressed as
follows

R (t, c1, c2, . . . , cm) = Tα (um (t, c1, c2, . . . , cm))−N (um (t, c1, c2, . . . , cm))− f (t) . (3.9)

When R (t, c1, c2, . . . , cm) = 0, results that um (t, c1, c2, . . . , cm) is an exact solu-
tion. Such a case does not usually occur for nonlinear problems. In these cases we
can apply least square approach:

Jm (c1, c2, . . . , cm) =
b

∫
a
R2 (t, c1, c2, . . . , cm) dt, (3.10)

where the values a, b depend on the given problem. The unknown convergence
control parameters c1, c2, c3, ..., cm can be optimally identified from the following
conditions

∂Jm
∂ci

= 0, i = 1, 2, . . . ,m. (3.11)

It is interesting to point out that when these parameters are determined, the mth
order approximate solution given by Eq. (3.8) can be constructed.

4. Examples

In this section, to illustrate the proposed approach, conformable fractional relaxation-
oscillation and Riccati differential equations will be solved.

Example 4.1. Consider the following fractional relaxation-oscillation differential
equation with initial value

T 3
2
u (t) = −u (t) , 0 ≤ t ≤ 1, u (0) = 1, (4.1)

where u (x) = exp
(
−2

3 t
3
2

)
.

According to the proposed conformable fractional optimal homotopy asymptotic method,
we have

(1− p)
[
T 3

2
(v (t, p))

]
−H (p)

[
T 3

2
(ν (t, p)) + ν (t, p)

]
= 0. (4.2)

Substituting Eqs. (3.4) and (3.5) into Eq. (4.2) and setting to zero the coefficient
of the same powers of p, we derive

p0; T 3
2
(u0 (t)) = 0, u0 (0) = 1,

p1; T 3
2
(u1 (t, c1))− T 3

2
(u0 (t))− c1

[
T 3

2
(u0 (t)) + u0 (t)

]
= 0, u1 (0) = 0, (4.3)
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p2; T 3
2
(u2 (t, c1, c2))− T 3

2
(u1 (t, c1))− c2

[
T 3

2
(u0 (t)) + u0 (t)

]
−c1

[
T 3

2
(u1 (t, c1)) + u1 (t, c1)

]
= 0, u2 (0) = 0,

...

Corresponding solution of this system of conformable differential equations (4.3),
are

u0 (t) = 1,

u1 (t, c1) =
2
3c1t

3
2 ,

u2 (t, c1, c2) =
2
3c1t

3
2 + 2

3c2t
3
2 + 2

3c1
2t

3
2 + 2

9c1
2t3,

...

Therefore, two-terms approximation to the solution of Eq. (4.1), can be obtained
as follows,

u2 (t, c1, c2) = 1 + 1.333333333c1t
3
2 + 0.6666666667c2t

3
2 (4.4)

+0.6666666667c21t
3
2 + 0.222222222c21t

3.

For calculating unknown auxiliary constants c1 and c2 in u2(t, c1, c2) given in Eq.
(4.4), we apply the procedure mentioned in (3.9) up to (3.11), we one obtains

c1 = 0.8647018968, c2 = −3.456662450.

By considering these values, in (4.4), two-order approximate solution of Eq. (4.1)
reads to

u2(t) = 1− 0.653032857t
3
2 + 0.1661576378t3.

In Figure ]4.1], the exact and approximate solutions of fractional relaxation-oscillation
(4.1) equation are plotted.

Example 4.2. Consider the following linear fractional relaxation-oscillation dif-
ferential equation with initial value

Tαu (t) = 1 + u (t) , 0 ≤ t, 0 < α ≤ 1, u (0) = 0. (4.5)

The exact solution of Eq. (4.4), is u (t) = exp
(
1
α t

α
)
− 1.

According to the proposed conformable fractional optimal homotopy asymptotic method,
we have

(1− p) [Tα (v (t, p))− 1]−H (p) [Tα (ν (t, p))− ν (t, p)− 1] = 0. (4.6)

Substituting Eqs. (3.4) and (3.5) into Eq. (4.6) and setting to zero the coefficient
of like powers of p, we obtain

p0; Tα (u0 (t))− 1 = 0, u0 (0) = 0,

p1; Tα (u1 (t, c1))− Tα (u0 (t)) + 1− c1 [Tα (u0 (t))− u0 (t)− 1] = 0, u1 (0) = 0,

p2; Tα (u2 (t, c1, c2))− Tα (u1 (t, c1))− c2 [Tα (u0 (t))− u0 (t)− 1]

−c1 [Tα (u1 (t, c1))− u1 (t, c1)] = 0, u2 (0) = 0, (4.7)

p3; Tα (u3 (t, c1, c2, c3))− Tα (u2 (t, c1, c2))− c3 [Tα (u0 (t))− u0 (t)− 1]

−c2 [Tα (u1 (t, c1))− u1 (t, c1)]− c1 [Tα (u2 (t, c1, c2))− u2 (t, c1, c2)] = 0, u3 (0) = 0,

...
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Matching solution of conformable equations (4.7), are

u0 (t) =
1
α t

α,

u1 (t, c1) = − 1
2c1

(
1
αx

α
)2
,

u2 (t, c1, c2) = −1
2c

2
1

(
1
α t

α
)2 − 1

2c1
(
1
α t

α
)2

+ 1
6c

2
1

(
1
α t

α
)3 − 1

2c2
(
1
α t

α
)2
,

u3 (t, c1, c2, c3) = −1
2c

3
1

(
1
α t

α
)2

+ 1
3c

3
1

(
1
α t

α
)3 − c21

(
1
α t

α
)2 − c1c2

(
1
α t

α
)2

− 1
24c

3
1

(
1
α t

α
)4

+ 1
3c

2
1

(
1
α t

α
)3

+ 1
3c1c2

(
1
α t

α
)3 − 1

2c2
(
1
α t

α
)2 − 1

2c3
(
1
αx

α
)2
,

...

Thus, third-terms approximation to the solution of Eq. (4.5), will be obtained as
the following

u3 (t, c1, c2, c3) =

(
1

α
tα
)
− 1.5c1

(
1

α
tα
)2

− 1.5c21

(
1

α
tα
)2

+ 0.5c21

(
1

α
tα
)3

− c2

(
1

α
tα
)2

−0.5000000001c31

(
1

α
tα
)2

+ 0.3333333334c31

(
1

α
tα
)3

− c1c2

(
1

α
tα
)2

(4.8)

−0.04166666668c31

(
1

α
tα
)4

+ 0.333333334c1c2

(
1

α
tα
)3

− 0.5000000001c3

(
1

α
tα
)2

.

Table 4.1, shows the optimal values of the convergence control constants c1, c2
and c3 in u3(t, c1, c2, c3) given in Eq. (4.8) for different values of which can be
obtained using the procedure mentioned in (3.9) up to (3.11). In Figures 4.2, the
an exact and approximate solutions of fractional Relaxation-Oscillation equation
for α = 0.4, 0.6, 0.8, and 1.0 are plotted.

Example 4.3. Consider the following conformable fractional Riccati differential
equation with initial value

Tαu (t) = 1− u2 (t) , 0 ≤ t ≤ 1, 0 < α ≤ 1, u (0) = 0, (4.9)

where u (t) =
exp( 2

α tα)−1

exp( 2
α tα)+1

.

Consistent with the conformable fractional homotopy asymptotic method, we obtain

(1− p) [Tα (v (t, p))− 1]−H (p)
[
Tα (ν (t, p)) + ν2 (t, p)− 1

]
= 0. (4.10)

Substituting Eqs. (3.4) and (3.5) into Eq. (4.10) and setting to zero the coeffi-
cient, we reads

p0; Tα (u0 (t))− 1 = 0, u0 (0) = 0,

p1; Tα (u1 (t, c1))− Tα (u0 (t)) + 1− c1
[
Tα (u0 (t)) + u2

0 (t)− 1
]
= 0, u1 (0) = 0,

p2; Tα (u2 (t, c1, c2))− Tα (u1 (t, c1))− c2
[
Tα (u0 (t))− u2

0 (t)− 1
]

(4.11)

−c1 [Tα (u1 (t, c1)) + 2u0 (t)u1 (t, c1)] = 0, u2 (0) = 0,

...
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Corresponding solution of system of equations (4.11), are

u0 (t) =
1
α t

α,

u1 (t, c1) =
1
3c1

(
1
α t

α
)3
,

u2 (t, c1, c2) =
1
3

(
1
α t

α
)3 (

c21 + c1 + c2
)
+ 2

15

(
1
α t

α
)5
c21,

...

Two-terms approximation to the solution of Eq. (4.9), will be obtained as follows

u2 (t, c1, c2) =
(
1
α t

α +
(
0.6666666667c1 + 0.3333333333c21 (4.12)

+0.3333333333c2
)(

1
α t

α
)3

+ 0.1333333333c21
(
1
α t

α
)5
.

Table 4.2, shows the optimal values of the convergence control constants c1, c2
and c3 in u2(t, c1, c2) given in Eq. (4.12) for different values of α which can be
obtained using the procedure mentioned in (3.9) up to (3.11). In Figure 4.3, the
exact and approximate solutions of conformable fractional Riccati equation for α =
0.4, 0.6, 0.8, and 1.0 are plotted.

Example 4.4. Consider the following fractional Riccati differential equation with
initial value

Tαu (t) = 2u (t)− u2 (t) + 1 = 0, 0 ≤ t ≤ 1, 0 < α ≤ 1, u (0) = 0. (4.13)

The exact solution of Eq. (4.13), is u (t) =
exp

(
2
√

2
α tα

)
−1

(
√
2+1)+(

√
2−1) exp

(
2
√

2
α tα

) .
By the proposed conformable fractional OHAM approach, we gives

(1− p) [Tα (v (t, p))− 1]−H (p)
[
Tα (ν (t, p))− 2ν (t, p) + ν2 (t, p)− 1

]
= 0.(4.14)

Substituting Eqs. (3.4) and (3.5) into Eq. (4.14) and setting to zero the coeffi-
cient p, we reads

p0; Tα (u0 (t))− 1 = 0, u0 (0) = 0,

p1; Tα (u1 (t, c1))− Tα (u0 (t)) + 1− c1
[
Tα (u0 (t)) + u2

0 (t)− 2u0 (t)− 1
]
= 0, u1 (0) = 0,

p2; Tα (u2 (t, c1, c2))− Tα (u1 (t, c1))− c2
[
Tα (u0 (t)) + u2

0 (t)− 2u0 (t)− 1
]

(4.15)

−c1 [Tα (u1 (t, c1))− 2u1 (t, c1) + 2u0 (t)u1 (t, c1)] = 0, u2 (0) = 0,

...

Matching solution of Eqs. (4.15) are

u0 (t) =
1
α
tα,

u1 (t, c1) = c1
[
1
3

(
1
α
tα
)3 − (

1
α
xα

)2]
,

u2 (t, c1, c2) = −
(
c21 + c1 + c2

) (
1
α
xα

)2
+

(
1
3
c2 − 2

3
c21 +

1
3
c1
) (

1
α
tα
)3

+ 2
15
c21
(

1
α
tα
)5
,

...
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Consequently, two-terms approximation to the solution of Eq. (4.13), will be obtained as
the following

u2 (t, c1, c2) =

(
1

α
tα
)
−

[
2c1 + 0.9999999999c21 + 0.9999999999c2

]( 1

α
tα
)2

+
[
0.6666666666c1 + 0.9999999999c21 + 0.3333333333c2

]( 1

α
tα
)3

−0.6666666666c21

(
1

α
tα
)4

+ 0.1333333333c21

(
1

α
tα
)5

. (4.16)

Table 4.3, shows the optimal values of the convergence control constants c1, c2 and c3 in
u2(t, c1, c2) given in Eq. (4.16) for different values of α which can be obtained using the
procedure mentioned in (3.9) up to (3.11). In Figure 4.4, the exact solution and solution
of conformable fractional OHAM of fractional Riccati equation, for α = 0.4, 0.6, 0.8, and
1.0 are plotted.

5. Conclusion

In this paper, optimal homotopy asymptotic method is applied to obtain an
approximate solution of fractional differential equations. Conformable fractional
derivatives are used for fractional derivative in this study. In comparison, of the
results of applying conformable fractional derivatives with the results reported in
(see [21, 22]), one learns that, CFD is a simple tool to find an approximate solution
to a linear and a nonlinear fractional differential equation. What can one learn from
the plots: The closer values of to , the larger convergence interval. To show the
effectiveness of the method, fractional relaxation-oscillation equation, and Riccati
fractional differential equation have been solved by conformable fractional optimal
homotopy asymptotic method.

References

[1] R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative,

Journal of Computational and Applied Mathematics, Vol.264(2014), pp.65-70.
[2] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied

Mathematics, Vol.279(2015), pp.57-66.

[3] F.B.M. Duarte, J.A.T. Machado, Chaotic phenomena and fractional- order dynamics in the
trajectory control of redundant manipulators, Nonlinear Dynamics, Vol.29(2002), pp.342-362.

[4] O.P. Agrawal, A general formulation and solution scheme for fractional optimal control prob-
lems, Nonlinear Dynamics, Vol.34(2004), pp.323-337.

[5] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE
Transactions on Antennas and Propagation, Vol.44(1996), pp.554-566.

[6] R.L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers
and Mathematics with Applications, Vol.59(2010), pp.1586-1593.

[7] V.V. Kulish, J.L. Larg, Application of fractional calculus to fluid mechanics, Journal of Fluids
Engineering, Vol.134(2002), dio:10.1115/1.1478062.

[8] K.B. Oldhom, Fractional differential equations in electrochemistry, Advances Engineering
Software, Vol.41(2010), pp.9-12.

[9] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction dif-
fusion systems, Journal of Computational and Applied Mathematics, Vol.220(2008), pp.215-
225.

[10] A.R. Seadawy, Stability analysis solutions for nonlinear three-dimensional modified Korteweg-

de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Physica A:
Statistical Mechanics and its Applications, Vol.455(2016), pp.44-51.

[11] F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity:an experimen-

tal study, Communications in Nonlinear Science and Numerical Simulation, Vol.15(2010),
pp.939-945.



JFCA-2019/10(1) ON THE FRACTIONAL-ORDER GAMES 41

[12] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechan-

ics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional calculus in continuum
Mechanics. New York: Springer-Verlag; 1997.

[13] A.R. Seadawy, Nonlinear wave solutions of the three-dimensional ZakharovKuznetsovBurg-
ers equation in dusty plasma, Physica A: Statistical Mechanics and its Applications,

Vol.439(2015), pp.124131.
[14] V. DaftardarGejji, H. Jafari, Solving a multi- order fractional differential equation using

Adomian Decomposition, Applied Mathematics and Computation, Vol.189(2007), pp.541-
548.

[15] B. Ghazanfari, A. Sepahvandzadeh, Adomian decomposition method for solving fractional
Bratu-type equations, Journal of Mathematics and Computer Science, Vol.8(2014), pp.236-
244.

[16] O. Abdulaziz, I. Hashim, S. Momani, solving systems of fractional differential equations by

homotopy perturbation method, Physics Letters A, Vol.372(2008), pp.451-459.
[17] B. Ghazanfari, A.G. Ghazanfari, M. Fuladvand, Modification of the homotopy perturbation

method for numerical solution of Nonlinear Wave and of Nonlinear Wave Equations., Journal
of Mathematics and Computer Science, Vol.3(2011), pp.212-224.

[18] M. Mahmoudi, M.V. Kazemi, Solving singular BVPs Ordinary Differential Equations by
Modified Homotopy Perturbation Method, Journal of Mathematics and Computer Science,
Vol.7(2013), pp.138-143.

[19] M. Rabbani, New Homotopy Perturbation Method to Solve Non-Linear Problems, Journal
of Mathematics and Computer Science, Vol.7(2013), pp.272-275.

[20] I. Hashim, O. Abdulaziz, S. Momani, Homotopy Analysis Method for fractional IVPs, Com-
munications in Nonlinear Science and Numerical Simulation, Vol.14(2009), pp.674-684.

[21] M. Hamarsheh, A.I. Ismail, An Analytic Solution for Fractional Order Riccati Equations by
Using Optimal Homotopy Asymptotic Method, Applied Mathematical Sciences, Vol.10(2016)
No.23, pp.1131-1150.

[22] M. Hamarsheh, A. Ismail, Z. Odibat, Optimal homotopy asymptotic method for solving

fractional relaxation-oscillation equation, Journal of Interpolation and Approximation in Sci-
entific Computing, Vol.2(2015),pp.98-111.

[23] L.G. Yuan, Z. Alam, An optimal homotopy analysis method based on particle swarm opti-
mization: application to fractional-order differential equation, Journal of Applied Analysis

and Computation, Vol.6(2016) No.1, pp.103-118.
[24] G. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Physics

Letters A, Vol.374(2010), pp.2506-2509.
[25] Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: applica-

tion to differential equations of fractional order, Applied Mathematics and Computation,
Vol.197(2008), pp.467-477.

[26] Y. Zhang, A finite difference method for fractional partial differential equation, Applied

Mathematics and Computation, Vol.215(2009), pp.524-529.
[27] H. Azizi, G.B. Loghmani, A numerical method for space fractional diffusion equations us-

ing a semi-disrete scheme and Chebyshev collocation method, Journal of Mathematics and
Computer Science, Vol.8(2014), pp.226235.

[28] A. Neamaty, B. Agheli, R. Darzi, Solving Fractional Partial Differential Equation by Using
Wavelet Operational Method, Journal of Mathematics and Computer Science, Vol.7(2013),
pp.230240.

[29] P. Rahimkhani, Y. Ordokhani, E. Babolian, Fractional-order Legendre wavelets and their ap-

plications for solving fractional-order differential equations with initial/boundary conditions,
Computational Methods for Differential Equations, Vol.5(2017) No.2, pp.117-140.

[30] A. Aghili, Solution to time fractional generalized KdV of order 2q+1 and system of space frac-
tional PDEs, Computational Methods for Differential Equations, Vol.5(2017) No.3, pp.246-

255.
[31] A. Neirameh, S. Shokooh, M. Eslami, Solutions structure of integrable families of Riccati

equations and their applications to the perturbed nonlinear fractional Schrodinger equation,

Computational Methods for Differential Equations, Vol.4(2016) No.4, pp.261-275.



42 MOUSA ILIE, JAFAR BIAZAR, ZAINAB AYATI JFCA-2019/10(1)

[32] M. Ekici, M. Mirzazadeh, M. Eslami, M. R. Belic, Optical soliton perturbation with

fractional-tmporal evolution by first integral method with conformable fractional deriva-
tives, Optik-International Journal for Light and Electron Optics, Vol.127(2016) No.22,DOI:
10.1016/j.ijleo.2016.08.076.

[33] M. Ilie, J. Biazar, Z. Ayati, The first integral method for solving some con-

formable fractional differential equations, Optical and Quantum Electronics, Vol.50(2018)
No.2,https://doi.org/10.1007/s11082-017-1307-x.

[34] M. Ilie, J. Biazar, Z. Ayati, General solution of Bernoulli and Riccati fractional differen-
tial equations based on conformable fractional derivative, International Journal of Applied

Mathematical Research, Vol.6(2017) No.2, pp.49-51.
[35] M. Ilie, J. Biazar, Z. Ayati, Application of the Lie Symmetry Analysis for second-order

fractional differential equations, Iranian Journal of Optimization, Vol.9(2017) No.2, pp.79-
83.

[36] M. Ilie, J. Biazar, Z. Ayati, Analytical solutions for conformable fractional Bratu-type equa-
tions, International Journal of Applied Mathematical Research, Vol.7(2018) No.1, pp.15-19.



JFCA-2019/10(1) ON THE FRACTIONAL-ORDER GAMES 43

Figure 4.1. The exact and approximate solutions of fractional relaxation-
oscillation (4.1) equation are plotted.

Figure 1. 2nd-order approximation of OHAM and Exact solution
for Example 4.1.

Figures 4.2. The an exact and approximate solutions of fractional relaxation-
oscillation equation for and are plotted.

Figure 2. 3nd-order approximation of OHAM and exact solution
for Example 4.2.

Figures 4.3. The exact and approximate solutions of conformable fractional
Riccati equation for and are plotted.
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Figure 3. 2nd-order approximation of OHAM and exact solution
for Example 4.3.

Figures 4.4. The exact solution and solution of conformable fractional OHAM
of fractional Riccati equation, for and are plotted.

Figure 4. 2nd-order approximation of OHAM and exact solution
for Example 4.4.
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Table 4.1. Values of auxiliary parameters for the third-order
OHAM solution of Eq. (4.5) for different orders.

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 −1.457903741 −1.208867087 −1.208867087 −1.155095209

c2 0.1110279352 0.01085942753 0.01085942753 0.003733184279

c3 −0.1200484251 0.001321301525 0.001321301525 0.001571139761

Table 4.2. Values of auxiliary parameters for the third-order
OHAM solution of Eq. (4.9) for different orders.

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 −0.5315048975 0.6936479614 0.8425060981 −0.9175405542

c2 0.0002051308039 −2.773945592 −3.369657214 0.0001113528473

Table 4.3. Values of auxiliary parameters for the third-order
OHAM solution of Eq. (4.9) for different orders.

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 0.7431673291 −0.6503249572 −1.046574182 −1.0621151875

c2 −3.154368233 −0.2366912237 −0.001518446383 0.002147348534
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