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GLOBAL ATTRACTIVITY FOR NONLINEAR DIFFERENTIAL

EQUATIONS WITH HADAMARD FRACTIONAL DERIVATIVE

ASLI B. ÖZAYDIN, FATMA KARAKOÇ

Abstract. This paper deals with a nonlinear fractional differential equation
with Hadamard fractional derivative. By using comparision results sufficient

conditions are obtained for the global attractivity of the solutions for nonlinear
fractional differential equations in weighted spaces.

1. Introduction

In recent years, fractional order differential equations have been gain importance
and studied systematically [6, 8, 9, 11, 13, 14, 16]. Moreover, application fields of
fractional order differential equations show increase in engineering and other science
[7, 15, 17]. However, it is quite difficult to find analytical solutions of fractional
differential equations. Therefore, examining solutions of equations with qualitative
methods carry great importance. In this context, doing the stability analysis will
help to determine the behaviour of solutions [1, 2, 3, 4, 5, 10, 18].

Let a ≤ x ≤ b ≤ ∞ and 0 < α < 1. We consider the following nonlinear fractional
differential equation

(Dα
a+y)(x) = f(x, y(x)), x > a, (1)

with the initial condition

(J1−α
a+ y)(x) |x=a= yo, (2)

where Dα
a+ is the Hadamard fractional derivative operator of order α, J1−α

a+ is the
Hadamard fractional integral operator of order 1 − α, f(x, y(x)) ∈ Cγ,log[a, b] for
any y ∈ G,G is an open set in R and y0 ∈ R. For 0 ≤ γ < 1, γ ≥ 1−α, Cγ,log[a, b] is
the weighted space of functions g such that (log x

a )
γg(x) ∈ C[a, b], where C denotes

the spaces of the continuous functions.
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2. Preliminaries

In this section, we present some definitions and lemmas which will be used later.

Definition 1 [8]. The left-sided Hadamard fractional integral Jα
a+f of order α ∈ R

is defined by

(Jα
a+f)(x) =

1

Γ(α)

∫ x

a

(log
x

t
)α−1 f(t)

t
dt (x > a, α > 0). (3)

Definition 2 [8]. Let δ = xD (D = d
dx ) be the δ-derivative. The left-sided

Hadamard fractional derivative Dα
a+ of order α ∈ R+ is defined by

(Dα
a+f)(x) = δ(n)(Jn−α

a+ f)(x)

= (x
d

dx
)n

1

Γ(n− α)

∫ x

a

(log
x

t
)n−α−1 f(t)

t
dt, x > a, (4)

where n = [α] + 1, [α] denotes the integral part of α.

Property 1 [8]. If α > 0, β > 0 and 0 < a < ∞, then

(Jα
a+(log

t

a
)β−1)(x) =

Γ(β)

Γ(β + α)
(log

x

a
)β+α−1 (5)

Definition 3 [12]. One-parameter Mittag-Leffler function is defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)

where α > 0, z ∈ C.
The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(6)

where α > 0 and β, z ∈ C.

Definition 4. The constant yeq is an equilibrium of the fractional differential
equation (Dα

a+y)(x) = f(x, y(x)) if and only if f(x, yeq) = (Dα
t0+y)(x) |y(x)=yeq

for
all x > a, where Dα

a+ denotes Hadamard fractional derivative operator.

In this paper we assume that yeq = 0.

Definition 5. The zero solution of the equation (1) is called globally attractive if
every solution of (1) tends to zero as x → ∞.

Definition 6 [10]. A function θ(r) is said to belong to class-K if θ : R+ → R+ is
a continuous function such that θ(0) = 0 and it is strictly increasing.

The following theorem will be used in the proof of main results.
Theorem 1[8, Theorem 4.5]. Let λ ∈ R, α > 0, n = − [−α] and γ (0 ≤ γ < 1) be
such that γ ≥ n− α. If f ∈ Cγ,log[a, b], then the Cauchy type problem{

(Dα
a+y)(x)− λy(x) = f(x), a < x ≤ b,

(Dα−k
a+ y)(a+) = bk (bk ∈ R; k = 1, ..., n)
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has a unique solution y(x) ∈ Cα
δ;n−α,γ [a, b] and this solution is given by

y(x) =

n∑
j=1

bj(log
x

a
)α−jEα,α−j+1

[
λ(log

x

a
)α
]

+

∫ x

a

(log
x

t
)α−1Eα,α

[
λ(log

x

a
)α
]
f(t)

dt

t
,

where Cα
δ;n−α,γ [a, b] =

{
y(x) ∈ Cn−α,log[a, b] : (D

α
a+y)(x) ∈ Cγ,log[a, b]

}
.

The following lemma is a generalization of Lemma 3.5 in [8].

Lemma 1. Let 0 < α < 1 and let y(x) ∈ C1−α,log[a, b]. If

lim
x→a+

[
(log

x

a
)1−αy(x)

]
= c, c ∈ R, (7)

then

(J1−α
a+ y)(a+) = lim

x→a+
(J1−α

a+ y)(x) = cΓ(α). (8)

Proof. Choose an arbitrary ε > 0. By (7), there exists δ = δ(ε) > 0 such that∣∣∣∣(log t

a
)1−αy(t)− c

∣∣∣∣ < ε

Γ(α)
(9)

for a < t < a+ δ. From (5), we get

Γ(α) = (J1−α
a+ (log

t

a
)α−1)(x). (10)

Using this equality, and from (3), we have∣∣(J1−α
a+ y)(x)− cΓ(α)

∣∣ =

∣∣∣∣(J1−α
a+ y)(x)− c(J1−α

a+ (log
t

a
)α−1)(x)

∣∣∣∣
=

∣∣∣∣ 1

Γ(1− α)

∫ x

a

(log
x

t
)−α y(t)

t
dt− c

1

Γ(1− α)

∫ x

a

(log
x

t
)−α(log

t

a
)α−1 dt

t

∣∣∣∣
≤ 1

Γ(1− α)

∫ x

a

(log
x

t
)−α

∣∣∣∣y(t)− c(log
t

a
)α−1

∣∣∣∣ dtt
=

1

Γ(1− α)

∫ x

a

(log
x

t
)−α(log

t

a
)α−1

∣∣∣∣y(t)(log t

a
)1−α − c

∣∣∣∣ dtt .
Applying the estimate (9) and using (3) and (5), for a < t < x < a + δ we obtain
that ∣∣(J1−α

a+ y)(x)− cΓ(α)
∣∣ <

ε

Γ(α)

1

Γ(1− α)

∫ x

a

(log
x

t
)−α(log

t

a
)α−1 dt

t

=
ε

Γ(α)
(J1−α

a+ (log
t

a
)α−1)(x)

=
ε

Γ(α)
Γ(α)

= ε

which proves (8).

The following lemma gives a formula for the fractional derivative of Mittag-Leffler
functions (6).
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Lemma 2. Let A > 0, 0 < α < 1. Then the following relation holds:(
Dα

a+

[
(log

x

a
)α−1Eα,α

(
A(log

x

a
)α
)])

(x) = A(log
x

a
)α−1Eα,α

(
A(log

x

a
)α
)
, x > a,

where Dα
a+ is the Hadamard fractional derivative operator of order α.

Proof. From (4) we have(
Dα

a+

[
(log

x

a
)α−1Eα,α

(
A(log

x

a
)α
)])

(x) = x
d

dx

1

Γ(1− α)

∫ x

a

(log
x

t
)−α(log

t

a
)α−1Eα,α(A(log

t

a
)α)

dt

t

Note that the Mittag-Leffler function Eα,β(z) is an entire function. So, using (6)

and interchanging u =
log t− log a

log x− log a
we obtain that(

Dα
a+

[
(log

x

a
)α−1Eα,α

(
A(log

x

a
)α
)])

(x) = x
d

dx

[
1 +

A

Γ(α+ 1)
(log

x

a
)α

+
A2

Γ(2α+ 1)
(log

x

a
)2α + ...

]
= A(log

x

a
)α−1

[
1

Γ(α)
+

A

Γ(2α)
(log

x

a
)α + ...

]
= A(log

x

a
)α−1Eα,α(A(log

x

a
)α).

3. Main Results

In this section, first we give auxiliary results. Then the main results are proved.
The following lemma is a generalization of Lemma 2.3.1 in [9].

Lemma 3. Let m(x) ∈ C1−α,log[a, b] and satisfies the following inequality∣∣∣(log x

a
)1−αm(x)− (log

y

a
)1−αm(y)

∣∣∣ ≤ M

∣∣∣∣log x

y

∣∣∣∣λ , (11)

where M > 0, 0 < α < λ < 1. For any x1 ∈ (a, b], if

m(x1) = 0 and m(x) ≤ 0, a < x ≤ x1, (12)

then

(Dα
a+m)(x1) ≥ 0, 0 < α < 1.

Proof. From (4), we have

(Dα
a+m)(x) = x

d

dx

1

Γ(1− α)

∫ x

a

(log
x

t
)−αm(t)

t
dt, x > a.

Define H(x) =
∫ x

a
(log

x

t
)−αm(t)

t
dt. For small h > 0, it is obtained that

H(x1)−H(x1 − h) =

∫ x1

a

(log
x1

t
)−αm(t)

t
dt−

∫ x1−h

a

(log
x1 − h

t
)−αm(t)

t
dt

=

∫ x1−h

a

[
(log

x1

t
)−α − (log

x1 − h

t
)−α

]
m(t)

t
dt

+

∫ x1

x1−h

(log
x1

t
)−αm(t)

t
dt.
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Since
(
log

x1

t

)−α

−
(
log

x1 − h

t

)−α

≤ 0 and m(t) ≤ 0 for a < x1−h < t < x1, we

have

H(x1)−H(x1 − h) ≥
∫ x1

x1−h

(log
x1

t
)−αm(t)

t
dt. (13)

From (11), there exists a constant M = k(x1) > 0 such that∣∣∣∣(log x1

a
)1−αm(x1)− (log

t

a
)1−αm(t)

∣∣∣∣ ≤ k(x1)
∣∣∣log x1

t

∣∣∣λ .
Since m(x1) = 0, from the above inequality we have

−k(x1)(log
x1

t
)λ ≤ −(log

t

a
)1−αm(t) ≤ k(x1)(log

x1

t
)λ

Using this inequality, we obtained that

H(x1)−H(x1 − h) ≥ −k(x1)

∫ x1

x1−h

(log
x1

t
)−α+λ(log

t

a
)α−1 dt

t

≥ −k(x1)

(
log

x1 − h

a

)α−1 ∫ x1

x1−h

(log
x1

t
)−α+λ dt

t

=
−k(x1)

1− α+ λ

(
log

x1 − h

a

)α−1 (
log

x1

x1 − h

)1−α+λ

.(14)

For sufficiently small h > 0, from (14), we have

H(x1)−H(x1 − h)

h
+

k(x1)

1− α+ λ

(
log

x1 − h

a

)α−1
1

h

(
log

x1

x1 − h

)1−α+λ

≥ 0.

Letting h → 0, we get
d

dx
H(x) |x=x1≥ 0.

So, since x > 0 and 1− α > 0, from (4) we have

(Dα
a+m)(x1) ≥ 0.

Hence the proof is completed.

The following theorem is a generalization of Theorem 2.3.1 in [9].

Theorem 2. Assume that v, w ∈ C1−α,log[a, b], 0 < α < 1, satisfy the following
conditions:
(i) For 0 < α < λ < 1 and M1,M2 > 0∣∣∣(log x

a
)1−αv(x)− (log

y

a
)1−αv(y)

∣∣∣ ≤ M1

∣∣∣∣log x

y

∣∣∣∣λ (15)

∣∣∣(log x

a
)1−αw(x)− (log

y

a
)1−αw(y)

∣∣∣ ≤ M2

∣∣∣∣log x

y

∣∣∣∣λ (16)

(ii) For f ∈ Cγ,log[a, b], 0 ≤ γ < 1, γ ≥ 1− α

(Dα
a+v)(x) ≤ f(x, v(x)) (17)

(Dα
a+w)(x) ≥ f(x,w(x)) (18)

one of the inequalities (17) or (18) being strict. Then

v0 < w0
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implies
v(x) < w(x), a < x ≤ b, (19)

where v0 = (J1−α
a+ v)(x) |x=a, w0 = (J1−α

a+ w)(x) |x=a .

Proof. Suppose that v0 < w0 be satisfied and the conclusion (19) is not true. Then,
from the definition of v0, w0 and continuity of Γ(α)v(x)(log x

a )
1−α and Γ(α)w(x)(log x

a )
1−α,

there exists x1 such that, for a < x1 ≤ b

v(x1) = w(x1) and v(x) < w(x), a < x < x1.

Setting m(x) = v(x) − w(x), a < x ≤ x1, we find that m(x) < 0, a < x < x1 and
m(x1) = 0. Moreover, it is clear that m(x) ∈ C1−α,log[a, b] satisfy (11). Then by
Lemma 3, we get (Dα

a+m)(x1) ≥ 0.
Let us suppose that the inequality (18) is strict. Then from (17), we have

f(x1, v(x1)) ≥ (Dα
a+v)(x1) ≥ (Dα

a+w)(x1) > f(x1, w(x1)).

This is a contradiction since v(x1) = w(x1). If inequality (17) is strict, then we
obtain similar contradiction. Hence the conclusion (19) is valid and the proof is
complete.

The following lemma is the main tool for the proof of main results.

Lemma 4. Assume that the conditions of Theorem 2 hold with nonstrict inequali-
ties (17) and (18). Suppose further that f satisfies the following Lipschitz condition

f(x, u1)− f(x, u2) ≤ L(u1 − u2), u1 ≥ u2, L > 0. (20)

Then
v0 ≤ w0

implies
v(x) ≤ w(x), a < x ≤ b, (21)

where v0 = (J1−α
a+ v)(x) |x=a, w0 = (J1−α

a+ w)(x) |x=a .

Proof. For small ε > 0 let the function wε is defined as

wε(x) = w(x) + ελ(x),

where

λ(x) = (log
x

a
)α−1Eα,α

[
2L(log

x

a
)α
]
. (22)

Using Lemma 1, from the definition of wε(x) we get

wε0 = w0 + ελ0, (23)

where wε0 = (J1−α
a+ wε)(x) |x=a, w0 = (J1−α

a+ w)(x) |x=a, and λ0 = (J1−α
a+ λ)(x) |x=a .

On the other hand, taking into account (6), (22), and Lemma 1 it is obtained that
λ0 = 1. So, since v0 ≤ w0, from (23) we have wε0 > w0 ≥ v0.
Now, using (18) and (20) we get

(Dα
a+wε)(x) = (Dα

a+w)(x) + ε(Dα
a+λ)(x)

≥ f(x,w(x)) + ε(Dα
a+λ)(x)

≥ f(x,wε(x))− εLλ(x) + ε(Dα
a+λ)(x). (24)

On the other hand, from Lemma 2, it is clear that

(Dα
a+λ)(x) = 2L(log

x

a
)α−1Eα,α(2L(log

x

a
)α)

= 2Lλ(x). (25)
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Substituting (25) into (24), we obtain that

(Dα
a+wε)(x) ≥ f(x,wε(x))− εLλ(x) + ε2Lλ(x)

= f(x,wε(x)) + εLλ(x)

> f(x,wε(x)).

It can be shown that wϵ ∈ C1−α,log[a, b] satisfies (16). So by Theorem 2, for any
ε > 0

v(x) < wε(x), a < x ≤ b.

Hence, taking ε → 0 on both sides of this inequality, we have

v(x) ≤ w(x), a < x ≤ b,

which completes the proof.

The following theorems give the sufficient conditions for global attractivity of the
zero solution of (1).

Theorem 3. Let yeq = 0 be an equilibrium point of equation (1). Let V (x, y(x)) ∈
C1−α,log[a, b] satisfies the Lipschitz condition (20) and following conditions:

k1 ∥y∥d ≤ V (x, y(x)) ≤ k2 ∥y∥dc (26)

(Dα
a+V )(x) ≤ −k3 ∥y∥dc , (27)

where α ∈ (0, 1) and k1, k2, k3, c and d are arbitrary positive constants. Then,
yeq = 0 is globally attractive.

Proof. From (26) and (27) we get

(Dα
a+V )(x) ≤ −k3

k2
V (x, y(x)). (28)

By Theorem 1, the initial value problem

(Dα
a+V )(x) +

k3
k2

V (x, y(x)) = 0,

(J1−α
a+ V )(x) |x=a= V0,

(29)

has a unique solution

V (x, y(x)) = V0(log
x

a
)α−1Eα,α

[
−k3
k2

(log
x

a
)α
]
. (30)

Taking into account Lemma 4, (28), (29), and (30) we obtain that

V (x, y(x)) ≤ V0(log
x

a
)α−1Eα,α

[
−k3
k2

(log
x

a
)α
]
. (31)

Substituting (31) into (26), we get

∥y(x)∥ ≤
(
V0

k1
(log

x

a
)α−1Eα,α

[
−k3
k2

(log
x

a
)α
]) 1

d

.

Since

Eα,α

[
−k3
k2

(log
x

a
)α
]
→ 0 as x → ∞,

the proof is completed.
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Theorem 4. Let yeq = 0 be an equilibrium point of the equation (1). Let
V (x, y(x)) ∈ C1−α,log[a, b] satisfies the Lipschitz condition (20) and θ be a class-K
function satisfies

V (x, y(x)) ≥ θ (∥y∥) , (32)

(Dα
a+V )(x) ≤ 0, (33)

where α ∈ (0, 1). Then, yeq = 0 is globally attractive.

Proof. The proof is similar to proof of Theorem 3. From Theorem 1, the linear
fractional differential equation

(Dα
a+V )(x) = 0 (34)

with the initial condition (J1−α
a+ V )(x) |x=a= V0 has a unique solution

V (x, y(x)) =
V0

Γ(α)
(log

x

a
)α−1.

Taking into account Lemma 4, (33) and (34), we obtain that

V (x, y(x)) ≤ V0

Γ(α)
(log

x

a
)α−1. (35)

Substituting (35) into (32), we get

∥y(x)∥ ≤ θ−1(
V0

Γ(α)
(log

x

a
)α−1).

Since 0 < α < 1 and θ is a class-K function, we have

∥y(x)∥ → 0 as x → ∞,

which completes the proof.
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