
Journal of Fractional Calculus and Applications

Vol. 10(1) Jan. 2019, pp. 85-104.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

EFFICIENT METHODS FOR THE ANALYTICAL SOLUTION OF

THE FRACTIONAL GENERALIZED FISHER EQUATION

HODA F. AHMED

Abstract. In this paper, analytical approximate solutions of the generalized

fractional Fisher equation (GFFE) are given using the Laplace Adomain de-
composition method (LADM) and the reduced differential transform method

(RDTM). The two proposed methods are effective and easy to implement. The
approximate solutions of the two proposed schemes give better results when

compared with the exact solutions or the numerical solutions in the existing

literature.

1. Introduction

Fractional partial differential equations (FPDEs) have an increased widespread
position in many scientific applications due to their accuracy in modeling many phe-
nomena’s in different fields of chemistry, biology, applied science, engineering...etc.([1]-
[5])
Fisher’s equation is first introduced by Fisher as a deterministic model of the wave
propagation of favored gene in population [6]. Also it arises in many physical, bio-
logical, chemical, and engineering problems that are described by the interaction of
diffusion and reaction process. For example, it plays a significant role include flame
propagation, neutron flux in a nuclear reactor and the dynamics of defects in ne-
matic liquid crystal [7]. The general form of the Fisher equation which is termed as
”generalized Fisher equation” (GFE) is of great interest for many researchers and
scientists. Many articles ([8]-[21]) have presented various analytical and numerical
methods to solve GFE; In [11] a modified scheme based on the hybridization of Exp
function method with nature inspired algorithm was used to find the approximate
solution of GFE. Ismail et al. [15] used Adomian decomposition method (ADM),
Rashidi et al. [16] employed homotopy perturbation method (HPM), Nawaz et al.
[13] applied optimal homotopy asymptotic method (OHAM) for obtaining approx-
imate solutions of the generalized Burgers -Fisher Equation (GBFE). Mittal and
Tripathi [12] applied the modified cubic B-spline functions for the numerical solu-
tion of GBFE and Burgers-Huxley equations. Khattak [17] used collocation based
radial base functions method (CBRBF) for numerical solution of the GBFE. Javidi
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[18] applied a modified pseudo spectral method for GBFE.
Recently many researchers are interested to provide different numerical methods
for solving GFFE ([22]-[28]).The fractional time Fisher equation was solved by
using Hemotopy perturbation method in [27], while the fractional space Fisher
equation and the fractional time Fisher equation were solved by the modified Ado-
main decomposition method in [28]. In [25] the Haar wavelet method and optimal
homotopy asymptotic method were used to find the approximate solution to the
fractional Fisher type equation. To the best of our knowledge the fractional time
GFFE has not been treated yet by using LADM or by RDTM.
The main objective of the present paper is to offer two numerical techniques based
upon LADM and RDTM to solve the fractional time GFFE:

∂αu(x, t)

∂tα
= uxx − µuδux + γu(1− uδ), x ∈ [0, 1], t > 0, 0 < α ≤ 1. (1)

Which is subject to the initial condition

u(x, 0) = f(x) = (0.5 − 0.5 tanh[
µδ

2(δ + 1)
x])

1
δ , x ∈ [0, 1]. (2)

This equation reduced to the classical generalized Fisher equation at α = 1 and has
exact solution [14]

u(x, t) = (0.5 − 0.5 tanh [
µδ

2(δ + 1)
(x− (

µ

δ + 1
+
µ(δ + 1)

µ
)t)])

1
δ (3)

Where ∂αu(x,t)
∂tα is the fractional time derivative operator in sense of Caputo.

The LADM was offered by Khuri who applied the scheme to a class of nonlinear
differential equations [29]. The achieved solutions are expressed as infinite series
which converge rabidly to the exact solutions. It was shown that LADM is easily
to implement and accurately to approximate solutions of wide classes of linear and
nonlinear ODEs and PDEs of integer order ([30]-[36]).
Recently, Keskin and Oturanc [37] developed the reduced differential transform
method (RDTM) for the fractional differential equations and showed that RDTM
is an easily useable semi analytical method and gives the exact solution for both
the linear and nonlinear differential equations. RDTM can be well-thought-out as
an iterative process for obtaining Taylor series solution of differential equations.

This paper is outlined as follows: In the next section, basic definition of the
Caputo fractional derivative and its Laplace transform are informed. The proposed
numerical techniques of RDTM and LADM are explained in section 3 and section
4, respectively. Numerical results which validate the applicability of the anticipated
techniques are set in section 5. Finally, the main conclusion ends the paper in the
last section.

2. Basic Definitions

Definition 1 A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R,
if there exists a real number p > µ such that f(t) = t

p

g(t) where g(t) ∈ C(0,∞),
and is said to be in space Cmµ if and only if fn ∈ C, n ∈ N .
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Definition 2 The time fractional derivative Dα
∗t of u(x, t) in the Caputo sense is

defined as

Dα
∗tu(x, t) =

∂αu(x, t)

∂tα
=

∫ t

0

(t− s)n−α−1

Γ(n− α)
un(x, s)ds. (4)

For n− 1 < α ≤ n, n ∈ N, t > 0, u(x, t) ∈ Cn−1

Definition 3 The Laplace transform of the fractional Caputo derivative is

L[Dα
∗tu(x, t)] = sαU(x, s)−

n−1∑
k=1

sα−k−1u(k)(x, 0), n− 1 < α ≤ n. (5)

We refer to ([38]-[39]) for more details about fractional operators.

3. Reduced Differential Transform Method

3.1. Basic idea of RDTM. The basic definition of RDTM is defined as follows.
Definition 4 If u(x, t) be an analytic and continuously differentiable with respect
to space variable x and time t in the domain of interest, then the t-dimensional
spectrum function

Uk(x) =
1

Γ(kα+ 1)
[
∂kα

∂tkα
u(x, t)]t=t0 , (6)

is the reduced transformed function of u(x, t), where α is a parameter which de-
scribes the order of time-fractional derivative. Throughout this paper u(x, t) repre-
sents the original function and Uk(x) represents the reduced transformed function.
Inverse transformation of the set values (Uk(x))nk=0 gives the approximation solu-
tion in the following form

ũn(x, t) =

n∑
k=0

Uk(x)(t− t0)αk. (7)

When t0 = 0, Eq.(7) take the form

ũn(x, t) =

n∑
k=0

Uk(x) tαk. (8)

Where n is the order of the approximation, then the exact solution is given by

u(x, t) = limn→∞ũn(x, t).

So we can deduce that the concept of RDTM is derived from the power series ex-
pansion of a function.
The sufficient conditions for the convergence of the generalized differential trans-
form method when applied to fractional differential equations and the estimation
of the maximum absolute errors are discussed and proved in [40].
The mathematical operations performed by the RDTM are listed in Table 1 ([41]-
[42]).
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Functional Form Transformed Form

u(x, t) 1
Γ(kα+1) [ ∂

kα

∂tkα
u(x, t)]t=0

γu(x, t)± βv(x, t) γUk(x)± βVk(x), γ, β are constant

u(x, t)v(x, t)
∑k
i=0 Ui(x)Vk−i(x)

u(x, t)v(x, t)w(x, t)
∑n
k=0

∑k
i=0 Ui(x)Vk−i(x)Wn−k(x)

∂nα

∂tnαu(x, t) Γ(kα+nα+)
Γ(kα+1) Uk+n

∂n

∂xnu(x, t) ∂n

∂xnUk(x)
xmtnu(x, t) xmUk−n(x)

xmtn xmδ(kα− n), where δ(kα− n) = { 1 for kα = n
0 for kα 6= n

Table 1. Basic operations of RDTM.

3.2. Procedure solution to GFFE by using RDTM. By operating RDTM
to Eq.(1) with the initial condition (2) and by using the related properties of the
differential transform, the following recurrence relation is obtained

Γ(kα+ α+ 1)

Γ(k + 1)
Uk+1(x) =

∂2

∂x2
Uk(x)

− µ
k∑
r1

k−r1∑
r2=0

. . .

k−
∑δ−1
i=1 ri∑
rδ

∂

∂x
(Ur1(x)Ur2(x) . . . Uk−

∑δ
i=1 ri

(x)) + γUk(x)

− γ
k∑
r1

k−r1∑
r2=0

. . .

k−
∑δ−1
i=1 ri∑
r

Ur1(x)Ur2(x) . . . Uk−
∑δ
i=1 ri

(x), k ≥ 0. (9)

With the initial iteration

U0(x) = (0.5 − 0.5 tanh[
µδ

2(δ + 1)
x])

1
δ , x ∈ [0, 1]. (10)

By using Eqs. (9) and (10), the nth order approximation is given by

un(x, t) =

n∑
k=0

Uk(x)tkα. (11)

4. Laplace Adomain Decomposition Method

Consider the initial value GFFE (1) and (2). In order to apply LADM, at first
taking the Laplace transform on both sides of Eq.(1), then by using the differenti-
ation property of Laplace transform and initial condition (2) we get

L[∂
αu(x,t)
∂tα ] = 1

s ((0.5 − 0.5 tanh [ µδ
2(δ+1)x])

1
δ ) + 1

sαL[uxx]

− 1
sαL[µuδux + γu(1− uδ)].

(12)

The LADM defines the solution as the series

u(x, t) =

∞∑
k=0

uk(x, t). (13)
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And the nonlinear function N(u(x, t)) = µuδux − γu(1− uδ) is decomposed as

N(t, u) =

∞∑
k=0

Ak(t, u0, u1, , un). (14)

Formally An is obtained by

Ak =
1

n!

dk

dθk
N(t,

∞∑
i=0

(θiui) |θ=0, k ≥ 0. (15)

Where θ is a former parameter. The first few terms of the Adomian polynomial
can be derived as follows

A0 = N(t, u0), A1 = u1N
′
(t, u0), A2 = u2N

′
(t, u0) +

1

2
u2

1N
′′
(t, u0),

A3 = u3N
′
(t, u0) + u1u2N

′′
(t, u0) +

1

6
u3

1N
′′′

(t, u0), · · ·

The prime denote the partial derivatives with respect to u, more details in ([43]-
[45]).
By substituting Eqs. (13) and (14) into Eq. (12) we obtain

L[

∞∑
k=0

uk(x, t)] =
1

s
f(x) +

1

sα
L[

∞∑
k=0

uk(x, t)xx] +
1

sα
L[

∞∑
k=0

Ak]. (16)

Identifying the zero component; u0(x, t) by (0.5 −0.5 tanh [ µδ
2(δ+1)x])

1
δ and match-

ing the two sides of Eq.(16) we have

L[u0] =
1

s
(0.5 − 0.5 tanh [

µδ

2(δ + 1)
x])

1
δ , (17)

L[uk+1(x, t)] =
1

sα
L[

∞∑
k=0

uk(x, t)xx] +
1

sα
L[

∞∑
k=0

Ak]. (18)

By applying the inverse Laplace transform, we obtain

u0 = L−1[
1

s
(0.5 − 0.5 tanh [

µδ

2(δ + 1)
x])

1
δ ], (19)

uk+1 = L−1[
1

sα
L[

∞∑
k=0

uk(x, t)xx] +
1

sα
L[

∞∑
k=0

Ak]], k = 0, 1, 2, (20)

The M Approximate solution is given by φM =
∑M−1
k=0 uk

And the exact solution is u(x, t) = limtM→∞φM .
In many cases the exact solution in a closed form may be found. Additionally,

the decomposition series solutions generally converge very rapidly. The convergence
of the decomposition series has been explored by several authors ([43]-[46]). In this
respect we refer to [46] in which the authors presented a new numerical study of
the Adomain method applied to linear and nonlinear diffusion models.
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5. Numerical Results

To show the benefit and the precision of the proposed methods for solving the
GFFE (1) and (2), we will present numerical solutions for three special cases of
GFFE at different values of δ(δ = 1, 2, 3) with different values of µ and γ. The ap-
proximate solutions are offered over the domain x ∈ (0, 1) and t ∈ (0, 2) for δ = 1, 2
and in the domain x ∈ (0, 1) and t ∈ (0, 5) for δ = 3. Comparisons between our
approximated results by the fourth approximations of the RDTM and LADM with
the exact solution at α = 1 and the results given by OHAM [13], ADM [15], HPM
[16], CBRBF [17] and [11] are held.

Special case1 (δ = 1)
Solution by LADM
According to Eqs. (19) and (20), the first terms of the LADM will be

u0 =
1

2
− 1

2
tanh[

µx

4
],

u1 =
tα(4γ + µ2)sech[xµ4 ]2

16Γ(1 + α)
,

u2 =
t2α(4γ + µ2)2sech[xµ4 ]2tanh[xµ4 ]

64Γ(1 + 2α)
, · · ·

And so on, in the same way the remaining terms can be constructed. The ap-
proximate solution after five terms: uLADM = u0 + u1 + u2 + u3 + u4 will be used
in the numerical comparisons with some existing methods.

Solution by FRDTM
According to Eqs.(9) and (10), we obtain the following terms

U0 =
1

2
− 1

2
tanh[

xµ

4
],

U1 =
(4γ + µ2)sech[xµ4 ]2

16Γ(1 + α)
,

U2 =
(4γ + µ2)2sech[xµ4 ]2tanh[xµ4 ]

64Γ(1 + 2α)
, · · ·

And so on. The approximate solution after five terms which determined by the
relation uRDTM =

∑4
k=0 Uk(x)tkα will be used in the numerical comparisons.
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Figure 1. The approximate solutions, uLADM and uRDTM , with
the exact solution, uexact, at α = 1 for special case1.

Figure 2. The behavior of the approximate solutions by LADM
with the exact solution at t(t = 0.5, 0.9, 1.5, 1.9) for different values
of α(α = 0.5, 0.75, 0.95, 1) for special case1.

The graphical representation of the evolution results of the approximate solu-
tions of GFFE at δ = 1 and µ = γ = 10−2 derived by LADM, RDTM and the
exact solution at α = 1 are displayed in Figures (1- 3). From the numerical results
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Figure 3. The behavior of the approximate solutions by RDTM
with the exact solution at t(t = 0.5, 0.9, 1.5, 1.9) for different values
of α(α = 0.5, 0.75, 0.95, 1) for special case1.

Figure 4. Space time surfaces of the absolute errors of GFFE
(special case1) by LADM and RDTM.

in Figures 2 and 3, it is easy to conclude that the approximate solutions are contin-
uously depended on the time-fractional derivatives and as the fractional derivative
goes to unity the approximate solutions coincide with the exact solutions. Figure
4 displays the space time surfaces of the absolute errors between the two proposed
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(special case 1)
t = 0.1, γ = µ = 0.001

x LADM FDTM [11]
0 0 0 2.236× 10−8

0.1 0 0 1.988× 10−8

0.2 0 0 1.706× 10−8

0.3 0 0 1.39× 10−8

0.4 0 5.55× 10−17 1.040× 10−8

0.5 5.55× 10−17 0 6.547× 10−9

0.6 5.55× 10−17 0 2.354× 10−9

0.7 0 0 2.182× 10−9

0.8 0 0 7.062× 10−9

0.9 5.55× 10−17 0 1.228× 10−8

1 0 0 1.785× 10−8

Table 2. Comparison of the absolute errors for GFFE (special
case1) between LADM, RDTM and the results in [11].

(special case 1)
t = 0.1, γ = µ = 0.1

x LADM FDTM [11]
0 2.357× 10−13 2.357× 10−13 8.009× 10−8

0.1 2.357× 10−13 2.357× 10−13 7.001× 10−8

0.2 2.357× 10−13 2.356× 10−13 5.985× 10−8

0.3 2.356× 10−13 2.356× 10−13 4.967× 10−8

0.4 2.356× 10−13 2.355× 10−13 3.954× 10−8

0.5 2.355× 10−13 2.354× 10−13 2.954× 10−8

0.6 2.354× 10−13 2.354× 10−13 2.972× 10−8

0.7 2.352× 10−13 2.351× 10−13 1.018× 10−8

0.8 2.348× 10−13 2.349× 10−13 9.795× 10−10

0.9 2.348× 10−13 2.347× 10−13 7.780× 10−9

1 2.345× 10−13 2.345× 10−13 1.601× 10−9

Table 3. Comparison of the absolute errors for GFFE (special
case1) between the LADM, RDTM and the results in [?]

methods and the exact solution in the integer order case. The comparisons between
the absolute errors for the two proposed methods and the results in [11] at α = 1
are given in Tables (2-4) for different values of γ and µ. In Table 5, the comparison
between the absolute errors of the two suggested methods and the results in [11],
ADM [15] and OHAM [13] at γ = µ = 0.0001 is given. While the comparison of
the absolute errors for GFFE (special case1) between the two proposed methods
and the results in [11], ADM [15] and CBRBF [17] at µ = 1, γ = 0 is tabulated in
Table 6. It is noted that the solutions obtained by LADM are agreeable with that
obtained by RDTM and more accurate than the results in CBRBF [17] and [11] in
the integer order case.

special Case 2 (δ = 2)
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(special case 1)
t = 0.1, γ = µ = 0.5

x LADM FDTM [11]
0 1.173 ×10−9 1.173 ×10−9 1.669× 10−6

0.1 1.172 ×10−9 1.1727 ×10−9 1.156× 10−6

0.2 1.169 ×10−9 1.169 ×10−9 7.771× 10−7

0.3 1.162 ×10−9 1.1628 ×10−9 4.836× 10−7

0.4 1.153 ×10−9 1.153×10−9 2.670× 10−7

0.5 1.139 ×10−9 1.139×10−9 1.123× 10−7

0.6 1.124 ×10−9 1.125×10−9 6.852× 10−9

0.7 1.106 ×10−9 1.106× 10−9 5.971× 10−8

0.8 1.084 ×10−9 1.086× 10−9 9.571× 10−8

0.9 1.060 ×10−9 1.064× 10−9 1.074× 10−7

1 1.034 ×10−9 1.034× 10−9 9.900× 10−8

Table 4. Comparison of the absolute errors for GFFE (special
case1) between LADM, RDTM and the results in [11].

(special case 1) γ = µ = 10−3

x t LADM RDTM [11] ADM [15] OHAM [13]
0.1 0.001 5.551× 10−17 5.551× 10−17 1.97× 10−8 1.94× 10−6 4.25× 10−8

0.005 0.000 5.551× 10−17 1.97× 10−8 9.69× 10−6 2.12× 10−7

0.01 0.000 0.000 1.97× 10−8 1.94× 10−6 4.25× 10−7

0.5 0.001 5.551× 10−17 5.551× 10−17 3.58× 10−9 1.94× 10−6 4.58× 10−8

0.005 5.551× 10−17 5.551× 10−17 3.71× 10−9 9.69× 10−6 2.29× 10−7

0.01 0.000 0.000 3.88× 10−9 1.94× 10−6 4.25× 10−7

0.9 0.001 5.551× 10−17 0.000 1.80× 10−8 1.94× 10−6 4.58× 10−8

0.005 0.000 0.000 1.77× 10−8 9.69× 10−6 2.29× 10−7

0.01 0.000 5.551× 10−17 1.74× 10−8 1.94× 10−6 4.25× 10−7

Table 5. Comparison of the absolute errors for GFFE (special
case1) between the LADM, RDTM, and the results in [11], ADM
[15] and OHAM [13].

Solution by LADM
Permitting to Eqs. (19) and ( 20). The first few terms of the approximate solutions
are

u0 = (
1

2
− 1

2
tanh[

µx

3
])

1
2 ,

u1 =
(e

2xµ
3 (1 + e

2xµ
3 )(− 3

2 )tα(9γ + µ2))

9Γ(1 + α)
,

u2 =
e

2xµ
3 (−2 + e

2xµ
3 )(1 + e

2xµ
3 )(− 5

2 )t2α(9γ + µ2)2

81Γ(1 + 2α)
, · · ·
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(special case 1) γ = 0 µ = 1
t x LADM RDTM [11] ADM [15] CBRBF [17]

0.5 0.1 6.342× 10−8 6.342× 10−8 1.14× 10−7 6.34× 10−8 2.00× 10−6

0.5 5.667× 10−8 5.667× 10−8 1.13× 10−7 5.66× 10−8 1.00× 10−6

0.9 4.1280× 10−8 4.1280× 10−8 1.65× 10−6 4.12× 10−8 9.00× 10−6

1 0.1 2.029× 10−6 2.029× 10−6 1.17× 10−6 2.02× 10−6 3.00× 10−6

0.5 1.847× 10−6 1.847×10−6 3.79× 10−8 1.84× 10−6 2.00× 10−6

0.9 1.380× 10−6 1.380× 10−6 1.28× 10−6 1.37× 10−6 9.00× 10−6

2 0.1 6.428× 10−5 6.428× 10−5 8.44× 10−7 6.42× 10−5 4.00× 10−6

0.5 6.069 ×10−5 6.069 ×10−5 1.16× 10−7 6.06× 10−5 2.00× 10−6

0.9 4.753× 10−5 4.753× 10−5 9.72× 10−7 4.755× 10−5 9.00× 10−6

Table 6. Comparison of the absolute errors for GFFE (special
case1) between LADM, RDTM and the results in ADM [15],
CBRBF [17] and [11].

Figure 5. The approximate solutions, uLADM and uRDTM , with
the exact solution, uexact, at α = 1 for special case2.

And so on, the approximate solution after five terms which determined by the
relation uLADM =

∑4
i=0 ui are used for the numerical analysis.

Solution by RDTM
By using Eqs. (9) and (10), we obtain

U0 =

√
(
1

2
− 1

2
tanh[

µx

3
]),

U1 =
(e

2xµ
3 (1 + e

2xµ
3 )(− 3

2 )tα(9γ + µ2))

9Γ(1 + α)
,

U2 =
e

2xµ
3 (−2 + e

2xµ
3 )(1 + e

2xµ
3 )(− 5

2 )t2α(9γ + µ2)2

81Γ(1 + 2α)
, · · ·

and so on. The approximate solution after the fifth term will be uRDTM =∑4
i=0 Uit

αi.
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Figure 6. The behavior of uLADM at different values of α(α =
0.5, 0.75, 0.95, 1) with the exact solution at t(t = 0.5, 0.9, 1.5, 1.9)
for special case2.

(special case 2)
t = 0.1, γ = µ = 1

x LADM RDTM [11]
0 3.550 ×10−7 3.550 ×10−7 1.396× 10−6

0.1 3.927 ×10−7 3.927 ×10−7 8.651× 10−7

0.2 4.241 ×10−7 4.241 ×10−7 3.226× 10−7

0.3 4.486 ×10−7 4.486×10−7 2.146× 10−7

0.4 4.658 ×10−7 4.658×10−7 7.568× 10−7

0.5 4.752 ×10−7 4.752×10−7 1.303× 10−6

0.6 4.771 ×10−7 4.771×10−7 1.859× 10−6

0.7 4.714 ×10−7 4.714× 10−7 2.436× 10−6

0.8 4.587 ×10−7 4.587× 10−7 3.047× 10−6

0.9 4.394 ×10−7 4.394× 10−7 3.704× 10−6

1 4.144 ×10−7 4.144× 10−7 4.818× 10−6

Table 7. Comparison of the absolute errors for GFFE (special
case2) between LADM, RDTM and the results in [11].
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Figure 7. The behavior of uRDTM at different values of α(α =
0.5, 0.75, 0.95, 1) with the exact solution at t(t = 0.5, 0.9, 1.5, 1.9)
for especial case2.

Figure 8. The space-time surfaces of the absolute errors of
LADM and RDTM for special case2 (δ = 2).

The space time surfaces of the approximate solutions of GFFE at δ = 2 and
µ = γ = 10−2 derived by LADM, RDTM and the exact solution at α = 1 are
displayed in Figure 5. The behaviors of the approximate solutions for different
values of at α by LADM and RDTM with the exact solution at α = 1 are shown
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(special case 2) γ = µ = 1
x t LADM FDTM [11] ADM [15] OHAM[13]

0.1 0.0001 0.000 0.000 1.08× 10−6 2.80× 10−4 1.17× 10−5

0.0005 1.110 ×10−16 1.110× 10−16 1.08× 10−6 1.40× 10−3 5.87× 10−5

0.01 1.110 ×10−16 0.000 1.08× 10−6 2.80× 10−3 1.17× 10−4

0.5 0.0001 0.000 0.000 1.14× 10−6 2.69× 10−4 5.33× 10−5

0.0005 0.000 0.000 1.14× 10−6 1.34× 10−3 1.06× 10−5

0.01 2.220 ×10−16 2.220×10−16 1.14× 10−6 2.69× 10−3 1.06× 10−5

0.9 0.0001 0.000 0.000 4.12× 10−6 2.55× 10−4 9.29× 10−6

0.0005 1.110× 10−16 0.000 4.12× 10−6 1.27× 10−3 4.64× 10−5

0.01 1.1102×10−16 1.110× 10−16 4.12× 10−6 2.55× 10−3 9.29× 10−4

Table 8. Comparison of the absolute errors for GFFE (special
case2) between the two proposed methods and the results in [11],
ADM [15] and OHAM [13].

(special case 2) γ = 0 µ = 1
t x LADM FDTM [11] ADM[15] CBRBF [17]

0.5 0.1 1.258× 10−8 1.258× 10−8 7.43× 10−7 1.25× 10−8 1.00× 10−6

0.5 1.491× 10−8 1.491× 10−8 1.16× 10−6 1.49× 10−8 2.00× 10−6

0.9 1.380× 10−8 1.355× 10−8 2.38× 10−6 1.39× 10−8 −−−−
1 0.1 3.927× 10−7 3.927× 10−7 2.94× 10−6 1.25× 10−8 ——

0.5 4.752× 10−7 4.752× 10−7 3.22× 10−6 4.75× 10−7 1.00× 10−6

0.9 4.394× 10−7 4.394× 10−7 4.20× 10−6 4.39× 10−7 2.00× 10−6

2 0.1 1.186× 10−5 1.186× 10−5 1.18× 10−5 2.00× 10−6 2.00× 10−6

0.5 1.500 ×10−5 1.500 ×10−5 1.49× 10−5 5.00× 10−6 5.00× 10−6

0.9 1.436× 10−5 1.436× 10−5 1.43× 10−5 1.000× 10−6 1.00× 10−6

Table 9. Comparison of the absolute errors for GFFE (special
case2) between the two proposed methods and the results in [11],
ADM[15] and CBRBF [17].

in Figures 6 and 7 respectively. The absolute error surfaces of LADM and RDTM
are shown in Figure 8. The comparisons between the absolute errors for our an-
ticipated methods and the results in [11], ADM [15] and OHAM [13] at α = 1 are
given in Tables 7 and 8 for µ = γ = 1. Table 9 contains the numerical results of
the comparison between the absolute errors for our anticipated methods and the
results in [11], ADM [15] and CBRBF [17] at α = 1 and µ = 1, γ = 0. These
numerical results demonstrate that the approximate results of the two suggested
implementations are in a good agreement with the exact solution at α = 1. As the
order of the fractional derivatives approaches the unity the approximate results are
in a good agreement with each other and with the exact solution. It is noted that
the solutions obtained by the two proposed techniques are more accurate than the
results in [11], ADM [15] and OHAM [13] in the integer order case.

Special Case 3 (δ = 3)
Solution by LADM
By using Eqs. (19) and (20), we have
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(special case 3) γ = 0 µ = 1
t x LADM FDTM [11] ADM [15] CBRBF [17]

0.0001 0.1 0.000 0.000 4.55× 10−7 4.46× 10−4 ——-
0.5 0.000 0.000 5.66× 10−7 1.86× 10−3 −−−−−
0.9 0.0000 0.000 7.00× 10−7 9.32× 10−4 −−−−

0.0005 0.1 0.000 0.000 4.57× 10−7 4.45× 10−4 6.00× 10−6

0.5 0.000 0.000 5.63× 10−7 1.85× 10−3 5.00× 10−6

0.9 0.000 0.000 6.98× 10−7 9.20× 10−4 4.00× 10−6

0.001 0.1 0.000 0.000 4.60× 10−7 4.44× 10−4 1.90× 10−5

0.5 0.000 0.000 5.61× 10−7 1.85× 10−3 1.60× 10−5

0.9 0.000 0.000 6.95× 10−7 19.05× 10−4 1.50× 10−5

Table 10. Absolute errors for GFFE at δ = 3 between the two
proposed methods and [11], ADM[15] and CBRBF[17].

u0 = (
1

2
− 1

2
tanh[

3xµ

8
])

1
3 ,

u1 =
(e

3xµ
4 (1 + e

3xµ
4 )(− 4

3 )tα(16γ + µ2))

16Γ(1 + α)
,

u2 =
e

3xµ
4 (−3 + e

3xµ
4 )(1 + e

3xµ
4 )(− 7

3 )t2α(16γ + µ2)2

256Γ(1 + 2α)
, · · ·

And so on. The remaining components can be determined by the same way. In
the following numerical results the approximated solution after five terms will be
used.
Solution by RDTM
According to Eqs.(9) and (10), the first few transformed terms are

U0 = (
1

2
− 1

2
tanh[

2xµ

8
])

1
3 ,

U1 =
(e

3xµ
4 (1 + e

3xµ
4 )(− 4

3 )(16γ + µ2))

16Γ(1 + α)
,

U2 =
e

3xµ
4 (−3 + e

3xµ
4 )(1 + e

3xµ
4 )(− 7

3 )(16γ + µ2)2

256Γ(1 + 2α)
, · · ·

And So on. The approximate solution after five terms is used for the numerical
comparisons and determined by uRDTM =

∑4
i=0 Uit

αi.

The progress of the approximate solutions of the generalized fractional time Fisher
equation at δ = 3 copied by LADM, RDTM and the exact solution for µ = γ = 10−2

are presented by Figures (9-12). The comparison between the absolute errors for
our two proposed methods and the results in [11] at α = 1 is given in Table 10. The
numerical comparisons of the absolute errors obtained by our suggested methods
and the results obtained by [11] and ADM [15] and CBRBF [17] are tabulated in
Tables 10 and 11 for µ = 1, γ = 0 .
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Figure 9. The approximate solutions of LADM and the RDTM
with the exact solution at α = 1, δ = 3.

Figure 10. The approximate solutions of LADM for different val-
ues of α with the exact solution at α = 1 at t(t = 0.5, 1.5, 2.5, 3.5)
and (δ = 3).

6. Conclusion

In this work, the LADM and the RDTM have been successfully employed to
GFFE. The two suggested methods presented the solution as a convergent series
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Figure 11. The approximate solutions of RDTM for different val-
ues of α with the exact solution at α = 1 at t(t = 0.5, 1.5, 2.5, 3.5)
and (δ = 3).

Figure 12. The space time surfaces of the absolute errors for the
two proposed methods at δ = 3.

with simply computable components. The effectiveness of the suggested techniques
was confirmed by numerical comparisons with the exact solution and with the
results in [11], [15], [17] and [13] in the integer order case. It is noted that only
five terms of the decomposition series and only the fifth order term solutions of
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(special case 3) γ = 0 µ = 1
t x LADM FDTM [11] CBRBF [17]

0.5 0.1 2.640× 10−9 2.640× 10−9 1.000×10−6 3.000×10−6

0.5 3.705× 10−9 3.705× 10−9 1.000×10−6 7.000×10−6

0.9 3.644× 10−9 3.644× 10−9 1.00× 10−6 1.000× 10−6

1 0.1 8.176× 10−8 8.176× 10−8 2.000× 10−6 2.000× 10−6

0.5 1.176× 10−7 1.176 ×10−7 2.000× 10−6 8.000× 10−6

0.9 1.175× 10−7 1.175× 10−7 3.000× 10−6 1.000× 10−6

2 0.1 2.434× 10−6 2.434× 10−6 5.000× 10−6 3.000× 10−6

0.5 3.681× 10−6 3.681 ×10−6 5.000× 10−6 8.000× 10−6

0.9 3.799× 10−6 3.799× 10−6 6.000× 10−6 1.000× 10−6

5 0.1 1.799× 10−4 1.799× 10−4 1.2× 10−5 4.000× 10−6

0.5 3.244× 10−4 3.244 ×10−4 1.3× 10−5 1.3× 10−5

0.9 3.703× 10−4 3.703× 10−4 1.4× 10−5 3.000× 10−6

Table 11. Absolute errors for GFFE at (δ = 3) between the two
proposed methods and [11] and CBRBF[17].

the RDTM were used to evaluate the approximations for the concerned problem.
It is obvious that the efficiency of the anticipated approaches can be increased by
calculating more terms or further components, it is distinguished that the solutions
depend on the time fractional derivatives. Moreover the solutions obtained by
LADM are covenant with that obtained by RDTM and more accurate than the
results in [11], [15], [17] and [13].
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