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ANALYTIC SOLUTION FOR SECOND-ORDER FRACTIONAL

DIFFERENTIAL EQUATIONS VIA OHAM

M. ILIE, J. BIAZAR, Z. AYATI

Abstract. Fractional differential equations are often seeming perplexing to

solve. Therefore, finding comprehensive methods for solving them sounds
of high importance. In this article, optimal homotopy asymptotic method
is presented to solve specific second-order conformable fractional differential
equations that is named conformable fractional optimal homotopy asymp-

totic method. The results obtained demonstrate the efficiency of the declared
method for fractional differential equations. Some numerical examples are
presented to illustrate the proposed approach.

1. Introduction

Many phenomena in our real world are described by fractional differential equa-
tions [3, 14]. Although having the exact solution of fractional equations in analyzing
the phenomena is essential, there are many fractional differential equations, which
cannot be solved exactly [31]. Due to this fact, finding a desired approximate solu-
tions of fractional differential equations is clearly vital [31]. In recent years, many
effective methods have been proposed for finding approximate solution to fractional
differential equations, such as Adomian decomposition method [14, 16], homotopy
perturbation method [17, 20], homotopy analysis method [21], optimal homotopy
asymptotic method [22-24], variational iteration method [25], generalized differen-
tial transform method [26], finite difference method [27], semi-disrete scheme and
Chebyshev collocation method [28], Wavelet Operational [29] and other methods
[30, 33]. In this paper, optimal homotopy asymptotic method is utilized to obtain
an approximate solution of linear and nonlinear conformable fractional differen-
tial equations. Some conformable fractional differential equations, and nonlinear
conformable fractional Bratu-type equations are solved, to illustrate the proposed
method. The organization of this paper is as follows: In Section 2, the basic defini-
tions alike conformable fractional derivative and integral, are described. In Section
3, the conformable fractional homotopy asymptotic method for specific second-
order fractional differential equations, are presented. In Section 4, Some equations,
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as illustrative examples, by means of the proposed approach are solved. Finally,
conclusions are given in Section 5.

2. Basic definitions

The purpose of this section is to recall some preliminaries of the proposed
method.

2.1. Conformable fractional derivative (CFD).

For a function f : [0,∞) −→ R the conformable fractional derivative of f , of
order α, is defined by

(Tαf)(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
, (2.1)

for all x > 0, α ∈ (0, 1). If f is α−differentiable in some (0, a), lets define
(Tαf)(0) = lim

x→0+
(Tαf)(x), provided that lim

x→0+
(Tαf)(x) exists. If the conformable

derivative of f of order α exists, then we simply say that f is α−differentiable (see
[1, 2]). One can easily show that satisfies all the following properties (see [1]): Let
α ∈ (0, 1] and f , g be α−differentiable at a point x > 0, then

A. For a, b ∈ R, Tα(af + bg) = aTα(f) + bTα(g),
B. For all p ∈ R, Tα(x

p) = pxp−α,
C. For all constant functions f(x) = λ, Tα(λ) = 0,
D. Tα(f · g) = g · Tα(f) + f · Tα(g),

E. Tα

(
f

g

)
=

g · Tα(f)− fTα(g)

g2
,

F. Tα(f) = x1−α df

dx
.

If α ∈ (n, n + 1] and f is n−differentiable at x > 0, then the conformable
fractional derivative of f of order is defined as follows

(Tαf)(x) = lim
ε→0

f ([α]−1)(x+ εx([α]−α)− f ([α]−1)(x)

ε
, (2.2)

where [α] is the smallest integer greater than or equal to α. When f is (n +
1)−differentiable at x > 0, as a consequence of (2.2), can be (see [1])

(Tαf)(x) = x[α]−α d
[α]f(x)

dx[α]
.

2.2. Conformable fractional integral (CFI).

Given a function f : [α,∞) → R, α ≥ 0 The conformable fractional integral of
f , is defined by

Iaα(f)(x) =

∫ x

a

f(t)

t1−α
dt, (2.3)

where the integral is the usual Riemann improper integral, and α ∈ (0, 1) (see
[1, 2]). For the sake of simplicity, lets consider I0α(f)(x) = Iα(f)(x). One of the
most useful results is the following statement (see [1]):

For all x ≥ a and any continuous function in the domain of Iaα , we have
Tα (Iaαf (x)) = f (x).
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3. Conformable fractional optimal homotopy asymptotic method

Consider the general second-order fractional differential equations with initial
value

TαTαu+G(t)Tαu+ F (t, u) = g(t), u(0) = A,Tαu(0) = B, (3.1)

where F is a functional operator, and G, g are known function, and A, B are certain
constant, and u is an unknown function.

According to optimal homotopy asymptotic technique, a homotopy v (t, p) : Ω×
[0, 1] → R can be constructed which satisfies

(1− p)
[
TαTα

(
v(t, p)

)
+G(t)Tα

(
v(t, p)

)]
−H(p)

[
TαTα

(
v(t, p)

)
+G(t)Tα

(
v(t, p)

)
+ F

(
t, v(t, p)

)
− g(t)

]
= 0, (3.2)

Where p ∈ [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function
for p ̸= 0 and H(0) = 0, v(t, p) is an unknown function. By substituting p = 0
and 1 in equation (3.2), we have v(t, 0) = u0(t) and v(t, 1) = u(t), respectively.
Thus as p is changing from zero to unity, the solution v(t, p) varies continuously
from u0(t) to the exact solution u(t). By substituting p = 0 in Eq. (3.2) the initial
approximation u0(t) = v(t, 0) is obtained as the solution of conformable fractional
equation,

TαTα

(
u0(t)

)
+G(t)Tα

(
u0(t)

)
= 0, u(0) = A, Tαu(0) = B. (3.3)

The auxiliary function H(p) can be chose as the following

H(p) = c1p+ c2p
2 + c3p

3 + · · · , (3.4)

where c1, c2, c3, . . ., are parameters, that is determined later. Expanding v(t, p, c1, c2, . . .),
in a Taylor series of p, is

v(t, p, c1, c2, . . .) = u0(t) +

∞∑
i=1

ui(t, c1, c2, . . . , ci)p
i. (3.5)

Substituting Eqs. (3.4) and (3.5) into equation (3.2) and setting to zero the coeffi-
cient of the same powers of p, then the zero order deformation equation is obtained
as given in Eq. (3.3), and the other order deformation equations are given as follows

p1; TαTα

(
u1(t, c1)

)
+ G(t)Tα

(
u1(t, c1)

)
− TαTα

(
u0(t)

)
− G(t)Tα

(
u0(t)

)
−c1

[
TαTα

(
u0(t)

)
+ G(t)Tα

(
u0(t)

)
+ F

(
t, u0(t)

)
− g(t)

]
= 0, u1(0) = 0, Tαu1(0) = 0,

p2; TαTα

(
u2(t, c1, c2)

)
+ G(t)Tα

(
u2(t, c1, c2)

)
− TαTα

(
u1(t, c1)

)
− G(t)Tα

(
u1(t, c1)

)
−c2

[
TαTα

(
u0(t)

)
+ G(t)Tα

(
u0(t)

)
+ F

(
t, u0(t)

)
− g(t)

]
−c1

[
TαTα

(
u1(t, c1)

)
+ G(t)Tα

(
u1(t, c1)

)
− u1(t, c1)

∂F

∂u0

(
t, u0(t)

)]
= 0, u2(0) = Tαu2(0) = 0, (3.6)

p3; TαTα

(
u3(t, c1, c2, c3)

)
+ G(t)Tα

(
u3(t, c1, c2, c3)

)
− TαTα

(
u2(t, c1, c2)

)
− G(t)Tα

(
u2(t, c1, c2)

)
−c3

[
TαTα

(
u0(t)

)
+ G(t)Tα

(
u0(t)

)
+ F

(
t, u0(t)

)
− g(t)

]
−c2

[
TαTα

(
u1(t, c1)

)
+ G(t)Tα

(
u1(t, c1)

)
− u1(t, c1)

∂F

∂u0

(
t, u0(t)

)]
−

1

2
c1

[
2TαTα

(
u2(t, c1, c2)

)
+ 2G(t)Tα

(
u2(t, c1, c2)

)
+ u2

1(t, c1)
∂2F

∂u2
0

(
t, u0(t)

)
+2u2(t, c1, c2)

∂F

∂u0

(
t, u0(t)

)]
= 0, u3(0) = Tαu3(0) = 0,

.

.

.



108 MOUSA ILIE, JAFAR BIAZAR, ZAINAB AYATI JFCA-2019/10(1)

It should be noted that u1, u2, u3, . . . are directed by linear conformable fractional
equations (3.6), which this can be easily solved. The convergence of the series given
in Eq. (3.5) depends upon the auxiliary parameters ci for i ≥ 1. If it converges at
p = 1, we have

u(t, c1, c2, . . .) = u0(t) +

∞∑
i=1

ui(t, c1, c2, . . . , ci). (3.7)

Generally, the th order approximate solution of Eq. (3.1), can be denoted as the
following

um(t, c1, c2, . . . , cm) = u0(t) +

m∑
i=1

ui(t, c1, c2, . . . , ci). (3.8)

By substitution of Eq. (3.8) into Eq. (3.1), the residual error can be expressed as
follows

R(t, c1, c2, . . . , cm = TαTα

(
um(t, c1, c2, . . . , cm)

)
+G(t)Tα

(
um(t, c1, c2, . . . , cm)

)
+F
(
t, um(t, c1, c2, . . . , cm)

)
− g(t). (3.9)

When R(t, c1, c2, . . . , cm) = 0, results that um(t, c1, c2, . . . , cm) is an exact solution.
Such a does not occur usually for nonlinear problems. In these cases, we can apply
the least square approach:

Jm(c1, c2, . . . , cm) =

∫ b

a

R2(t, c1, c2, . . . , cm)dt, (3.10)

where the values a, b depend on the given problem. The unknown convergence
control parameters c1, c2, . . . , cm can be optimally identified from the following
conditions

∂Jm
∂ci

= 0, i = 1, 2, . . . ,m. (3.11)

It is interesting to point out that when these parameters are determined, then the
th order approximate solution given by Eq. (3.8) will be constructed.

4. Examples

In this section, to illustrate the proposed approach, some conformable fractional
differential equations and conformable fractional Bratu-type differential equation
will be solved.

Example 4.1. Consider the following linear fractional differential equation with
initial value

TαTαu− 3Tαu+ 2u = 2

(
1

α
tα
)2

+

(
1

α
tα
)
+ 1, u(0) = (Tαu)(0) = 1, (4.1)

where u(t) =
5

4
exp

(
2

α
tα
)
− 5 exp

(
1

α
tα
)
+

(
1

α
tα
)2

+
7

2

(
1

α
tα
)
+

19

4
.

According to the proposed conformable fractional optimal homotopy asymptotic
method, we have

(1− p)
[
TαTα

(
v(t, p)

)
− 3Tα

(
v(t, p)

)]
−H(p)

[
TαTα

(
v(t, p)

)
− 3Tα

(
v(t, p)

)
+2v(t, p)− 2

(
1

α
tα
)2

−
(
1

α
tα
)
− 1
]
= 0, (4.2)
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where

v(t, p, c1, c2, . . .) = u0(t) +
∞∑
i=1

ui(t, c1, c2, . . . , ci)p
i

H(p) = c1p+ c2p
2 + c3p

3 + · · · . (4.3)

Substituting Eqs. (4.3) into Eq. (4.2) and setting to zero the coefficient of the
same powers of p, we derive

p0; TαTα

(
u0(t)

)
− 3Tα

(
u0(t)

)
= 0, u0(0) = (Tαu0)(0) = 1,

p1; TαTα

(
u1(t, c1)

)
− 3Tα

(
u1(t, c1)

)
− 3TαTα

(
u0(t)

)
+ 3Tα

(
u0(t)

)
− c1

[
TαTα

(
u0(t)

)
−3Tα

(
u0(t)

)
+ 2u0(t) − 2

(
1

α
tα

)2

−
(

1

α
tα

)2

− 1

]
= 0, u1(0) = (Tαu1)(0) = 0

p2; TαTα

(
u2(t, c1, c2)

)
− 3Tα

(
u2(t, c1, c2)

)
− TαTα

(
u1(t, c1)

)
+ 3Tα

(
u1(t, c1)

)
−c2

[
TαTα

(
u0(t)

)
− 3Tα

(
u0(t)

)
+ 2u0(t) − 2

(
1

α
tα

)2

−
(

1

α
tα

)
− 1

]
−c1

[
TαTα

(
u1(t, c1)

)
− 3Tα

(
u1(t, c1)

)
+ 2u1(t, c1)

]
= 0, u2(0) = (Tαu2)(0) = 0, (4.4)

p3; TαTα

(
u3(t, c1, c2, c3)

)
− 3Tα

(
u3(t, c1, c2, c3)

)
− TαTα

(
u2(t, c1, c2)

)
+ 3Tα

(
u2(t, c1, c2)

)
−c3

[
TαTα

(
u0(t)

)
− 3Tα

(
u0(t)

)
+ 2u0(0) − 2

(
1

α
tα

)2

−
(

1

α
tα

)
− 1

]
−c2

[
TαTα

(
u1(t, c1)

)
− 3Tα

(
u2(t, c1)

)
+ 2u1(t, c1)

]
−

1

2
c1

[
2TαTα

(
u2(t, c1, c2)

)
− 6Tα

(
u2(t, c1, c2)

)
+ 4u2(t, c1, c2)

]
= 0, u3(0) = (Tαu3)(0) = 0,

.

.

.

Corresponding solution of conformable linear fractional differential equations (4.4),
are as follows

u0(t) =
1

3
exp

(
3

α
tα
)
+

2

3
,

u1(t, c1) = c1

[
2

3α
t3α +

7

9α
t2α +

4

27α
tα +

10

81
+

(
2

9α
tα − 10

81α

)
exp

(
3

α
tα
)]

...

Therefore, third-terms approximation to the solution of Eq. (4.1), can be obtained
as the following

u3(t, c1, c2, c3) = u0(t) + u1(t, c1) + u2(t, c1, c2) + u3(t, c1, c2, c3). (4.5)

Table 4.1. Shows the optimal values of the convergence control constants c1, c2 and
c3 in u3(t, c1, c2, c3) given in Eq. 4.5 for different values of α which can be obtained
using the procedure mentioned in (3.9) up to (3.11).

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 −0.8379111029 −0.8379111029 −0.8379111029 −0.8379111029

c2 0.03761658691 0.03761658691 0.03761658691 0.037616586919

c3 0.01712665796 0.01712665796 0.01712665796 0.01712665796

Table 4.1. Values of auxiliary parameters for the third-order OHAM solution of Eq.

(4.1) for different orders.
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In Figure 4.1, the exact and approximate solutions of linear fractional equation
for α = 0.4, 0.6, 0.8 and 1.0, are plotted.

Figure 4.1. 3th-order approximation of OHAM and exact solution for Example 4.1.

Example 4.2. Consider the following fractional differential equation with initial
value

TαTαu+ 2Tαu+ u = exp

(
− 1

α
tα
)
, u(0) = 0, (Tαu)(0) = 0. (4.6)

The exact solution of Eq. (4.6), is u(x) =

(
1

2

(
1

2
tα
)2

+
1

α
tα

)
exp

(
− 1

α
tα
)
.

Conforming to the proposed conformable fractional homotopy asymptotic method,
results in

(1− p)
[
TαTα

(
v(t, p)

)
+ 2Tα

(
v(t, p)

)]
−H(p)

[
TαTα

(
v(t, p)

)
+2Tα

(
v(t, p)

)
+ v(t, p)− exp

(
− 1

α
tα
)]

= 0. (4.7)
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Substituting Eqs. (4.3) into Eq. (4.7) and setting to zero the coefficient of like
powers of p, we reads

p0; TαTα

(
u0(t)

)
+ 2Tα

(
u0(t)

)
= 0, u0(0) = (Tαu0)(0) = 1,

p1; TαTα

(
u1(t, c1)

)
+ 2Tα

(
u1(t, c1)

)
− TαTα

(
u0(t)

)
− 2Tα

(
u0(t)

)
− c1

[
TαTα

(
u0(t)

)
+2Tα

(
u0(t)

)
+ u0(t) − exp

(
−

1

α
tα

)]
= 0, u1(0) = (Tαu1)(0) = 0,

p2; TαTα

(
u2(t, c1, c2)

)
+ 2Tα

(
u2(t, c1, c2)

)
− TαTα

(
u1(t, c1)

)
− 2Tα

(
u1(t, c1)

)
−c2

[
TαTα

(
u0(t)

)
+ 2Tα

(
u0(t)

)
+ u0(t) − exp

(
−

1

α
tα

)]
−c1

[
TαTα

(
u1(t, c1)

)
+ 2Tα

(
u1(t, c1)

)
+ u1(t, c1)

]
= 0, u2(0) = (Tαu2)(0) = 0, (4.8)

p3; TαTα

(
u3(t, c1, c2, c3)

)
+ 2Tα

(
u3(t, c1, c2, c3)

)
− TαTα

(
u2(t, c1, c2)

)
− 2Tα

(
u2(t, c1, c2)

)
−c3

[
TαTα

(
u0(t)

)
+ 2Tα

(
u0(t)

)
+ u0(t) − exp

(
−

1

α
tα

)2]
−c2

[
TαTα

(
u1(t, c1)

)
+ 2Tα

(
u1(t, c1)

)
+ u1(t, c1)

]
−

1

2
c1

[
2TαTα

(
u2(t, c1, c2)

)
+ 4Tα

(
u2(t, c1, c2)

)
+ 2u2(t, c1, c2)

]
= 0, u3(0) = (Tαu3)(0) = 0,

.

.

.

Matching solution of fractional differential equations (4.8), are

u0(t) = −1

2
exp

(
− 2

α
tα
)
+

1

2
,

u1(t, c1) = c1

[
1

4α
tα − 3

4
−
(

1

2α
tα +

1

4

)
exp

(
− 2

α
tα
)
+ exp

(
− 1

α
tα
)]

,

...

Third-terms approximation to the solution of Eq. (4.6), will be obtained as follows

u3(t, c1, c2, c3) = u0(t) + u1(t, c1) + u2(t, c1, c2) + u3(t, c1, c2, c3). (4.9)

Table 4.2. Shows the optimal values of the convergence control constants c1, c2 and
c3 in u3(t, c1, c2, c3) given in Eq. 4.9 for different values of α which can be obtained
using the procedure mentioned in (3.9) up to (3.11).

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 −0.9101798255 −0.9611597674 −0.9782159569 −0.9860817914

c2 0.006410499989 0.001634668655 0.0005180834564 0.0002083294705

c3 0.005526098232 0.0003140590347 0.00003842662077 0.000007306947318

Table 4.2. Values of auxiliary parameters for the third-order OHAM solution

of Eq. (4.6) for different orders.

In Figure 4.2, the exact and approximate solutions of linear fractional equation
for α = 0.4, 0.6, 0.8 and 1.0, are plotted.
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Figure 4.2. 3th-order approximation of OHAM and exact solution for Example 4.2.

Example 4.3. Consider the following fractional differential equation with initial
value (

1

α
tα
)
TαTαu+ 8Tαu+

(
1

α
tα
)2

u =

(
1

α
tα
)6

−
(
1

α
tα
)5

+44

(
1

α
tα
)3

− 30

(
1

α
tα
)2

, u(0) = (Tα)(0) = 0, (4.10)

where u(t) =

(
1

α
tα
)4

−
(
1

α
tα
)3

.

By the proposed conformable fractional OHAM approach, we get

(1 − p)

[
TαTα

(
v(t, p)

)
+

8α

tα
Tα

(
v(t, p)

)]
− H(p)

[
TαTα

(
v(t, p)

)
+

8α

tα
Tα

(
v(t, p)

)
+

1

α
t
α
v(t, p)

−
(

1

α
t
α
)5

+

(
1

α
t
α
)4

− 44

(
1

α
t
α
)2

+ 30

(
1

α
t
α
)]

= 0, (4.11)

Substituting into Eq. (4.11) and setting to zero the coefficient, we reads

p0; TαTα

(
u0(t)

)
+

8α

tα
Tα

(
u0(t)

)
= 0, u0(0) = (Tαu0)(0) = 0,

p1; TαTα

(
u1(t, c1)

)
+

8α

tα
TαTα

(
u1(t, c1)

)
− TαTα

(
u0(t)

)
−

8α

tα
TαTα

(
u0(t)

)
− c1

[
TαTα

(
u0(t)

)
+

8α

tα
TαTα

(
u0(t)

)
+

1

α
tαu0(t) −

(
1

α
tα

)5

+

(
1

α
tα

)4

− 44

(
1

α
tα

)2

+ 30

(
1

α
tα

)]
= 0, u1(0) = (Tαu1)(0) = 0,

p2; TαTα

(
u2(t, c1, c2)

)
+

8α

tα
Tα

(
u2(t, c1, c2)

)
− TαTα

(
u1(t, c1)

)
−

8α

tα
Tα

(
u1(t, c1)

)
(4.12)

−c2

[
TαTα

(
u0(t)

)
+

8α

tα
Tα

(
u0(t)

)
+

1

α
tαu0(t) −

(
1

α
tα

)5

+

(
−

1

α
tα

)4

− 44

(
−

1

α
tα

)2

+ 30

(
−

1

α
tα

)]
−c1

[
TαTα

(
u1(t, c1)

)
+

8α

tα
Tα

(
u1(t, c1)

)
+

1

α
tαu1(t, c1)

]
= 0, u2(0) = (Tαu2)(0) = 0,

.

.

.
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Corresponding solution of conformable fractional equations (4.12), are as follows

u0(t) = 0,

u1(t, c1) = c1

[
−

1

98

(
1

α
tα

)7

+
1

78

(
1

α
tα

)6

−
(

1

α
tα

)4

+

(
1

α
xα

)3
]
,

u2(t, c1, c2) = c21

[
−

1

16660

(
1

α
xα

)10

+
1

11232

(
1

α
xα

)9

−
1

47

(
1

α
xα

)7

+
1

39

(
1

α
xα

)6

−
(

1

α
xα

)4

+

(
1

α
xα

)3
]

+(c1 + c2)

[
−

1

98

(
1

α
xα

)7

+
1

78

(
1

α
xα

)6

−
(

1

α
xα

)4

+

(
1

α
xα

)3
]
+

1

30

(
1

α
tα

)3

,

..

.

Consequently, two-terms approximation to the solution of Eq. (4.10), will be
obtained as the following

u2(t, c1, c2) = u0(t) + u1(t, c1) + u2(t, c1, c2). (4.13)

Table 4.3. Shows the optimal values of the convergence control constants c1 and
c2 in u3(t, c1, c2) given in Eq. 4.13 for different values of α which can be obtained
using the procedure mentioned in (3.9) up to (3.11).

Auxiliary parameters α = 0.4 α = 0.6 α = 0.8 α = 1.0

c1 0.8872378786 0.8625071649 0.8625071649 0.8625071649

c2 −3.527294218 −3.431935122 −3.431935122 −3.431935122

Table 4.3. Values of auxiliary parameters for the third-order OHAM solution

of Eq. (4.10) for different orders.

In Figure 4.3. the exact solution and solution of conformable fractional OHAM
of fractional equation, for α = 0.4, 0.6, 0.8 and 1.0, are plotted.

Example 4.4. Consider the following fractional differential equation with initial
value

(
1

α
t
α

+ 1

)2

TαTαu +

(
1

α
t
α

+ 1

)
Tαu +

((
1

α
t
α

+ 1

)2

−
1

4

)
u = 0, u(0) = 1, (Tαu)(0) = 0 (4.14)

where u(x) =
1√

1 +
1

α
tα

[
1

2
sin

(
1

α
tα
)
+ cos

(
1

α
tα
)]

.

According to the proposed conformable fractional OHPM approach, we obtain

(1 − p)
[( 1

α
t
α
+ 1

)2

TαTα

(
v(t, p)

)
+

(
1

α
t
α
+ 1

)
Tα

(
v(t, p)

)]
− H(p)

[(
1

α
t
α
+ 1

)2

TαTα

(
v(t, p)

)
+

(
1

α
t
α
+ 1

)
Tα

(
v(t, p)

)
+

((
1

α
t
α
+ 1

)2

−
1

4

)
v(t, p)

]
= 0. (4.15)
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Figure 4.3. 2th-order approximation of OHAM and exact solution for Example 4.3.

Substituting Eq. (4.3) into Eq. (4.15) and setting to zero the coefficient of the
same powers of p, results in

p0;

(
1

α
tα + 1

)2

TαTα
(
u0(t)

)
+

(
1

α
tα + 1

)
Tα

(
u0(t)

)
= 0, u0(0) = 1, (Tαu0)(0) = 0,

p1;

(
1

α
tα + 1

)2

TαTα
(
u1(t, c1)

)
+

(
1

α
tα + 1

)
Tα

(
u1(t, c1)

)
−

(
1

α
tα + 1

)2

TαTα
(
u0(t)

)
−

(
1

α
tα + 1

)
Tα

(
u0(t)

)
− c1

[(
1

α
tα + 1

)2

TαTα
(
u0(t)

)
+

(
1

α
tα + 1

)
TαTα

(
u0(t)

)
+

((
1

α
tα + 1

)2

−
1

4

)
u0(t)

]
= 0, u1(0) = (Tαu1)(0) = 0,

p2;

(
1

α
tα + 1

)2

TαTα
(
u2(t, c1, c2)

)
+

(
1

α
tα + 1

)
Tα

(
u2(t, c1, c2)

)
−

(
1

α
tα + 1

)2

TαTα
(
u1(t, c1)

)
−

(
1

α
tα + 1

)
Tα

(
u1(t, c1)

)
(4.16)

−c2

[(
1

α
tα + 1

)2

TαTα
(
u0(t)

)
+

(
1

α
tα + 1

)
Tα

(
u0(t)

)
+

((
1

α
tα + 1

)2

−
1

4

)
u0(t)

]
−c1

[(
1

α
tα + 1

)2

TαTα
(
u1(t, c1)

)
+

(
1

α
tα + 1

)
Tα

(
u1(t, c1)

)
+

((
1

α
tα + 1

)2

−
1

4

)
u1(t, c1) = 0, u2(0) = (Tαu2)(0) = 0,

.

.

.

Corresponding solution of equations (4.16), are

u0(t) = 1,

u1(t, c1) = c1

[
1

4

(
1

α
tα
)2

+
1

2

(
1

α
tα
)
− 3

4
ln

(
1 +

1

α
tα
)]

,

...
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Two-terms approximation to the solution of Eq. (4.14), can be obtained as the
following

u2(t, c1, c2) = u0(t) + u1(t, c1) + u2(t, c1, c2). (4.17)

The optimal values of the convergence control constants c1 and c2 in u2(t, c1, c2)
given in Eq. (4.17) for different values of α which can be obtained using the
procedure mentioned in (3.9) up to (3.11), that those are

c1 = 0.9140123550, c2 = 3.639201126.

In Figure 4.4, the exact solution and solution of conformable fractional OHAM
of fractional equation, for α = 0.4, 0.6, 0.8 and 1.0, are plotted.

Figure 4.4. 2th-order approximation of OHAM and exact solution for Example 4.4.

Example 4.5. Consider the conformable Bratu-type equation with initial value

TαTαu+ π2 exp(−u) = 0, u(0) = 0, (Tαu)(0) = π, (4.18)

where u(x) = ln
(
1 + sin

(
π
αx

α
))
.

Conforming to the proposed conformable fractional OHAM, we get

(1− p)
[
TαTα

)
v(t, p)

)]
−H(p)

[
TαTα

(
v(t, p)

)
+ π2

(
1− v(t, p)

)]
= 0. (4.19)
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Substituting Eqs. (4.3) into Eq. (4.19) and setting to zero the coefficient of like
powers of p, becomes

p0; TαTα

(
u0(t)

)
= 0, u0(0) = 0, (Tαu0)(0) = π,

p1; TαTα

(
u1(t, c1)

)
− TαTα

(
u0(t)

)
− c1

[
TαTα

(
u0(t)

)
+ π2

(
1 − u0(t)

)]
= 0, u1(0) = (Tαu1)(0) = 0,

p2; TαTα

(
u2(t, c1, c2)

)
− TαTα

(
u1(t, c1)

)
− c2

[
TαTα

(
u0(t)

)
+ π2

(
1 − u0(t)

)]
(4.20)

−c1
[
TαTα

(
u1(t, c1)

)
− π2u1(t, c1)

]
= 0, u2(0) = (Tαu2)(0) = 0,

p3; TαTα

(
u3(t, c1, c2, c3)

)
− TαTα

(
u2(t, c1, c2)

)
− c3

[
TαTα

(
u0(t)

)
+ π2

(
1 − u0(t)

)]
−c2

[
TαTα

(
u1(t, c1)

)
− π2u1(t, c1)

]
− c1

[
TαTα

(
u2(t, c1, c2)

)
− π2u2(t, c1, c2)

]
= 0, u3(0) = (Tαu3)(0) = 0,

.

.

.

Matching solution of conformable linear differential equations (4.20), are as fol-
lows

u0(t) = π

(
1

α
tα
)
,

u1(t) = c1π
2

[
1

2

(
1

α
tα
)2

− 1

6
π

(
1

α
tα
)3
]
,

u2(t) =
1

6
π3

[
1

20
c21π

2

(
1

α
tα
)5

− 1

4
πc21

(
1

α
tα
)4

− (c21 + c1 + c2)

(
1

α
tα
)3
]

+
1

2

[
c21π

2 + π2c1 + π2c2
]( 1

α
tα
)2

,

...

Third-terms approximation to the solution of Eq. (4.18), can be obtained as the
following

u3(t, c1, c2, c3) = u0(t) + u1(t, c1) + u2(t, c1, c2) + u3(t, c1, c2, c3). (4.21)

Table 4.4. Shows the optimal values of the convergence control constants c1, c2
and c3 in u3(t, c1, c2, c3) given in Eq. 4.21 for different values of α which can be
obtained using the procedure mentioned in (3.9) up to (3.11).

Auxiliary parameters α = 0.5 α = 0.7 α = 0.9 α = 1.0

c1 −1.067087561 −1.012692289 −0.9963537959 −1.001497291

c2 0.003188790034 0.0002156385026 −0.0001338547451 0.000002816029907

c3 −0.005191026932 −0.00001861202016 0.000003592158757 −1.798000219 × 10−8

Table 4.4. Values of auxiliary parameters for the third-order OHAM solution

of Eq. (4.18) for different orders.

In Figure 4.5, The exact solution and solution of conformable fractional OHAM
of fractional equation, for α = 0.5, 0.7, 0.9 and 1.0, are plotted.
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Figure 4.5. 3th-order approximation of OHAM and exact solution for Example 4.5.

5. Conclusion

In this paper, optimal homotopy asymptotic method is applied to obtain an
approximate solution of fractional differential equations. Conformable fractional
derivatives are used for fractional derivative in this study. The results can be
expressed that CFD is a simple tool to obtain the approximate solution of linear
and nonlinear fractional differential equations in comparison to the other definitions.
What can one learn from the plots: approximate solution for different are larger
convergence interval, when is closer to . To show the effectiveness of the method,
some fractional differential equations and Bratu-type equation as an example have
been solved by the conformable fractional optimal homotopy asymptotic method.
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