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A NEW STUDY OF A CLASS OF MULTI-FRACTIONAL

DIFFERENTIAL EQUATIONS

S. HARIKRISHNAN, RABHA W. IBRAHIM, K. KANAGARAJAN

Abstract. In this effort, we bring up a set of conditions to study the exis-

tence and uniqueness of solutions for a class of nonlocal initial value problems
regarding pantograph equation with a generalized fractional derivative. The

generalized derivative is taken for two fractional powers. This class of frac-

tional differential operators extended the standard fractional calculus. Our
tool is based on the Krasnoselskii’s fixed point theorem (KFPT). An example

is given in the sequel. Moreover, we discuss the stability of the fractional dif-

ferential equation (FDE) in view of the fractional Ulam concept of stability
(FUS). We suggest the power series formula depending on the initial condition

of the FDE.

1. Introduction

A non-integer (arbitrary) order differential equations are able to realize the mem-
ory and hereditary residences of well known critical materials and methods. Frac-
tional calculus (FC) has presently covered in plenty of exciting and crucial fields
of study. The tons interest in the problem owes to its huge packages inside the
mathematical modeling of several phenomena in almost all life sciences, computer
sciences and social studies [3, 9, 12]. It’s widely known that, in the deterministic
scenario, there can be a very special class of delay differential equations known as
the panto-graph equations. The recent development of pantograph equation with
a fractional order can be seen in [1, 8]. The study depended on the classic frac-
tional calculus of one fractional power (in terms of the Riemann-Liouville fractional
operators and Caputo fractional differential operator). In this manifestation, we
transact with a multi-fractional pantograph equation ( two fractional powers).

Katugampola derived generalized fractional derivative and studied existence and
uniqueness results involving this kind of derivative (see [10, 11]). Recently, Vivek et
al. studied different classes of fractional differential equations involving generalized
fractional derivative (see [14, 15]). Non-local initial value problems studies are very
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few in the field of fractional differential equations. This type of equations satisfies
the non-local condition

z(0) =

m∑
i=1

ciz(τi).

This class has many applications in physical problems which yield better effect than
the initial conditions [2] z(0) = z0.

The Ulam-Hyers stability (UHS) of fractional differential equations has been studied
in [4], [16]. While this form of stability has been formalized in a complex domain
for the Cauchy problem in [5]-[7] .

Consider non-local initial value problem of generalized fractional derivative is as
follows: {

ρDνz(t) = g(t, z(t), z(κt)), t ∈ I := [0, T ], T > 0,

z(0) =
∑m
i=1 ciz(τi), τi ∈ [0, T ].

(1)

where ρDν is generalized fractional derivative of order ν ∈ R and ρ > 0, 0 < κ < 1
where g : I×R×R→ R is given continuous function, τi, i = 0, 1, ...,m are prefixed
points satisfying 0 < τ1 ≤ ... ≤ τm < T and ci is real numbers.

In Section 2, we introduce some definitions and Lemmas that used throughout
the paper. In Section 3, we study the theory of pantograph equation with the
generalized derivative. We express an example to illustrate the theory. Section 4,
we deal with the fractional Ulam stability based on polynomial functions.

2. Preliminaries

Some basic definitions and results imposed in this section. Throughout this
paper, let C(I) be the collection of the Banach space containing all continuous
functions from I into R with the sup. norm

(‖φ‖ = sup
t∈I
{|φ(t)| : t ∈ I}).

The Riemann-Liouville integral and derivative of order ν ∈ C, <(ν) > 0 are
given by

Iνa+g(t) =
1

Γ(ν)

∫ t

a

(t− s)ν−1g(s)ds,

and

Dν
a+g(t) =

(
d

dt

n)(
In−νa+ f

)
(t), t > a,

respectively, where n = [<(ν)] and Γ(ν) is the gamma function.
The Hadamard fractional integral and derivative are given by

Iνa+g(t) =
1

Γ(ν)

∫ t

a

(
log

t

s

)ν−1

g(s)
ds

s
,

and
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Dν
a+g(t) =

1

Γ(n− ν)

(
t
d

dt

n)∫ t

a

(
log

t

s

)n−ν+1

g(s)
ds

s
,

respectively, for t > a ≥ 0 and <(ν) > 0.
The generalized left-sided fractional integral ρIνa+f of order ν ∈ C(<(ν)) is de-

fined by

(ρIνa+) f(t) =
ρ1−ν

Γ(ν)

∫ t

a

(tρ − sρ)ν−1sρ−1g(s)ds, t > a, (2)

if the integral exists. The generalized fractional derivative, corresponding to the
generalised fractional integral (2), is defined for 0 ≤ a < t, by

(ρDν
a+f) (t) =

ρν−n−1

Γ(n− ν)

(
t1−ρ

d

dt

)n ∫ t

a

(tρ − sρ)n−ν+1sρ−1g(s)ds, (3)

if the integral exists.
Let z ∈ C1(J), then

ρIνρDνz(t) = z(t)− z(0)

for some ci ∈ R, i = 0, 1, ..., n− 1, n = [ν] + 1. (KFPT) Let Z be a Banach space,
let Θ be a bounded closed convex subset of Z and let Π1,Π2 be mapping from Θ
into Z such that Π1z + Π2y,∈ Θ for every pair z, y ∈ Ω. If Π1 is contraction and
Π2 is completely continuous, then the equation Π1z + Π2z = z has a solution on
Θ.

3. Concurrence of outcomes

The following Lemma shows the equivalent integral equation of problem (1): A
function z is a solution of the mixed type integral equation

z(t) =


1

1−
∑m
i=1 ci

∑m
i=1 ci

ρ1−ν

Γ(ν)

∫ τi
0

(τρi − sρ)ν−1sρ−1g(s, z(s), z(κs))ds

+ρ1−ν

Γ(ν)

∫ t
0
(tρ − sρ)ν−1sρ−1g(s, z(s), z(κs))ds

(4)

if and only if z is a solution of the fractional initial value problem

ρDνz(t) = g(t, z(t), z(κt)), t ∈ I,

z(0) =

m∑
i=1

ciz(τi), τi ∈ [0, T ].

Proof. According to Lemma 2, a solution of Eq (1) can be expressed as

z(t) = z(0) +
1

Γ(ν)

∫ t

0

(
tρ − sρ

ρ

)ν−1

sρ−1g(s, z(s), z(κs))ds. (5)

Next, we substitute t = τi and multiply by ci, we can write
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ciz(τi) = ciz(0) +
1

Γ(ν)
ci

∫ τi

0

(
τρi − sρ

ρ

)ν−1

sρ−1g(s, z(s), z(κs))ds.

Thus, we have

z(0) =

m∑
i=1

ciz(τi)

=

m∑
i=1

ciz(0) +
1

Γ(ν)

m∑
i=1

ci

∫ τi

0

(
τρi − sρ

ρ

)ν−1

sρ−1g(s, z(s), z(κs))ds,

which implies

z(0) =
1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds. (6)

Substituting (6) in (5) we obtain (4).
Next we prove the sufficiency: Substitute t = 0 in (4), we get

z(0) =
1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds. (7)

Next, substititing t = τi and multiply by ci in (4). Then we derive

m∑
i=1

ciz(t) =

m∑
i=1

ci

(
1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

+
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

)
=

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

(
1 +

∑m
i=1 ci

1−
∑m
i=1 ci

)

=
1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds. (8)

It follows from (7) and (8),

z(0) =

m∑
i=1

ciz(τi).

Now we apply ρDν
a+ on both sides of (4), hence it reduced to

ρDν
a+z(t) = g(t, z(t), z(κt)).

The results are proved completely. �

Here, we introduce the following hypotheses:
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(H1) Let g : I ×R×R→ R be a continuous function and there exists a positive
constant ` > 0, such that

|g(t, z1, z2)− g(t, y1, y2)| ≤ ` (|z1 − y1|+ |z2 − y2|) ,

(
z1, z2, y1, y2 ∈ R, t ∈ I

)
.

(H2) Assume that

σ =
2`

1−
∑m
i=1 ci

m∑
i=1

ci
τρνi

ρνΓ(ν + 1)
+

`T ρν

ρνΓ(ν + 1)
< 1.

The result is based upon Theorem 2.
(Existence) Suppose that [H1] and [H2] are achieved. Then, Eq.(1) admits at

least one outcome on I.

Proof. Define the operator N : C(I)→ C(I), it is well defined and given by

(Nx)(t) =

{
1

1−
∑m
i=1 ci

∑m
i=1 ci

ρ1−ν

Γ(ν)

∫ τi
0

(τρi − sρ)ν−1sρ−1g(s, z(s), z(κs))ds

+ρ1−ν

Γ(ν)

∫ t
0
(tρ − sρ)ν−1sρ−1g(s, z(s), z(κs))ds.

(9)

Set g̃(s) = g(s, 0, 0) and

ω =

(
1

1−
∑m
i=1 ci

m∑
i=1

ci
τρνi

ρνΓ(ν + 1)
+

T ρν

ρνΓ(ν + 1)

)
‖g̃‖

Consider the ball

Br = {z ∈ C(I) : ‖x‖ ≤ r, r > 0} .

Now we subdivide the operator N into two operators A and B on Br as follows

(Az)(t) =
1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

and

(Bx)(t) =
ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1g(s, z(s), z(κs))ds.

Now we verify the conditions of Theorem 2.

Step.1 Boundedness. We aim to show that Az +By ∈ Br for every z, y ∈ Br.
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|(Az)(t) + (By)(t)|

≤ 1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1 |g(s, z(s), z(κs))| ds

+
ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1 |g(s, y(s), y(κs))| ds

≤ 1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1 (|g(s, z(s), z(κs))− g(s, 0, 0)|+ |g(s, 0, 0)|) ds

+
ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1 |g(s, y(s), y(κs))− g(s, 0, 0)|+ |g(s, 0, 0)| ds

≤ 1

1−
∑m
i=1 ci

m∑
i=1

ci
τρνi

ρνΓ(ν + 1)
(2`r + ‖g̃‖) +

tρν

ρνΓ(ν + 1)
(2`r + ‖g̃‖)

≤ σr + ω

≤ r.

Step.2 Contracting. Our aim is to prove that A is a contraction mapping, for
any z, y ∈ Br.

|(Az)(t)− (Ay)(t)|

≤ 1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1 |g(s, z(s), z(κs))− g(s, y(s), y(κs))| ds

≤ 1

1−
∑m
i=1 ci

m∑
i=1

ci
2`τρνi

ρνΓ(ν + 1)
‖x− y‖ .

The operator A is contraction mapping due to hypothesis [H2].

Step.3 Compactness. We have to impose that the operator B is compact and
continuous.

|(Bz)(t)| ≤ ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1 |g(s, z(s))| ds

≤ ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1 |g(s, z(s), z(κs))− g(s, 0, 0)|+ |g(s, 0, 0)| ds

≤ T ρν

ρνΓ(ν + 1)
(2` ‖x‖+ ‖g̃‖) .

So operator B is uniformly bounded.

Now we verify the compactness of operator B.
For 0 < t2 < t1 < T , we have
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|(Bz)(t1)− (Bz)(t2)|

=

∣∣∣∣ρ1−ν

Γ(ν)

∫ t1

0

(tρ1 − sρ)ν−1sρ−1g(s, z(s), z(κs))ds− ρ1−ν

Γ(ν)

∫ t2

0

(tρ2 − sρ)ν−1sρ−1g(s, z(s), z(κs))ds

∣∣∣∣
≤ ρ1−ν

Γ(ν)

∫ t1

0

(tρ1 − sρ)ν−1sρ−1 |g(s, z(s), z(κs))| ds− ρ1−ν

Γ(ν)

∫ t2

0

(tρ2 − sρ)ν−1sρ−1 |g(s, z(s), z(κs))| ds

≤ ‖g‖
ρνΓ(ν + 1)

|tρν1 − t
ρν
2 |

tending to zero as t1 → t2. Thus B is equi-continuous. Hence, the operator B is
compact on Br by the Arzela-Ascoli Theorem. Thus, all the hypotheses of Theorem
3 are fulfilled. Consequently, the conclusion of Theorem 3 applies and the problem
(1) admits at least one outcome. �

Putting the generalized pantograph equation as follows:

ρDνz(t) = g(t, z(t), z(κt)), t ∈ [0, 1],

z(0) = 0.5z (0.2) , τi ∈ [0, 1].

Denote

ν = 0.6, ρ = 0.3, κ = 0.5.

Set the function g as follows:

g(t, z(t), z(κt)) = 0.1z(t) + 0.1z(0.5t).

Moreover, it satisfies

|g(t, x1, y1)− g(t, x2, y2)| ≤ 0.1 (|x1 − x2|+ |y1 − y2|) .
On the other hand

σ =
2`

1−
∑m
i=1 ci

m∑
i=1

ci
τρνi

ρνΓ(ν + 1)
+

`T ρν

ρνΓ(ν + 1)

= 0.4536 < 1.

Here, hypothesis [H1] and [H2] are satisfied then the problem (1) has at least one
solution.

4. Fractional Ulam stability (FUS)

In this section, we present a new formal of FUS. Let

g(t, z) =

∫ t

0

(tρ − sρ)ν−1sρ−1g(s, z(s), z(κs))ds,

Gi(t, z) =

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

and

C :=

m∑
i=1

ci < 1.
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We say that the solution z of Eq.(1) is a FUS if there exists a constant ` > 0
with the following property: for every ε > 0 if

|ρDνz(t)− g(t, z(t), z(κt))| < ε,

then there exists y ∈ Br achieving

ρDνy(t)− g(t, y(t), y(κt)) = 0, y(0) = z(0) (10)

such that

|z(t)− y(t)| ≤ ε(`+ 1), z ∈ Br.

We have the following result:
Let the assumptions of Theorem 3 hold. If there occurs y ∈ Br satisfying (10),

then Eq.(1) has a FUS.

Proof. Let x be a solution of Eq.(1). In view of Lemma 3, we have

|z(t)| ≤

∣∣∣∣∣ 1

1−
∑m
i=1 ci

m∑
i=1

ci
ρ1−ν

Γ(ν)

∫ τi

0

(τρi − s
ρ)ν−1sρ−1g(s, z(s), z(κs))ds

∣∣∣∣∣
+

∣∣∣∣ρ1−ν

Γ(ν)

∫ t

0

(tρ − sρ)ν−1sρ−1g(s, z(s), z(κs))ds

∣∣∣∣
=

∣∣∣∣∣ 1

1− C

m∑
i=1

ci
ρ1−ν

Γ(ν)
Gi(t, z)

∣∣∣∣∣+

∣∣∣∣ρ1−ν

Γ(ν)
g(t, z)

∣∣∣∣
≤ |

m∑
i=0

ρ1−ν |ci+1|
Γ(ν)(1− C)

‖G‖+
ρ1−ν

Γ(ν)
‖G‖

≤ ε

1− C

∞∑
i=0

|ci|p

2i
+ ε, p ∈ (0,∞)

= ε
2 maxi |ci|p

1− C
+ ε := ε(`+ 1).

Consequently, we obtain

|z(t)− y(t)| ≤ ε(`+ 1), z ∈ Br.

Hence, Eq. (1) is FUS. �

It can be seen that for a suitable ε > 0.09, the equation in Example 3.3 is FUS.

5. Conclusion

We established some requests for the existence and uniqueness of solutions for a
special class of the fractional Cauchy equations with a non-local initial condition.
Our tool is based on the modified fractional operators of two fractional powers.
Moreover, we illustrated a new idea of FUS, which suggested by using power series.
The main tool of our work was by employing the KFPT. For the future work, one
may establish the occurrence of the outcome of sequential fractional differential
equation.
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