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SOME INCLUSION RELATIONS ASSOCIATED WITH
GENERALIZED FRACTIONAL INTEGRAL OPERATOR

VIDYADHAR SHARMA, NISHA MATHUR AND AMIT SONI

ABSTRACT. In this paper a known family of generalized fractional integral
operator is used here to define some new subclasses of analytic function in the
open unit disk U. For each of these new function classes, several inclusion
relationships are established.

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions f of the form
f(z)=2+ Z anz", (1)
n=2

which are analytic in the open unit disk U = {z:z € C' and |z| < 1}. If f € A is

given by (1) and g € A is given by g(z) = z+ > bp2" in z € U, then the Hadamard
n=2

product (or convolution) of f and g is defined by

(fxg)(z) =2+ Z anbpz".
n=2

Let Pyp(«) denotes the class of functions h(z) analytic in the unit disk U satisfying
the properties h(0) = 1 and

27

/|Re<h(f)_a)|d9<m (z=re?; 0<a<l; k>2). (2)
—

0

This class Pg(«) has been introduced in [7]. Note that for « = 0, we obtain
the class Py defined and studied in [8] and for k = 2, we have the class P(«) of
functions with positive real part greater than «. In particular, P(0) is the class P
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of functions with positive real part. From (2), we can easily deduce that h € Py(«)
if and only if
ko1 k1
h(z) = <4 + 2) hi(2) — <4 - 2) ha(z), hi,hs € P(a). (3)

Following the recent investigation [4] (see also [6], [9]), we have the following sub-
classes:

Ri(a) = {fcA: foéj) € Py(a),z € U}, (4)

i ={rea: L e paz e, )

Pila) ={f € A: f'(2) € Py(a),z € U}, (6)

Te(B,a) = {f € A: g € Ry(a) and ZJ(S) € Pu(B),z € U}, (7)
1) = (fedsge i and TE cn@acry. @

We note that the class Rp(a) = S*(a) and Va(a) = k(o) are respectively, the
subclasses of A consisting of functions which are starlike of order o and convex
of order « in U. The class T5(8,a) = C*(f,a) was considered by Noor [2]
and T5(0,0) = C* is the class of quasi-convex univalent functions which was first
introduced and studied in [3]. It can be easily seen from the above definition that

f(2) € Vi(a) & 2f'(2) € Ri(a), 9)
and
f(2) € T (B, @) & 2f'(2) € Ti(B, ). (10)
For A > 0, p,n € R and min{\ +n,—u +n, —pu} > —2, Srivastava et al. [14]
introduced a family of fractional integral operators

Tl f(z) A — A,

defined by
FR-pl2+A+n) 0

J)vlh”] — kT ST 11
0,z (Z) 1—1(2 — 1 + 77) Z 0,z f(Z) ) ( )
where Ig‘)’f’” is the hypergeometric fractional integral operator due to Saigo [13],:

A, psm ZAH A-1 t
11" f(z) = (2=t 2Py [ A+, —m A (L= <) ) f(D)dt . (12)

INQY) z

0

Here the o F - function in the kernel of (12) is the Gauss Hypergeometric function,
the function f(z) is analytic in a simply-connected region of the complex z-plane
containing the origin, with the order

f(z) =0(2[) (z = O; >maz{0, u —n} = 1),

and the multiplicity of (z —¢)*~! is removed by requiring log(z —t) to be real when
(z—1t) > 0.
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If f(2) € A is of the form (1), than the fractional integral operator JO 1 has the
form
re—wr2+i+n)

J/\,u,n _

n—u+77+1) )
r2-p+n) =T '

(n+A+n+1) "

(13)
It is easily verified from (13) that

<J3+1Mf(z)) A+1+2) T () = A n+1) Jp I f(z). (14)

ST

Using the generalized fractional integral operator Jo , we now define the follow-

ing subclasses of A:

e Let f(z) € A. Then f(z) € R¥*"(k, ) if and only if JO 1 f(2) € Ri(a),
for z € U.
e Let f(2) € A. Then f(z) € VM (k, ) if and only if J(i’z”’"f(z) € Vi(w),
for z € U.
e Let f(2) € A. Then f(z) € T (k,B,«) if and only if Ja’;""f(z) €
Tk(8, ), for z € U.
o Let f(z) € AThen f(z) € T""(k,B,a,) if and only if J3F"f(2) €
Tk (B, @), for z € U.
o Let f(z) € A. Then f(z) € P}(), p,n, ) if and only if J3/"" f(2) € Py(«),
for z € U.
In this paper we establish some inclusion relationships and some other interesting
properties for these subclasses.

2. MAIN INCLUSION RELATIONSHIPS

We recall first the following necessary lemmas:
Lemma 1.([1]) Let u = u; + ius and v = vy + ivy and let ¢(u,v) be a complex-
valued function satisfying the conditions:
(i)  ¢(u,v) is continuous in D C C?
(i) (1,0)€ D and Re ¢(1,0) > 0,
(ii)  Re ¢(iug,v1) < 0 whenever (iug,v1) € D and v; < —3(1 +u3) .
If h(z) =1+ > 07, cy2™, is a function analytic in U such that (h(z),zh'(z)) € D
and
Re(¢(h(z),zh/(2)) > 0, for z € U, then Re (h(z)) > 0 for z € U.
Lemma 2. ([11]) Let p(z) be analytic in U with p(0) = 1 and Re {p(z)} > 0,
z € U. Then,for s > 0 and 71 # —1 (complex),

/(2)
D14 <p(2) + ])(Z)—i—’lh> > 0, fO?“ |Z| <7To

where 7 is given by ro = ESE/H —, m=2(s+1)2+|m*—1and
m+(m2—[ni-1])2

this result is best possible.

Lemma 3. ([10]) Let ¢ be convex and g be starlike in U. Then for F' analytic in
U with F(0) =1, %22 is contained in the convex hull of F(U). By convex hull
of a set X, we mean the intersection of all convex sets that contain X.

Lemma 4. ([12]) Let p is analytic in E with p(0) = 1, and A is a complex number
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satisfying Re(\) > 0, (A # 0), then Re [p(z) + Azp'(2)] > B, (0 < 8 < 1) implies
Re {p(z)} > {8+ (1 — B)(2y — 1)} where 7 is given by
1

v = /(1 +t ey Tlae,
0

which is an increasing function of Re (A) and % < v < 1. The estimate is sharp in
the sense that bound cannot be improved.
Our first main inclusion relationship is given by the theorem below.
Theorem 1. Let f € A/A>0,0<a<1, A+n>—=7/8 and min {—n +
—u} > —2. Then
Rhwz(k’ Q) C R’\+1”"’7(k, ), (15)
where
B 22\ + 2am + 2a + 1)
A +2n—2a+3)+V/AA+n+a+1)2+4A+n—a+1)+9

(16)

and 0<a<ao <1.
Proof. Let f € RM*"(k,a). Then upon setting

’

P AtLpnec,
(jﬁhm;é? o) = (§+3)me) - (§-3)me) Gew . an
0

we see that the function p(z) is analytic in U, with p(0) = 1 in z € U. Using
identity (14) in (17) and differentiating with respect to z, we get

’

z ( J(;\zlmf(z)) 2/ (2)
W = (p(z) + )\-1-77—1—1-1-])(2)) € Pya) (z€U) .

Let
E:A+n+1+j]
A+n+2

then, by convolution techmque(bee [5])7 we have

P(z) _ zp'(2)
P B F W

(12)(2) (- -5

and this implies that

(2 2pi(2) o z 1=
Qm>+m” )eP() (ceUii=12) . (8

2)+A+n+1

We want to show that p;(z) € P(a1) where a; is given by (16) and this will show
that p(z) € Py(a) for z € U. Let

pi(z) = (1 — ar1)hi(z) + 1 (zeU,i=1,2) , (19)

then in view of (18) and (19), we obtain for z € U, i =1,2

(1 — a1)2h;i(2)
Re ((1 —ap)hi(z) + (a1 —a) + (o )ehi(s) + o+ A4+ 1> >0 . (20)
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We now form a functional ¢(u,v) by choosing u = h;(z) and v = zh/(z) in (20).
Thus

(I—aq)v
(1—a)ut+a+A+n+1 "~
We can easily see that the first two conditions of Lemma 1, are easily satisfied

as ¢(u,v) is continuous in D = C — (—w) x C, (1,0) € D, and Re

11—y

{#(1,0)} > 0. Now for v; < —2(1 + u3) we obtain

plu,v) =1l—a)u+ag —a+ (21)

‘ . (1—ap)u
= ]_ - -
Re{¢(iug,v1)} = Re (( LN R P

(1 —ap)vi{ar +A+n+1}
(@1 +A+n+1)2 + (1 - a1)?u3
1(1—-a)(og+A+n+1)(1+u3) A+ Buj

< - = =
=TT At )2+ (1 — )2 2C ’

=ap —a+

where

A=(a+A+n+1D{2(a1 —a)(ar + A+ n+1) — (1 —a1)}

B=(1-a){2(c1 —a)(1—a1) — (a1 + A+ n+ 1)}
C=(a1+A+n+1)2+(1—a1)*u3 >0 .

We note that Re {¢(iug,v1} < 0if and only if A <0and B <0. From A <0,
we obtain oy as given by (16) and B < 0 gives us 0 < «; < 1. Therefore, Lemma 1
is applied to conclude that Re {h;(z)} > 0in U and this implies Re {p;(2)} > a;.
This completes the proof of Theorem 1.

Theorem 2. Let f € A, A >0, 0 < a <1l XAX+n > —7/8 and min
{—p+mn,—p} >—2. Then

VA (ko) € VAL (B aq) (22)

where ay is given by (16).
Proof. To prove the inclusion relationship, we observe from Theorem 1, that

f(z) € VMK o) & 2f'(2) € RMI(k,a) = 2f'(2) € RNV (ko) &

f(z) € VAMLEn(E a)),
which establishes Theorem 2.

Theorem 3. Let f € AAA>0, 0<a,f<1, AX+n>-7/8 andmin
{—p+mn,—p} >—2. Then

Tk, B,0) € Tk, Br,aa) (23)

where a1 is given by (16) and § < 1 < 1 is defined in the proof.
Proof. Let f(z) € TM*"(k,,a). Then there exists g(z) € RM""(2,a) such
that

(R
WE-’%(@’) (zeU, 0<p<1). (24)
Let

’
A+1,p,m
2 (RHS)
A+1,u,m
JO,Z

= (1= B1)h(z)+ B = H(2)
9(2)
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—(§+3)0-smE +a- (5= 5)10-sme) + 5]

(25)

where h(z) is analytic in U with h(0) = 1. Since g(z) € R**"(2,a), by Theorem

1 we know that g(z) € RM1LH1(2 ay). Hence there exist an analytic function
q(z) € P such that

’

z ( JM'I’”’"g(z))

J>\+1,,L g(2) =(1—a1)q(2)+ a1 = Ho(z) . (26)
Now using identity (14) , we obtain
JOH
() i+ 2 HE)
Jotg(z) Ho(z)+A+n+1

o1 (1 —B1)zh}(2)
= <4 + 2) ((1 — B1)hi(2) + B+ Ho(2) _|_>\_|_177_|_ 1) -

(5-3) (a-sm) + o+ 2SO Y e pg) ey

and this implies that

(1 = fB1)zhi(2) .
e (1= gom(e) + -+ PO Y s vz
We form a functional ¢(u,v) by taking u = h;(z),v = zh}(z). Thus

(1 - 61)’0
Ho(z) + A+n+1
It can be easily seen that ¢(u,v) satisfies the conditions (i) and (ii) of Lemma 1 and
to verify the condition (iii) we proceed with  Hy(z) = (1 — a1)(q1 + ig2) + a1
and v; < —3(1+u3) as follows:

1 (1=B){0-a))g +o1+A+n+1}(1+u3)
2{(1 )1 + a1 + A+ 7+ 132+ {(1 — a1)?¢3}

¢(u,v) = (1= Br)u+ (b1 = B) +

Re (¢(iuz,v1) < (B1—B)—

_ A+Bu3

= a0

where

A=28-B){((1—a)g +ar + A+ n+1)°+(1—a1)2¢2} —(1-B){(1—a1)q +
ar+A+n+1} B:*(1*ﬁl){(lfal)qlJralJrAJrnJrl)} <0
C=((1-a)@+a1+A+n+1)*+(1—01)2¢2>0 .

Thus Re{¢(iug,v1)} <0 if A <0 and therefore

28 [((1—0l1)Q1+0¢1+)\+77+1)2+(1—041)2q§] +[(1—a1)g +a1 +A+n+1]
2[((T—ag+ar+A+n+1)2+ (1 —)?g3] + (1 —o1)qg +ar + A +n+1]

pr =

Now, applying Lemma 1, we get h;(z) € P, i = 1,2 and consequently h(z) €
Py(B1) and therefore f € TAL#n(k, By, o). Using the same techniques and rela-
tion (10) with Theorem 3, we have the following result:
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Theorem 4. Let f €e A/A >0, 0<a,p<1, AX+n>-T7/8 and min
{—p+mn,—pu} >—2. Then

TM(k,B,0) © TNHYI(E, By, an) |

where $1 and ay are as in Theorem 3.

Theorem 5. Let 2 € U and f € RM1#(k,0). Then f € RM"(k,0) for
|z| < ro, where

A+n+2
To = )
Vm+ [ 2

This radius is exact.
Proof.
Let

m="74+\+n+1)>. (27)

(R
== (oo (=

where p € Py and p;,pe € P in U. Using similar argument as in Theorem 1, we
obtain

/

z ( J&‘f‘"f(z)) () + 2p (2)
TR D T X+ 1+ ()

= (Z*é) (pl(Zle(z)?/lA(?nH)_(Z - ;> <p2(z)+p2(z)f%\(i)n+l> :

Applying Lemma 2, we get

2pi(2)
R ; L 0 f
e(pz(z)+pi(2)+)\+n+1)> or | z |[< ro,

where rq is given by (27), This completes our proof.
Theorem 6. Let A > 0 and min {A\+n,—u+n, —pu} > —2. Then

PIQ(A»IM%Q) - Plé()‘"‘f_]-?/%nv Oz—l—(l—O[)(Q’y—l)),

where
1

—1
7:/(1+tﬁv+2) dt,

0
which is an increasing function of ﬁm and % <y <1
Proof. Let  f(z) € P(A, i, n, ). Then upon setting

' ko1 ko1
A+1,0,m — = (=4 = — (===
( Jo.- f(2)> = H(z) = (4 + 2) hi(z) (4 2) ha(z), (28)
where H(z) is analytic and H(0) = 1 in U. Identity ( 14), gives us

(rms@) = 1)+ 2L

() 1 £25820) - (-3 (285,
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This implies that
zh,(2) .
Re [ hi(z) + 22\2)_ , —1,2.
e( (z)+)\+n+2>>oz 7

Now using Lemma 4. we get desired result.

Theorem 7. Let ¢ be a conver function and f € RM*(2,a). Then ¢ x f €
R/\,u,n(g,a)
Proof. Let G=¢* f and let

oo

o(z) =2+ Z bp2"
n=2
fz)=2z+ Z anz"
n=2

Then
R Gy = R

32

z+ i anbnz"]

n=2
oo

I’(2—,u)F(2+)\+77)Z F'n+1)I'(n—p+n+1)
r'2—p+mn) Fn—p+ 1+ X+n+1)

n

:Z+

anbnz

= (o 202F) (=) - (29)

Also, f(z) € RM*"(2,a). Therefore, J&’Z‘""f(z) € Ra(a) = S*(a). By logarithmic
differentiation of (29), we have

’

z ( N G(Z)) $(2) * F I3 f(2)

T G(z) z)x Sl f(z)
where \ )
2(Jo2 " f(2)
F(z) = W
JO z f(Z)
. L. 2(JQHn G(z))/ .
is analytic in U and F(0) = 1. From Lemma 3 we see that —%&-———

Jot G (z)
2ot G(2)
JoT G(z)

22" G .
W lies in Q. This

contained in the convex hull of F(U). Since is analytic in U and

X, p,m 2
FU)c Q= {w: %" WE)  p )} then
J(J,z Wi(z)

implies that G = ¢ x f € RM"(2, ).
Application of Theorem 7.

Corollary 1.The class RM*" (2, a) is invariant under the following integral op-
erators. That is if f € RM“"(2, ) then so does f; where f; are given as:

() hi(z)= f 1) gy

(it)  fa(2) =2 [ f(t)dt

Ct—n
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(isi)  f3(z t igmt)dt |z <1,z #1,

z
(w)  fa(z) = = [t f(t)dt, Re (¢) > 0.

0

The proof 1mmed1ately follows from Theorem 7. Since we can write f; = f*¢; with
¢$1(z) = —log(l — z)
(;52(2) -9 [z+log(1—z):|

¢3(z) log(l rz)
¢4(z) = § e ,m Ree>0

oyl m--c

and each ¢; is convex for i = 1, 2, 3, 4.

Remarks

(i) In Theorems 1, 2, 3 and 4 taking o = 0 we get the results obtained by Prajapat

[9].

(ii) Taking p = 0 in the operator JO 11 £(2) and making some suitable changes in

parameters in Theorems 1 to 8, we obtain the results derived by Noor et al.[6] and
Noor[4].
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