# SOME INCLUSION RELATIONS ASSOCIATED WITH GENERALIZED FRACTIONAL INTEGRAL OPERATOR 

VIDYADHAR SHARMA, NISHA MATHUR AND AMIT SONI


#### Abstract

In this paper a known family of generalized fractional integral operator is used here to define some new subclasses of analytic function in the open unit disk $U$. For each of these new function classes, several inclusion relationships are established.


## 1. Introduction and definitions

Let $\mathbb{A}$ denote the class of functions $f$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$. If $f \in \mathbb{A}$ is given by (1) and $g \in \mathbb{A}$ is given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ in $z \in U$, then the Hadamard product (or convolution) of $f$ and $g$ is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

Let $P_{k}(\alpha)$ denotes the class of functions $h(z)$ analytic in the unit disk $U$ satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{h(z)-\alpha}{1-\alpha}\right)\right| d \theta \leq k \pi \quad\left(z=r e^{i \theta} ; \quad 0 \leq \alpha<1 ; \quad k \geq 2\right) \tag{2}
\end{equation*}
$$

This class $P_{k}(\alpha)$ has been introduced in [7]. Note that for $\alpha=0$, we obtain the class $P_{k}$ defined and studied in [8] and for $k=2$, we have the class $P(\alpha)$ of functions with positive real part greater than $\alpha$. In particular, $P(0)$ is the class $P$

[^0]of functions with positive real part. From (2), we can easily deduce that $h \in P_{k}(\alpha)$ if and only if
\[

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z), \quad h_{1}, h_{2} \in P(\alpha) . \tag{3}
\end{equation*}
$$

\]

Following the recent investigation [4] (see also [6], [9]), we have the following subclasses:

$$
\begin{gather*}
R_{k}(\alpha)=\left\{f \in A: \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\alpha), z \in U\right\},  \tag{4}\\
V_{k}(\alpha)=\left\{f \in A: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\alpha), z \in U\right\},  \tag{5}\\
P_{k}^{\prime}(\alpha)=\left\{f \in A: f^{\prime}(z) \in P_{k}(\alpha), z \in U\right\},  \tag{6}\\
T_{k}(\beta, \alpha)=\left\{f \in A: g \in R_{2}(\alpha) \text { and } \frac{z f^{\prime}(z)}{g(z)} \in P_{k}(\beta), z \in U\right\},  \tag{7}\\
T_{k}^{*}(\beta, \alpha)=\left\{f \in A: g \in V_{2}(\alpha) \text { and } \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \in P_{k}(\beta), z \in U\right\} . \tag{8}
\end{gather*}
$$

We note that the class $R_{2}(\alpha)=S^{*}(\alpha)$ and $V_{2}(\alpha)=k(\alpha)$ are respectively, the subclasses of $\mathbb{A}$ consisting of functions which are starlike of order $\alpha$ and convex of order $\alpha$ in $U$. The class $T_{2}^{*}(\beta, \alpha)=C^{*}(\beta, \alpha)$ was considered by Noor [2] and $T_{2}^{*}(0,0)=C^{*}$ is the class of quasi-convex univalent functions which was first introduced and studied in [3]. It can be easily seen from the above definition that

$$
\begin{equation*}
f(z) \in V_{k}(\alpha) \Leftrightarrow z f^{\prime}(z) \in R_{k}(\alpha) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in T_{k}^{*}(\beta, \alpha) \Leftrightarrow z f^{\prime}(z) \in T_{k}(\beta, \alpha) \tag{10}
\end{equation*}
$$

For $\lambda>0, \mu, \eta \in R$ and $\min \{\lambda+\eta,-\mu+\eta,-\mu\}>-2$, Srivastava et al. [14] introduced a family of fractional integral operators

$$
J_{0, z}^{\lambda, \mu, \eta} f(z): \mathbb{A} \rightarrow \mathbb{A}
$$

defined by

$$
\begin{equation*}
J_{0, z}^{\lambda, \mu, \eta} f(z)=\frac{\Gamma(2-\mu) \Gamma(2+\lambda+\eta)}{\Gamma(2-\mu+\eta)} z^{\mu} I_{0, z}^{\lambda, \mu, \eta} f(z) \tag{11}
\end{equation*}
$$

where $I_{0, z}^{\lambda, \mu, \eta}$ is the hypergeometric fractional integral operator due to Saigo [13],:

$$
\begin{equation*}
I_{0, z}^{\lambda, \mu, \eta} f(z)=\frac{z^{-\lambda-\mu}}{\Gamma(\lambda)} \int_{0}^{z}(z-t)^{\lambda-1}{ }_{2} F_{1}\left(\lambda+\mu,-\eta ; \lambda ;\left(1-\frac{t}{z}\right)\right) f(t) d t \tag{12}
\end{equation*}
$$

Here the ${ }_{2} F_{1}$ - function in the kernel of (12) is the Gauss Hypergeometric function, the function $f(z)$ is analytic in a simply-connected region of the complex z-plane containing the origin, with the order

$$
f(z)=0\left(|z|^{\varepsilon}\right) \quad(z \rightarrow 0 ; \varepsilon>\max \{0, \mu-\eta\}-1)
$$

and the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$.

If $f(z) \in \mathbb{A}$ is of the form (1), than the fractional integral operator $J_{0, z}^{\lambda, \mu, \eta}$ has the form

$$
\begin{equation*}
J_{0, z}^{\lambda, \mu, \eta} f(z)=z+\frac{\Gamma(2-\mu) \Gamma(2+\lambda+\eta)}{\Gamma(2-\mu+\eta)} \sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(n-\mu+\eta+1)}{\Gamma(n-\mu+1) \Gamma(n+\lambda+\eta+1)} a_{n} z^{n} \tag{13}
\end{equation*}
$$

It is easily verified from (13) that

$$
\begin{equation*}
z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}=(\lambda+\eta+2) J_{0, z}^{\lambda, \mu, \eta} f(z)-(\lambda+\eta+1) J_{0, z}^{\lambda+1, \mu, \eta} f(z) \tag{14}
\end{equation*}
$$

Using the generalized fractional integral operator $J_{0, z}^{\lambda, \mu, \eta}$, we now define the following subclasses of $\mathbb{A}$ :

- Let $f(z) \in \mathbb{A}$. Then $f(z) \in R^{\lambda, \mu, \eta}(k, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in R_{k}(\alpha)$, for $z \in U$.
- Let $f(z) \in \mathbb{A}$. Then $f(z) \in V^{\lambda, \mu, \eta}(k, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in V_{k}(\alpha)$, for $z \in U$.
- Let $f(z) \in \mathbb{A}$. Then $f(z) \in T^{\lambda, \mu, \eta}(k, \beta, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in$ $T_{k}(\beta, \alpha)$, for $z \in U$.
- Let $f(z) \in \mathbb{A}$.Then $f(z) \in T_{*}^{\lambda, \mu, \eta}(k, \beta, \alpha$,$) if and only if J_{0, z}^{\lambda, \mu, \eta} f(z) \in$ $T_{k}^{*}(\beta, \alpha)$, for $z \in U$.
- Let $f(z) \in \mathbb{A}$. Then $f(z) \in P_{k}^{\prime}(\lambda, \mu, \eta, \alpha)$ if and only if $J_{0, z}^{\lambda, \mu, \eta} f(z) \in P_{k}^{\prime}(\alpha)$, for $z \in U$.
In this paper we establish some inclusion relationships and some other interesting properties for these subclasses.


## 2. Main inclusion Relationships

We recall first the following necessary lemmas:
Lemma 1.([1]) Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\phi(u, v)$ be a complexvalued function satisfying the conditions:
(i) $\phi(u, v)$ is continuous in $D \subset C^{2}$
(ii) $(1,0) \in D$ and $\operatorname{Re} \phi(1,0)>0$,
(iii) $\quad \operatorname{ee} \phi\left(i u_{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$, is a function analytic in $U$ such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and
$\operatorname{Re}\left(\phi\left(h(z), z h^{\prime}(z)\right)>0\right.$, for $z \in U$, then $\operatorname{Re}(h(z))>0$ for $z \in U$.
Lemma 2. ([11]) Let $p(z)$ be analytic in $U$ with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$, $z \in U$. Then,for $s>0$ and $\eta_{1} \neq-1$ (complex),

$$
\Re\left(p(z)+\frac{s z p^{\prime}(z)}{p(z)+\eta_{1}}\right)>0, \quad \text { for }|z|<r_{0}
$$

where $r_{0}$ is given by $\quad r_{0}=\frac{\left|1+\eta_{1}\right|}{\sqrt{m+\left(m^{2}-\left|\eta_{1}^{2}-1\right|\right)^{\frac{1}{2}}}}, \quad m=2(s+1)^{2}+\left|\eta_{1}\right|^{2}-1$ and this result is best possible.
Lemma 3. ([10]) Let $\phi$ be convex and $g$ be starlike in $U$. Then for $F$ analytic in $U$ with $F(0)=1, \quad \frac{\Psi * F g}{\Psi * g}$ is contained in the convex hull of $F(U)$. By convex hull of a set $X$, we mean the intersection of all convex sets that contain $X$.
Lemma 4. ([12]) Let $p$ is analytic in $E$ with $p(0)=1$, and $\lambda$ is a complex number
satisfying $\operatorname{Re}(\lambda) \geq 0,(\lambda \neq 0)$, then $\operatorname{Re}\left[p(z)+\lambda z p^{\prime}(z)\right]>\beta,(0 \leq \beta<1)$ implies $\operatorname{Re}\{p(z)\}>\{\beta+(1-\beta)(2 \gamma-1)\}$ where $\gamma$ is given by

$$
\gamma=\int_{0}^{1}\left(1+t^{R e \lambda}\right)^{-1} d t,
$$

which is an increasing function of $\operatorname{Re}(\lambda)$ and $\frac{1}{2} \leq \gamma \leq 1$. The estimate is sharp in the sense that bound cannot be improved.

Our first main inclusion relationship is given by the theorem below.
Theorem 1. Let $f \in \mathbb{A}, \lambda>0,0 \leq \alpha<1, \lambda+\eta>-7 / 8$ and $\min \{-\mu+$ $\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
R^{\lambda, \mu, \eta}(k, \alpha) \subset R^{\lambda+1, \mu, \eta}\left(k, \alpha_{1}\right), \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{2(2 \alpha \lambda+2 \alpha \eta+2 \alpha+1)}{(2 \lambda+2 \eta-2 \alpha+3)+\sqrt{4(\lambda+\eta+\alpha+1)^{2}+4(\lambda+\eta-\alpha+1)+9}} \tag{16}
\end{equation*}
$$

and $\quad 0 \leq \alpha<\alpha_{1}<1$.
Proof. Let $f \in R^{\lambda, \mu, \eta}(k, \alpha)$. Then upon setting

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda+\mu, \mu, \eta} f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \quad(z \in U) \tag{17}
\end{equation*}
$$

we see that the function $p(z)$ is analytic in $U$, with $p(0)=1$ in $z \in U$. Using identity (14) in (17) and differentiating with respect to $z$, we get

$$
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} f(z)}=\left(p(z)+\frac{z p^{\prime}(z)}{\lambda+\eta+1+p(z)}\right) \in P_{k}(\alpha) \quad(z \in U) .
$$

Let

$$
\phi(z)=\sum_{j=1}^{\infty} \frac{\lambda+\eta+1+j}{\lambda+\eta+2} z^{j}
$$

then, by convolution technique(see [5]), we have

$$
\begin{gathered}
p(z) * \frac{\phi(z)}{z}=p(z)+\frac{z p^{\prime}(z)}{p(z)+\lambda+\eta+1} \\
=\left(\frac{k}{4}+\frac{1}{2}\right)\left(p_{1}(z) * \frac{\phi(z)}{z}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(p_{2}(z) * \frac{\phi(z)}{z}\right)
\end{gathered}
$$

and this implies that

$$
\begin{equation*}
\left(p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{p_{i}(z)+\lambda+\eta+1}\right) \in P(\alpha) \quad(z \in U, i=1,2) . \tag{18}
\end{equation*}
$$

We want to show that $p_{i}(z) \in P\left(\alpha_{1}\right)$ where $\alpha_{1}$ is given by (16) and this will show that $p(z) \in P_{k}(\alpha)$ for $z \in U$. Let

$$
\begin{equation*}
p_{i}(z)=\left(1-\alpha_{1}\right) h_{i}(z)+\alpha_{1} \quad(z \in U, i=1,2), \tag{19}
\end{equation*}
$$

then in view of (18) and (19), we obtain for $z \in U, i=1,2$

$$
\begin{equation*}
\operatorname{Re}\left(\left(1-\alpha_{1}\right) h_{i}(z)+\left(\alpha_{1}-\alpha\right)+\frac{\left(1-\alpha_{1}\right) z h_{i}^{\prime}(z)}{\left(1-\alpha_{1}\right) z h_{i}(z)+\alpha_{1}+\lambda+\eta+1}\right)>0 . \tag{20}
\end{equation*}
$$

We now form a functional $\phi(u, v)$ by choosing $u=h_{i}(z)$ and $v=z h_{i}^{\prime}(z)$ in (20). Thus

$$
\begin{equation*}
\phi(u, v)=\left(1-\alpha_{1}\right) u+\alpha_{1}-\alpha+\frac{\left(1-\alpha_{1}\right) v}{\left(1-\alpha_{1}\right) u+\alpha_{1}+\lambda+\eta+1} \tag{21}
\end{equation*}
$$

We can easily see that the first two conditions of Lemma 1, are easily satisfied as $\phi(u, v)$ is continuous in $D=C-\left(-\frac{\alpha_{1}+\lambda+\eta+1}{1-\alpha_{1}}\right) \times C, \quad(1,0) \in D$, and $R \mathrm{e}$ $\{\phi(1,0)\}>0$. Now for $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$ we obtain

$$
\begin{aligned}
\operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\} & =\operatorname{Re}\left(\left(1-\alpha_{1}\right) i u_{2}+\alpha_{1}-\alpha+\frac{\left(1-\alpha_{1}\right) v_{1}}{\left(1-\alpha_{1}\right) i u_{2}+\alpha_{1}+\lambda+\eta+1}\right) \\
& =\alpha_{1}-\alpha+\frac{\left(1-\alpha_{1}\right) v_{1}\left\{\alpha_{1}+\lambda+\eta+1\right\}}{\left(\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} u_{2}^{2}} \\
\leq \alpha_{1}-\alpha & -\frac{1}{2} \frac{\left(1-\alpha_{1}\right)\left(\alpha_{1}+\lambda+\eta+1\right)\left(1+u_{2}^{2}\right)}{\left(\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} u_{2}^{2}}=\frac{A+B u_{2}^{2}}{2 C}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left(\alpha_{1}+\lambda+\eta+1\right)\left\{2\left(\alpha_{1}-\alpha\right)\left(\alpha_{1}+\lambda+\eta+1\right)-\left(1-\alpha_{1}\right)\right\} \\
& B=\left(1-\alpha_{1}\right)\left\{2\left(\alpha_{1}-\alpha\right)\left(1-\alpha_{1}\right)-\left(\alpha_{1}+\lambda+\eta+1\right)\right\} \\
& C=\left(\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} u_{2}^{2}>0
\end{aligned}
$$

We note that $\operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right\} \leq 0\right.$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain $\alpha_{1}$ as given by (16) and $B \leq 0$ gives us $0 \leq \alpha_{1}<1$. Therefore, Lemma 1 is applied to conclude that $\operatorname{Re}\left\{h_{i}(z)\right\}>0$ in $U$ and this implies $\operatorname{Re}\left\{p_{i}(z)\right\}>\alpha_{1}$. This completes the proof of Theorem 1.

Theorem 2. Let $f \in \mathbb{A}, \lambda>0, \quad 0 \leq \alpha<1, \quad \lambda+\eta>-7 / 8$ and min $\{-\mu+\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
V^{\lambda, \mu, \eta}(k, \alpha) \subset V^{\lambda+1, \mu, \eta}\left(k, \alpha_{1}\right) \tag{22}
\end{equation*}
$$

where $\alpha_{1}$ is given by (16).
Proof. To prove the inclusion relationship, we observe from Theorem 1, that
$f(z) \in V^{\lambda, \mu, \eta}(k, \alpha) \Leftrightarrow z f^{\prime}(z) \in R^{\lambda, \mu, \eta}(k, \alpha) \Rightarrow z f^{\prime}(z) \in R^{\lambda+1, \mu, \eta}\left(k, \alpha_{1}\right) \Leftrightarrow$
$f(z) \in V^{\lambda+1, \mu, \eta}\left(k, \alpha_{1}\right)$,
which establishes Theorem 2.
Theorem 3. Let $f \in \mathbb{A}, \lambda>0, \quad 0 \leq \alpha, \beta<1, \quad \lambda+\eta>-7 / 8 \quad$ and min $\{-\mu+\eta,-\mu\}>-2$. Then

$$
\begin{equation*}
T^{\lambda, \mu, \eta}(k, \beta, \alpha) \subset T^{\lambda+1, \mu, \eta}\left(k, \beta_{1}, \alpha_{1}\right) \tag{23}
\end{equation*}
$$

where $\alpha_{1}$ is given by (16) and $\beta<\beta_{1}<1$ is defined in the proof.
Proof. Let $f(z) \in T^{\lambda, \mu, \eta}(k, \beta, \alpha)$. Then there exists $g(z) \in R^{\lambda, \mu, \eta}(2, \alpha)$ such that

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} g(z)} \in P_{k}(\beta) \quad(z \in U, 0 \leq \beta<1) \tag{24}
\end{equation*}
$$

Let

$$
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} g(z)}=\left(1-\beta_{1}\right) h(z)+\beta_{1}=H(z)
$$

$$
\begin{equation*}
=\left(\frac{k}{4}+\frac{1}{2}\right)\left[\left(1-\beta_{1}\right) h_{1}(z)+\beta_{1}\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[\left(1-\beta_{1}\right) h_{2}(z)+\beta_{1}\right] \tag{25}
\end{equation*}
$$

where $h(z)$ is analytic in $U$ with $h(0)=1$. Since $g(z) \in R^{\lambda, \mu, \eta}(2, \alpha)$, by Theorem 1 we know that $g(z) \in R^{\lambda+1, \mu, \eta}\left(2, \alpha_{1}\right)$. Hence there exist an analytic function $q(z) \in P$ such that

$$
\begin{equation*}
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} g(z)}=\left(1-\alpha_{1}\right) q(z)+\alpha_{1}=H_{0}(z) \tag{26}
\end{equation*}
$$

Now using identity (14), we obtain

$$
\begin{gathered}
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} g(z)}=H(z)+\frac{z H^{\prime}(z)}{H_{0}(z)+\lambda+\eta+1} \\
=\left(\frac{k}{4}+\frac{1}{2}\right)\left(\left(1-\beta_{1}\right) h_{1}(z)+\beta_{1}+\frac{\left(1-\beta_{1}\right) z h_{1}^{\prime}(z)}{H_{0}(z)+\lambda+\eta+1}\right)- \\
\left(\frac{k}{4}-\frac{1}{2}\right)\left(\left(1-\beta_{1}\right) h_{2}(z)+\beta_{1}+\frac{\left(1-\beta_{1}\right) z h_{2}^{\prime}(z)}{H_{0}(z)+\lambda+\eta+1}\right) \in P_{k}(\beta) \quad(z \in U)
\end{gathered}
$$

and this implies that

$$
\operatorname{Re}\left(\left(1-\beta_{1}\right) h_{i}(z)+\beta_{1}-\beta+\frac{\left(1-\beta_{1}\right) z h_{i}^{\prime}(z)}{H_{0}(z)+\lambda+\eta+1}\right)>0 \quad(z \in U, i=1,2)
$$

We form a functional $\phi(u, v)$ by taking $u=h_{i}(z), v=z h_{i}^{\prime}(z)$. Thus

$$
\phi(u, v)=\left(1-\beta_{1}\right) u+\left(\beta_{1}-\beta\right)+\frac{\left(1-\beta_{1}\right) v}{H_{0}(z)+\lambda+\eta+1} .
$$

It can be easily seen that $\phi(u, v)$ satisfies the conditions (i) and (ii) of Lemma 1 and to verify the condition (iii) we proceed with $H_{0}(z)=\left(1-\alpha_{1}\right)\left(q_{1}+i q_{2}\right)+\alpha_{1}$ and $\quad v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right) \quad$ as follows:

$$
\operatorname{Re}\left(\phi\left(i u_{2}, v_{1}\right) \leq\left(\beta_{1}-\beta\right)-\frac{1}{2} \frac{\left(1-\beta_{1}\right)\left\{\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right\}\left(1+u_{2}^{2}\right)}{\left\{\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right\}^{2}+\left\{\left(1-\alpha_{1}\right)^{2} q_{2}^{2}\right\}}\right.
$$

$=\frac{A+B u_{2}^{2}}{2 C}$,
where
$A=2\left(\beta_{1}-\beta\right)\left\{\left(\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} q_{2}^{2}\right\}-\left(1-\beta_{1}\right)\left\{\left(1-\alpha_{1}\right) q_{1}+\right.$ $\left.\left.\alpha_{1}+\lambda+\eta+1\right\} B=-\left(1-\beta_{1}\right)\left\{\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right)\right\} \leq 0$
$C=\left(\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} q_{2}^{2}>0$.
Thus $\operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\} \leq 0$ if $A \leq 0$ and therefore
$\beta_{1}=\frac{2 \beta\left[\left(\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} q_{2}^{2}\right]+\left[\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right]}{2\left[\left(\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right)^{2}+\left(1-\alpha_{1}\right)^{2} q_{2}^{2}\right]+\left[\left(1-\alpha_{1}\right) q_{1}+\alpha_{1}+\lambda+\eta+1\right]}$.
Now, applying Lemma 1 , we get $h_{i}(z) \in \mathrm{P}, \quad i=1,2$ and consequently $h(z) \in$ $P_{k}\left(\beta_{1}\right)$ and therefore $f \in T^{\lambda+1, \mu, \eta}\left(k, \beta_{1}, \alpha_{1}\right)$. Using the same techniques and relation (10) with Theorem 3, we have the following result:

Theorem 4. Let $f \in \mathbb{A}, \lambda>0, \quad 0 \leq \alpha, \beta<1, \quad \lambda+\eta>-7 / 8$ and min $\{-\mu+\eta,-\mu\}>-2$. Then

$$
T_{*}^{\lambda, \mu, \eta}(k, \beta, \alpha) \subset T_{*}^{\lambda+1, \mu, \eta}\left(k, \beta_{1}, \alpha_{1}\right),
$$

where $\beta_{1}$ and $\alpha_{1}$ are as in Theorem 3.
Theorem 5. Let $z \in U$ and $f \in R^{\lambda+1, \mu, \eta}(k, 0)$. Then $f \in R^{\lambda, \mu, \eta}(k, 0)$ for $|z|<r_{0}$, where

$$
\begin{equation*}
r_{0}=\frac{\lambda+\eta+2}{\sqrt{m+\sqrt{m^{2}-\left|(\lambda+\eta+1)^{2}-1\right|}}}, \quad m=7+(\lambda+\eta+1)^{2} \tag{27}
\end{equation*}
$$

This radius is exact.

## Proof.

Let

$$
\frac{z\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda+1, \mu, \eta} f(z)}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)
$$

where $p \in P_{k}$ and $p_{1}, p_{2} \in P$ in $U$. Using similar argument as in Theorem 1, we obtain

$$
\begin{gathered}
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} f(z)}=p(z)+\frac{z p^{\prime}(z)}{\lambda+\eta+1+p(z)} \\
=\left(\frac{k}{4}+\frac{1}{2}\right)\left(p_{1}(z)+\frac{z p_{1}^{\prime}(z)}{p_{1}(z)+\lambda+\eta+1}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(p_{2}(z)+\frac{z p_{2}^{\prime}(z)}{p_{2}(z)+\lambda+\eta+1}\right) .
\end{gathered}
$$

Applying Lemma 2, we get

$$
\operatorname{Re}\left(p_{i}(z)+\frac{z p_{i}^{\prime}(z)}{p_{i}(z)+\lambda+\eta+1}\right)>0 \text { for }|z|<r_{0}
$$

where $r_{0}$ is given by (27), This completes our proof.
Theorem 6. Let $\lambda>0$ and $\min \{\lambda+\eta,-\mu+\eta,-\mu\}>-2$. Then

$$
P_{k}^{\prime}(\lambda, \mu, \eta, \alpha) \subset P_{k}^{\prime}(\lambda+1, \mu, \eta, \alpha+(1-\alpha)(2 \gamma-1)),
$$

where

$$
\gamma=\int_{0}^{1}\left(1+t^{\frac{1}{\lambda+\eta+2}}\right)^{-1} d t
$$

which is an increasing function of $\frac{1}{\lambda+\eta+2} \quad$ and $\quad \frac{1}{2} \leq \gamma<1$.
Proof. Let $f(z) \in P_{k}^{\prime}(\lambda, \mu, \eta, \alpha)$. Then upon setting

$$
\begin{equation*}
\left(J_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{\prime}=H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{28}
\end{equation*}
$$

where $H(z)$ is analytic and $H(0)=1$ in $U$. Identity (14), gives us

$$
\begin{gathered}
\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}=H(z)+\frac{z H^{\prime}(z)}{\lambda+\eta+2} \\
=\left(\frac{k}{4}+\frac{1}{2}\right)\left(h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{\lambda+\eta+2}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{\lambda+\eta+2}\right) .
\end{gathered}
$$

This implies that

$$
R e\left(h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{\lambda+\eta+2}\right)>\alpha, \quad i=1,2
$$

Now using Lemma 4. we get desired result.
Theorem 7. Let $\phi$ be a convex function and $f \in R^{\lambda, \mu, \eta}(2, \alpha)$. Then $\phi * f \in$ $R^{\lambda, \mu, \eta}(2, \alpha)$
Proof. Let $G=\phi * f$ and let

$$
\begin{aligned}
& \phi(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \\
& f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
\end{aligned}
$$

Then

$$
\begin{gather*}
J_{0, z}^{\lambda, \mu, \eta} G(z)=J_{0, z}^{\lambda, \mu, \eta}\left[z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}\right] \\
=z+\frac{\Gamma(2-\mu) \Gamma(2+\lambda+\eta)}{\Gamma(2-\mu+\eta)} \sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(n-\mu+\eta+1)}{\Gamma(n-\mu+1) \Gamma(n+\lambda+\eta+1)} a_{n} b_{n} z^{n} \\
=\left(\phi * J_{0, z}^{\lambda, \mu, \eta} f\right)(z) \tag{29}
\end{gather*}
$$

Also, $f(z) \in R^{\lambda, \mu, \eta}(2, \alpha)$. Therefore, $J_{0, z}^{\lambda, \mu, \eta} f(z) \in R_{2}(\alpha)=S^{*}(\alpha)$. By logarithmic differentiation of (29), we have

$$
\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} G(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} G(z)}=\frac{\phi(z) * F J_{0, z}^{\lambda, \mu, \eta} f(z)}{\phi(z) * J_{0, z}^{\lambda, \mu, \eta} f(z)}
$$

where

$$
F(z)=\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} f(z)}
$$

is analytic in $U$ and $F(0)=1$. From Lemma 3 we see that $\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} G(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} G(z)}$ is contained in the convex hull of $F(U)$. Since $\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} G(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} G(z)}$ is analytic in $U$ and $F(U) \subset \Omega=\left\{W: \frac{z\left(J_{0, z}^{\lambda, \mu, \eta} W(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} W(z)} \in P_{2}(\alpha)\right\}$, then $\frac{z\left(J_{0, z}^{\lambda, \mu, \eta} G(z)\right)^{\prime}}{J_{0, z}^{\lambda, \mu, \eta} G(z)}$ lies in $\Omega$. This implies that $G=\phi * f \in R^{\lambda, \mu, \eta}(2, \alpha)$.

## Application of Theorem 7.

Corollary 1. The class $R^{\lambda, \mu, \eta}(2, \alpha)$ is invariant under the following integral operators. That is if $f \in R^{\lambda, \mu, \eta}(2, \alpha)$ then so does $f_{i}$ where $f_{i}$ are given as:
(i) $f_{1}(z)=\int_{0}^{z} \frac{f(t)}{t} d t$
(ii) $f_{2}(z)=\frac{2}{z} \int_{0}^{z} f(t) d t$

$$
\begin{equation*}
f_{3}(z)=\int_{0}^{z} \frac{f(t)-f(x t)}{t-x t} d t \quad|x| \leq 1, x \neq 1 \tag{iii}
\end{equation*}
$$

(iv) $\quad f_{4}(z)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \quad \mathbb{R} e(c)>0$.

The proof immediately follows from Theorem 7. Since we can write $f_{i}=f * \phi_{i}$ with $\phi_{1}(z)=-\log (1-z)$
$\phi_{2}(z)=-2\left[\frac{z+\log (1-z)}{z}\right]$
$\phi_{3}(z)=\frac{1}{1-x} \log \left(\frac{1-x z}{1-z}\right)$
$\phi_{4}(z)=\sum_{m=1}^{\infty} \frac{1+c}{m+c} z^{m} \quad \operatorname{Re} c>0$
and each $\phi_{i}$ is convex for $\mathrm{i}=1,2,3,4$.

## Remarks

(i) In Theorems 1, 2, 3 and 4 taking $\alpha=0$ we get the results obtained by Prajapat [9].
(ii) Taking $\mu=0$ in the operator $J_{0, z}^{\lambda, \mu, \eta} f(z)$ and making some suitable changes in parameters in Theorems 1 to 8, we obtain the results derived by Noor et al.[6] and Noor[4].

## References

[1] S.S. Miller, Differential inequalities and caratheordary functions, Bull. Amer. Math. Soc. 81 (1975), 79-81.
[2] K.I. Noor, On quasi convex functions and related topics, Int. J. Math. Math. Sci. 10 (1987), 241-258.
[3] K.I. Noor, On close-to-convex and related functions, Ph.D. Thesis, University of Wales, U.K. (1972).
[4] K.I. Noor, On analytic function related to certain family of integral operators, $J$. Inequal. Pure Appl. Math. 7 (2006) 1-6 (Electronic).
[5] K.I. Noor, On some differential operators for certain classes of analytic functions, $J$. Math. Inequal. 2 (2008), 129-137.
[6] K.I. Noor, M.A. Noor and E. Al-Said, Analytic function defined by a certain integral operator, Int. J. Phy. Sci. 6 (2011), 1876-1881.
[7] K.S. Padamanabhan and R.Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), 311-323.
[8] B. Pinchuk, Functions with bounded boundary rotation, Israel. J. Math. 10 ( 1971), 7-16.
[9] J.K. Prajapat, Inclusion properties for certain classes of analytic functions involving a family of fractional integral operators, Fract. Calc. Appl. Anal. 11 (2008), 28-34.
[10] S. Ruscheweyh and T. Shiel-Small, Hadamard product of schlicht functions and polya-schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.
[11] S. Ruscheweyh and V. Singh, On certain extremal problems with positive real part, Proc. Amer. Math.Soc. 61 (1976), 329-334 .
[12] R. Singh and S. Singh, Convolution properties of starlike functions , Proc. Amer. Math. Soc. 108 (1989), 145-152.
[13] M. Saigo, A remark on integral operators involving Gauss hypergeometric functions, Math. Rep. College General Ed.Kyushu Univ. 11 (1978), 135-143.
[14] H.M. Srivastava, M. Saigo and S. Owa, A class of distribution theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.

Vidyadhar Sharma
Department of Mathematics, M.L.V. Government P.G. College, Bhilwara, Rajasthan, INDIA

E-mail address: sharmavidyadhar87@gmail.com
Nisha Mathur
Department of Mathematics, M.L.V. Government P.G. College, Bhilwara, Rajasthan, INDIA

E-mail address: nishamathur62@gmail.com
Amit Soni
Department of Mathematics, Government Engineering College, Bikaner, Rajasthan, INDIA

E-mail address: aamitt1981@gmail.com


[^0]:    2010 Mathematics Subject Classification. 30C45.
    Key words and phrases. Starlike, Convex, Close-to-convex, Quasi convex functions, Generalized fractional integral operator.

    Submitted March 4, 2018. Revised May 14, 2018.

