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THE MODIFIED FRACTIONAL POWER SERIES FOR SOLVING

A CLASS OF FRACTIONAL STURM-LIOUVILLE EIGENVALUE

PROBLEMS

M.I. SYAM, M. ALQURAN, H.M. JARADAT, S. AL-SHARA’

Abstract. This article is devoted to both theoretical and numerical studies
of eigenvalues of regular fractional 2α-order Sturm-Liouville problem where
1
2

< α ≤ 1. In this paper, we implement the modified fractional power se-

ries (MFPS) method to approximate the eigenvalues. To find the eigenvalues,
we force the approximate solution produced by the MMPS method satisfies

the boundary condition at x = 1. The fractional derivative is described in
the Caputo sense. Numerical results demonstrate the accuracy of the present
algorithm. In addition, we prove the existence of the eigenfunctions of the pro-
posed problem. The convergence of the approximate eigenfunctions produced

by the MFPS to the exact eigenfunctions is proven.

1. Introduction

Fractional differential equations (FDEs) appear as generalizations to existing
models with integer derivative and they also present new models for some physical
problems [1]. In recent years, great interests were devoted to the analytical and
numerical treatments of fractional differential equations. In general, fractional dif-
ferential equations don’t have exact solutions in closed form, and therefore, numer-
ical methods such as, the variational iteration [2], the homotopy analysis method
[3], and the Adomian decomposition method [4, 5, 6], have been implemented for
several types of fractional differential equations. Also, the maximum principle and
the method of lower and upper solutions have been extended to deal with FDEs and
obtain analytical and numerical results [7]. The Tau method, the Pseudo-spectral
method, and the wavelet method based on the legendre polynomials have been
implemented for several types of FDEs [8].

The Sturm-Liouville eigenvalue problem has played an important role in mod-
eling many physical problems [9]. The theory of the problem is well developed
and many results have been obtained concerning the eigenvalues and correspond-
ing eigenfunctions. Since finding analytical solutions for this problem is a difficult
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task, many numerical algorithms have been investigated to find approximate solu-
tions.

The fractional Sturm-Liouville eigenvalue problem was studied earlier [10] and
[11]. In [10], the existence of a solution to such boundary value problem was es-
tablished. In [11], the aforementioned relation between eigenvalues and zeros of
Mittag-Leffler function was shown. The Adomian decomposition method was es-
tablished for estimating fractional second order eigenvalues [12, 13]. The Homotopy
Analysis method has been used to numerically approximate the eigenvalues of the
fractional Sturm-Liouville Problems [14]. In [15], fractional differential transform
method used to approximate the eigenvalues of Sturm–Liouville problems of frac-
tional order. Fourier series was used in [16], the method of Haar wavelet operational
matrix was used in [17] and [18]. In [19]-[22], extended some spectral properties
of fractional Sturm-Liouville problem. Variational Methods and Inverse Laplace
transform method applied in [23] and [24], respectively. Recently P. Antunes and
R. Ferreira constructed numerical schemes using radial basis functions [25], B. Jin
et al used Galerkin finite element method to solve fractional eigenvalue problems
[26].

In this paper, we develop a numerical technique for approximating the eigenval-
ues of the following regular fractional Sturm-Liouville problem of the form

Dα[P (x)Dαu(x)] + λQ(x)u(x) = µ(x)u(x), 0 ≤ x ≤ 1,
1

2
< α ≤ 1 (1)

subject to

a0u(0) + a1 Dαu(0) = 0, a20 + a21 > 0, (2)

a2u(1) + a3 Dαu(1) = 0, a22 + a23 > 0, (3)

where a0, a1, a2, a3 are constants, p(x), q(x), r(x) are continuous functions with
p(x), q(x) > 0 for all x ∈ [0, 1], and Dα is the Caputo fractional derivative.

This paper is organized as follows. In section 2, we present some preliminaries
which we will use in this paper. A description of the modified fractional power
series (MFPS) method for discretization of the fractional 2α-order Sturm-Liouville
problem (1.1)-(1.2) is presented in section 3. Convergence analysis is presented in
Section 4. Several numerical examples and conclusions are discussed in Section 5.
Conclusions and closing remarks are given in Section 6.

2. Preliminaries

In this section, we review some preliminaries definitions and theorems which we
use in this paper. First, we write the definition and some preliminary results of the
Caputo fractional derivatives, as well as, the definition of the Riemann-Liouville
fractional and their properties.

Definition 1 A real function f(t), t > 0,is said to be in the space Cµ, µ ∈ R
if there exists a real number p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),
and it is said to be in the space Cm

µ if f (m) ∈ Cµ, m ∈ N.
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Definition 2 The left Riemann-Liouville fractional integral of order δ ≥ 0, of
a function f ∈ Cµ, µ ≥ −1, is defined by

Iδf(t) =

{
1

Γ(δ)

∫ t

0
(t− s)δ−1f(s)ds, δ > 0,

f(t), δ = 0.
(4)

Definition 3 For δ > 0, m − 1 < δ < m, m ∈ N, t > 0, and f ∈ Cm
−1 , the left

Caputo fractional derivative is defined by

Dδf(t) =

{
1

Γ(m−δ)

∫ t

0
(t− s)m−1−δf (m)(s)ds, δ > 0,

f ′(t), δ = 0,
(5)

where Γ is the well-known Gamma function.

The Caputo derivative defined in (5) is related to the Riemann-Liouville fractional
integral, Iδ, of order δ ∈ R+, by Dδf(t) = Im−δf (m)(t). The Caputo fractional
derivative satisfy the following properties for f ∈ Cµ, µ ≥ −1 and α ≥ 0, see [27].

(1) DαIαf(t) = f(t),

(2) IαDαf(t) = f(t)−
∑n−1

k=0 f
(k)(0) t

k

k! ,
(3) Dαc = 0, where c is constant,

(4) Dαtγ =

{
0, γ < α, γ ∈ {0, 1, 2, ...}

Γ(γ+1)
Γ(γ−α+1) t

γ−α, otherwise

}
,

(5) Dα (
∑m

k=0 cifi(t)) =
∑m

k=0 ci D
αfi(t), where c1, c2, ..., cm are constants.

Second, we write the definition and one of the properties of the fractional power
series which are used in this paper. More details can be found in [28]-[37].

Definition 4 A power series expansion of the form

∞∑
m=0

cm(x− x0)
mα = c0 + c1(x− x0)

α + c2(x− x0)
2α + ...

where 0 ≤ m− 1 < α ≤ m, is called fractional power series FPS about x = x0.
Suppose that f has a fractional FPS representation at x = x0 of the form

g(x) =
∞∑

m=0

cm(x− x0)
mα, x0 ≤ x < x0 + β.

If Dmαg(x), m = 0, 1, 2, .. are continuous on R, then cm = Dmαg(x0)
Γ(1+mα) .

3. The MFPS method for a class of fractional second-order
Sturm-Liouville Problems

In this section, we discuss the numerical solution of the following class of fractional 2α-
order Sturm-Liouville Problems using MFPS:

Dα[P (x)Dαu(x)] + λQ(x)u(x) = µ(x)u(x), 0 < x < 1,
1

2
< α ≤ 1 (6)
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subject to

a0u(0) + a1 Dαu(0) = 0, a20 + a21 > 0, (7)

a2u(1) + a3 Dαu(1) = 0, a22 + a23 > 0, (8)

where a0, a1, a2, a3 are constants, P (x), Q(x), and µ(x) are continuous with P (x), µ(x) >
0 for all x ∈ [0, 1]. Assume that u(0) = θ and Dαu(0) = η. We find the values of
θ and η from the boundary conditions (3.2)-(3.3) later. Using the MRPS method,
the solution problem (3.1)-(3.3) can be written in the fractional power series form
as

u(x) =
∞∑

n=0

fn
xnα

Γ(1 + nα)
. (9)

To obtain the approximate values of fn in Eq. (9), we write the k-th truncated
series uk(x) in the form

uk(x) =

k∑
n=0

fn
xnα

Γ(1 + nα)
. (10)

Since u(0) = f0 = θ and Dαu(0) = f1 = η, we rewrite (10) as

uk(x) = θ + η
xα

Γ(1 + α)
+

k∑
n=2

fn
xnα

Γ(1 + nα)
, k = 2, 3, ... (11)

where u1(x) = θ+η xα

Γ(1+α) is considered to be the 1st MFPS approximate solution of

u(x). Let Pk(x) =
∑k

n=0 pnx
nα, Qk(x) =

∑k
n=0 qnx

nα, and µk(x) =
∑k

n=0 mnx
nα.

Then,

Pk(x)D
αuk(x) =

(
k∑

n=0

pnx
nα

)(
k−1∑
n=0

fn+1
xnα

Γ(1 + nα)

)

=
k−1∑
n=0

(
n∑

i=0

fi+1

Γ(1 + iα)
pn−i

)
xnα + h.o.t1,

Qk(x)uk(x) =

(
k∑

n=0

qnx
nα

)(
k∑

n=0

fn
xnα

Γ(1 + nα)

)

=
k∑

n=0

(
n∑

i=0

fi
Γ(1 + iα)

qn−i

)
xnα + h.o.t2,

and

µk(x)uk(x) =

(
k∑

n=0

mnx
nα

)(
k∑

n=0

fn
xnα

Γ(1 + nα)

)

=

k∑
n=0

(
n∑

i=0

fi
Γ(1 + iα)

mn−i

)
xnα + h.o.t3,

where h.o.t1 means a linear combination of {xk, xk+1, ..., x2k−1} and h.o.t2 and
h.o.t3 means linear combination of {xk+1, xk+2, ..., x2k}. Let Resk(u(x)) be the k-
th residual function which is defined by

Resk(u(x)) = Dα[Pk(x)D
αuk(x)] + λQk(x)uk(x)− µk(x)uk(x).
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For simplicity, we write the k-th residual function as

Resk(u(x)) = Dα

[
k−1∑
n=0

(
n∑

i=0

fi+1

Γ(1 + iα)
pn−i

)
xnα

]

+λ
k∑

n=0

(
n∑

i=0

fi
Γ(1 + iα)

qn−i

)
xnα −

k∑
n=0

(
n∑

i=0

fi
Γ(1 + iα)

mn−i

)
xnα

or

Resk(u(x)) =

k−2∑
n=0

(
n+1∑
i=0

fi+1

Γ(1 + iα)
pn+1−i

)
Γ(1 + (n+ 1)α)

Γ(1 + nα)
xnα (12)

+λ

k∑
n=0

(
n∑

i=0

fi
Γ(1 + iα)

qn−i

)
xnα −

k∑
n=0

(
n∑

i=0

fi
Γ(1 + iα)

mn−i

)
xnα.

To find the values of the MFPS-coefficients fj , j ∈ {2, 3, 4, .., k}, we solve the
fractional differential equation

D(j−1)αResk(u(0)) = 0.

For j ∈ {0, 1, 2, .., k − 2},

0 = D(j−1)αResk(u(0)) =

(
j+1∑
i=0

fi+1

Γ(1 + iα)
pj+1−i

)
Γ(1 + (j + 1)α)

Γ(1 + jα)

Γ(1 + jα)

Γ(1 + (j − 1)α)

+λ

(
j∑

i=0

fi
Γ(1 + iα)

qj−i

)
Γ(1 + jα)

Γ(1 + (j − 1)α)
−

(
j∑

i=0

fi
Γ(1 + iα)

mj−i

)
Γ(1 + jα)

Γ(1 + (j − 1)α)

or

Γ(1 + (j + 1)α)

Γ(1 + jα)

j+1∑
i=0

fi+1

Γ(1 + iα)
pj+1−i+λ

j∑
i=0

fi
Γ(1 + iα)

qj−i−
j∑

i=0

fi
Γ(1 + iα)

mj−i = 0

Thus,

fj+2 =
Γ(1 + jα)

∑j
i=0

fi
Γ(1+iα)mj−i − λΓ(1 + jα)

∑j
i=0

fi
Γ(1+iα)qj−i − Γ(1 + (j + 1)α)

∑j
i=0

fi+1

Γ(1+iα)pj+1−i

p0
.

Simple calculations imply that

f0 = θ,

f1 = η,

f2 =
m0 − λq0

p0
θ − Γ(1 + α)p1

p0
η,

f3 =

(
(m0 − λq1) Γ(1 + α)

p0
− Γ(1 + 2α)

Γ(1 + α)

m0 − λq0
p0

p1

)
θ − Γ(1 + 2α)p2 +m0 − λq0 + Γ(1 + α)p21

p0
η,

...
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Hence,

uk(x) = θ + η
xα

Γ(1 + α)
(13)

+

k∑
n=2



Γ(1 + (n− 2)α)
∑n−2

i=0
fi

Γ(1+iα)mn−2−i

−λΓ(1 + (n− 2)α)
∑n−2

i=0
fi

Γ(1+iα)qn−2−i

−Γ(1 + (n− 1)α)
∑n−2

i=0
fi+1

Γ(1+iα)pn−1−i

p0


xnα

Γ(1 + nα)
(14)

for k = 1, 2, 3, .... Simple calculations imply that

u1(x) = θ + η
xα

Γ(1 + α)
,

u2(x) = θ

(
1 +

m0 − λq0
p0Γ(1 + 2α)

x2α

)
+ η

(
xα

Γ(1 + α)
− Γ(1 + α)p1

p0Γ(1 + 2α)
x2α

)
,

u3(x) = θ

(
1 +

m0 − λq0
p0Γ(1 + 2α)

x2α +

(
(m0 − λq1) Γ(1 + α)

p0Γ(1 + 3α)
− Γ(1 + 2α)

Γ(1 + α)

m0 − λq0
p0Γ(1 + 3α)

p1

))
+η

(
xα

Γ(1 + α)
− Γ(1 + α)p1

p0Γ(1 + 2α)
x2α − Γ(1 + 2α)p2 +m0 − λq0 + Γ(1 + α)p21

p0Γ(1 + 3α)
x3α

)
,

...

It is easy to see that
uk(x) = θ h1(x, λ) + η h2(x, λ).

Using the the first boundary conditions, we get

0 = a0u(0) + a1 Dαu(0)

= a0 θ + a1 η.

Since a20 + a21 > 0 and θ a0 + η a1 = 0, we have the following two cases.

• If a0 = 0, η = 0 and a1 ̸= 0. Thus,

uk(x) = θ h1(x, λ).

Using the second boundary condition, we get

0 = a2u(1) + a3 Dαu(1)

= θ (a2h1(1, λ) + a3 Dαh1(1, λ))

or
a2h1(1, λ) + a3 Dαh1(1, λ) = 0. (15)

• If a0 ̸= 0, θ = −a1 η
a0

. Thus,

uk(x) = η

(
− a1

a0
h1(x, λ) + h2(x, λ)

)
.

Using the second boundary condition, we get

0 = a2u(1) + a3 Dαu(1)

= η

(
a2

(
− a1

a0
h1(1, λ) + h2(1, λ)

)
+ a3 Dα

(
− a1

a0
h1(1, λ) + h2(1, λ)

))
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or

a2

(
− a1

a0
h1(1, λ) + h2(1, λ)

)
+ a3 Dα

(
− a1

a0
h1(1, λ) + h2(1, λ)

)
= 0. (16)

To find the eigenvalues, we solve either Eqs. (3.10) or (3.11).

4. Convergence analysis

In this section, we study the convergence of the series (3.5) of the eigenfunction
of problem (3.1)-(3.3).

Theorem 3.1: Suppose that
∑∞

n=0 fn xαn converges to u(x) on (0, 1) where

0 < α < 1. Then,
∑∞

n=0 fn
Γ(nα+1)

Γ((n−1)α+1)x
α(n−1) converges to Dαu(x) on (0, 1).

Proof: For x ∈ (0, 1),

Dαu(x) =
1

Γ(1− α)

∫ x

0

(x− s)−α du(s)

ds
ds

=
1

Γ(1− α)

∫ x

0

(x− s)−α d

ds

( ∞∑
n=0

fn snα

)
ds

=
1

Γ(1− α)

∞∑
n=0

fn

∫ x

0

(x− s)−α d

ds
(snα) ds

=

∞∑
n=0

fnD
αxnα

=
∞∑

n=0

fn
Γ(nα+ 1)

Γ((n− 1)α+ 1)
xα(n−1).

Thus,
∑∞

n=0 fn
Γ(nα+1)

Γ((n−1)α+1)x
α(n−1) converges to Dαu(x).

Theorem 3.2. Let P (x) =
∑∞

n=0 pnx
nα, Q(x) =

∑∞
n=0 qnx

nα, and µ(x) =∑∞
n=0 mnx

nα. Then, the sequence {uk} defined in Eq. (3.5) is convergent to u(x).
Proof: Let

Dα

[( ∞∑
n=0

pnx
nα

)
Dα

( ∞∑
n=0

fn
xnα

Γ(1 + nα)

)]

+λ

( ∞∑
n=0

qnx
nα

)( ∞∑
n=0

fn
xnα

Γ(1 + nα)

)
−

∞∑
n=0

mnx
nα

=

∞∑
n=0

δnx
nα.

Since P (x) =
∑∞

n=0 pnx
nα, Q(x) =

∑∞
n=0 qnx

nα, and µ(x) =
∑∞

n=0 mnx
nα,

∞∑
n=0

δnx
nα = 0.

Let

Sm =
∞∑

n=m

δnx
nα.
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Then, the sequence {Sm} converges to zero. From Eq. (3.7), we see that if we
substitute Eq. (3.5) into Eq (3.1),

Resm(u(x)) = Sm.

Thus,

Lim
m−→∞

Resm(u(x)) = Lim
m−→∞

Sm = 0.

Hence, the sequence {uk} defined in Eq. (3.5) is convergent to u(x).

5. Numerical results

In this section, we present three examples to show the efficiency of the proposed
method.

Example 1. Consider the following fractional Sturm-Liouville problem

Dα[P (x)Dαu(x)] + λQ(x)u(x) = µ(x)u(x), 0 ≤ x ≤ 1,
1

2
< α ≤ 1

subject to

u(0) = 0, u(1) = 0

where P (x) = Q(x) = 1, and µ(x) = 0. Figure 1 shows the graph of the eigenfunc-
tions for α = 0.75 and λ1 and λ2.

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

uN

u2

u1

Figure 1. Graph of the eigenfunctions for α = 0.75 and λ1 and λ2.
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α = 0.501 α = 0.75 α = 0.95 α = 0.99

8.78259056 8.2711826 9.6635259
14.0844504 58.9901632 38.0440806

96.6736528 84.9714381
148.2953502 150.1337217
199.5714025 233.5986357
277.10713565 335.0977772
295.45014962 454.7644066

590.9308952
Table 1: Eigenvalues for different values of α

For α = 1, the exact eigenvalues are well-known and they are given by

λn = n2π2, n = 1, 2, 3, ....

It is worth mentioning that the eigenvalues of the problem in this example ap-
proaches to n2π2 when α approaches to 1. We noticed that the eigenvalue problem
in Example 1 does not have any eigenvalue for α = 0.501. For this reason, we look
for the numerical value of α∗ such that the eigenvalue problem of this example does
not have any eigenvalue for 1

2 < α < α∗. We noticed that α∗ = 0.7355. Let

δi,j =

∣∣∣∣∫ 1

0

ui(x) uj(x) Q(x)dx

∣∣∣∣ .
For α = 0.75, δ1,2 = 5.7 ∗ 10−16. Sample of these values for α = 0.95 are given as

δ1,2 = 5.7 ∗ 10−16, δ4,6 = 2.6 ∗ 10−16, δ1,6 = 8.3 ∗ 10−16.

Similarly for α = 0.99,

δ1,2 = 3.1 ∗ 10−16, δ4,6 = 4.2 ∗ 10−16, δ1,7 = 2.0 ∗ 10−16.

This means, the orthogonality relation holds. We notice that the eigenvalues satisfy
the property

λ1 ≤ λ2 ≤ ....

Example 2. Consider the following fractional Sturm-Liouville problem

Dα[P (x)Dαu(x)] + λQ(x)u(x) = µ(x)u(x), 0 ≤ x ≤ 1,
1

2
< α ≤ 1

subject to

u(0) = 0, u(1) = 0

where P (x) = 1, Q(x) = 1+ xα, and µ(x) = 0. The available results for λ obtained
by the present are summarized in Table 2.

α = 0.501 α = 0.75 α = 0.95

3.7449685 4.9059651 5.8271193
5.5935961 9.9542383 21.8630978
25.4751193 14.2468657 100.8687952
151.8458500 25.8797084 234.2256821

124.4751382 439.2009128
721.0093446
984.1247813

Table 2: Eigenvalues for different values of α
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Let

δi,j =

∣∣∣∣∫ 1

0

ui(x) uj(x) Q(x)dx

∣∣∣∣ .
For α = 0.502, δ1,2 = 3.3 ∗ 10−16 and δ2,4 = 4.9 ∗ 10−16 . Sample of these values for
α = 0.75 are given as

δ1,2 = 2.2 ∗ 10−16, δ4,5 = 4.1 ∗ 10−16, δ1,5 = 6.9 ∗ 10−16.

Similarly for α = 0.95,

δ1,2 = 1.2 ∗ 10−16, δ4,6 = 2.1 ∗ 10−16, δ1,7 = 4.6 ∗ 10−16.

This means, the orthogonality relation holds. We notice that the eigenvalues satisfy
the property

λ1 ≤ λ2 ≤ ....

Example 3. Consider the following fractional Sturm-Liouville problem

Dα[P (x)Dαu(x)] + λQ(x)u(x) = µ(x), 0 ≤ x ≤ 1,
1

2
< α ≤ 1

subject to
u(0)−Dαy(0) = 0, u(1) +Dαy(1) = 0

where P (x) = Q(x) = 1, and µ(x) = 0. The available results for λ obtained by the
present method are summarized in Table 3.

α = 0.75 α = 0.8 α = 0.99

1.5022831 1.5178861 1.6932293
12.051004 10.3426409 13.1985857
14.5035813 21.0815838 41.8043677

44.2389076 88.7795093
153.9545688
237.42247398
338.92086546
458.58377853
596.14001070
752.04906711
918.71319420

Table 3: Eigenvalues for different values of α

It worth mention that, there are eigenvalues for all 1
2 < α ≤ 1. For example,the

first eigenvalue for α = 0.5001 is 1.68861. Let

δi,j =

∣∣∣∣∫ 1

0

ui(x) uj(x) Q(x)dx

∣∣∣∣ .
For α = 0.75, δ1,2 = 3.3 ∗ 10−16 and δ2,3 = 4.9 ∗ 10−16 . Sample of these values for
α = 0.8 are given as

δ1,2 = 1.6 ∗ 10−16, δ2,4 = 1.9 ∗ 10−16, δ3,4 = 2.8 ∗ 10−16.

Similarly for α = 0.99,

δ1,2 = 3.2 ∗ 10−16, δ4,6 = 4.5 ∗ 10−16, δ1,7 = 4.1 ∗ 10−16.

This means, the orthogonality relation holds. We notice that the eigenvalues satisfy
the property

λ1 ≤ λ2 ≤ ....
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6. Conclusion

In this paper, we have developed a numerical technique to find the eigenvalues
of regular 2α-order fractional Sturm-Liouville problem for 1

2 < α ≤ 1. The method
of solution is based on MFPS. The numerical results for the examples demonstrate
the efficiency and accuracy of the present method. From the three examples which
we mentioned in the previous section, we notice that our technique is very efficient
for computing the eigenvalues of the fractional second order problems. We end this
section by the following remarks.

• From Examples 1-3, we find that the generated eigenvalues satisfy the fol-
lowing property

λ1 < λ2 < λ3 < ... < λn < ....

• From Examples 1-3, the orthogonality property∫ 1

0

ui(x) uj(x) Q(x) = 0, i ̸= j

holds.

• Example 1 has eigenvalues when α > 0.7355.
• The results in this paper confirm that MFPS is a powerful and efficient
method for solving fractional Sturm-Liouville problems in different fields of
sciences and engineering.

• MFPS is excellent tool due to rapid convergent.
• The existence and the convergent are proven in Theorems (3.2).
• We do not compare our results with others because we are the first who
discuss this class of eigenvalues.

Future work:

• We state the following conjecture for the future work:

Conjecture: The eigenvalue problem in Example 1 does not have any eigenvalue
for α < 0.7355.

We will work to prove it.

• Generalize the proposed method for higher order fractional Sturm-Liouville
problems.
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