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AN IMPULSIVE FRACTIONAL FUNCTIONAL BOUNDARY

VALUE PROBLEM

G R GAUTAM

Abstract. In this article a mathematical model is presented for a non-instantaneous
impulsive fractional functional boundary valued problem and concerned with
the existence results of solution for considered model. Under the classical Ca-

puto’s derivative and more general conditions on model, existence results are
obtained with the help of classical fixed point techniques on a arbitrary Banach
space. At last, an application is provided to illustrate the existence results.

1. Introduction

The topic of differential equations with non-integer order has recently come out
as a notable field of dynamical research due to it has extensive development area
and found a lot of applications in several disciplines and various fields of science and
engineering such as physics, polymer rheology, regular variation in thermodynam-
ics, biophysics, blood flow phenomena, aerodynamics, electrodynamics of complex
medium, visco-elasticity, electrical circuits, electron-analytical chemistry, biology,
control theory, fitting of experimental data, etc. There are several type of quali-
tative properties such as existence, uniqueness, stability, etc. of solution for these
models. To study these properties there are some remarkable monographs and the
papers [1, 2, 3, 4, 5] which provide the main theoretical tools.

Differential equations with delay arise in the remote control, implicit functional
differential equation like Wheeler-Feynman equations and in structured populations
model which involve threshold phenomena etc. Delay differential equation has an
important role in the modelling of scientific problems. Therefore, the existence
and uniqueness results of solution of delay equations have been studied by several
authors [6, 7, 8, 9, 10, 11, 12].

Integral boundary conditions have several apps in modelling of science and tech-
nology problems special in fluid mechanics like blood flow problems, underground
water flow, unsteady biomedical computational fluid dynamics and other field of
applied mathematics such as population dynamics, chemical engineering, thermo-
elasticity, finite element method approaches with the minimization of constitutive
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error etc. A point of central importance in the study of nonlinear integral boundary
value problems is to understand how the properties of nonlinearity in a problem in-
fluence the nature of the solutions. For a detail description of the integral boundary
conditions, we refer to reader some papers [13, 14, 15] and the references therein.

Many practical dynamical systems generally represent in form of impulsive frac-
tional differential equations which include the evolutionary processes that charac-
terized by abrupt changes of the state at certain instants. In present, the theory
about the impulsive fractional differential equations have received great attention
and committed to many applications in medicine, mechanical, engineering, biology,
ecology etc. However, it seems that the classical models with instantaneous impulses
can not characterize the dynamics of evolution processes in pharmacotherapy. For
example, consider the hemodynamic equilibrium of a person, the introduction of
the drugs in the bloodstream and the consequent absorption for the body are grad-
ual and continuous process. In fact, this situation is characterized by a new type
of impulsive action, which starts at an arbitrary fixed point and stays active on
a finite time interval. These impulse known as non-instantaneous impulse. There
are few work available on this topic, we refer the papers [16, 17, 18, 19, 20, 21] for
update theory of this topic. It is well known that the non-instantaneous impulsive
effects are very important in control system.

In our previous paper [22, 23], we established the existence, uniqueness and con-
tinuous dependence of solution and mild solution for class of an abstract nonlocal
fractional functional integro-differential equations with state dependent delay sub-
ject to non-instantaneous impulse with the help of fixed point theorems in a complex
Banach spaces under the strong condition on nonlinear term. Author’s [21] investi-
gate periodic BVP for integer/fractional order nonlinear differential equations with
non-instantaneous impulses and obtained the existence and uniqueness results un-
der different conditions via fixed point technique as Banach contraction map, Kras-
noselskii’s theorem. Very recently, author’s [24, 25] prove the existence of bounded
solutions of a new class of retarded functional equation on an unbounded domain
and Caputo fractional differential equations with non-instantaneous impulses.

We consider the following neutral fractional functional boundary value problem
with non-instantaneous impulse

C
t0D

α
t [Q(y(t))] = J2−α

t f(t, yt), t ∈ (si, ti+1] ⊂ [t0, T ], i = 0, 1, . . . ,m, (1.1)

y(t) = ϕ(t), t ∈ [−d, t0]; ay′(t0) + by′(T ) = c

∫ T

t0

(T − s)γ−1

Γ(γ)
y(s)ds, (1.2)

y(t) = gi(t, y(t)); y
′(t) = qi(t, y(t)), t ∈ (ti, si], i = 1, 2, . . . ,m, (1.3)

where C
t0D

α
t denotes the classical Caputo’s fractional derivative of order α ∈ (1, 2)

with non zero lower bound and J2−α
t denotes the Riemann-Liouville fractional

integral operator of order 2− α > 0. The neutral term Q(y(t)) is defined as

Q(y(t)) = y(t) +

∫ t

t0

(t− s)βh(s, yt)ds, β > 0,

and the state function y(t) belong to a complex Banach space (X, ∥ · ∥). Functions
f ; h : (si, ti+1] × PC0 → X are given for all i = 0, 1, . . . ,m, and gi; qi : (ti, si] ×
X → X are given for all i = 1, 2, . . . ,m. The history function yt : [−d, t0] → X
is defined as yt(s) = y(t + s), s ∈ [−d, t0] and ϕ(t) belong to the space PC0.
Numbers a; b; c; γ ∈ R are constants and 0 < γ < 2; a ̸= 0. y′ denotes the ordinary
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derivative of y with respect to t. Here [t0, T ] denotes the operational interval such
that t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are pre-fixed numbers.

Stimulate from the spoken of earlier work and by survey, it is found that there is
no work available on neutral fractional differential equations with impulse. So, we
consider the problem (1.1) with a kind of integral boundary conditions and non-
instantaneous impulsive effects, which is untouch topic yet in the literature. Main
motto to study the problem (1.1)-(1.3) comes from physics which arise in modeling
of underground water flow that is very useful model in fluid dynamics.

In the present paper, we first establish a standard framework to derive a suit-
able formula of solutions for fractional boundary problem with non-instantaneous
impulses which inspire the researcher to study existence and others qualitative prop-
erties like periodicity, stability, oscillations of solution. In this context, we apply
the fixed point theorems, like Banach, Schauder’s on a generalized complete Banach
space to study the existence results under the weak conditions on nonlinear term.
Finally, an example is given to illustrate existence and uniqueness result.

2. Background and Preliminaries

Let (X, ∥ · ∥X) be a arbitrary complex Banach space equipped with the norm
∥y∥X = supt∈J{|y(t)| : y ∈ X} and C([−d, t0], X) (with [−d, t0] ⊂ R) is the space
formed by all the continuous functions defined on [−d, t0] to X, endowed with the
norm

∥y(t)∥C([−d,t0],X) = sup
t∈[−d,t0]

{∥y(t)∥X : y ∈ C([−d, t0], X)}.

In case of impulse conditions, let NPC([−d, T ];X) be a Banach space of all
functions y : [−d, T ] → X, which are continuous on [t0, T ] except for a finite
number of points si ∈ (t0, T ), at which y(s+i ) = limϵ→0 y(si + ϵ) and y(s−i ) =
y(si) = limϵ→0 y(si − ϵ) exist for i = 1, 2, . . . , N, and endowed with the norm

∥y∥NPC = sup
t∈[−d,T ]

{∥y(t)∥X : y ∈ NPC([−d, T ];X)}.

Further, let NPC1([−d, T ];X) be a Banach space of all such functions y :
[−d, T ] → X, which are continuously differentiable on [t0, T ] except for a finite
number of points ti ∈ (t0, T ) at which y′(s+i ) = limϵ→0 y

′(si + ϵ) and y′(s−i ) =
y′(si) = limϵ→0 y

′(si − ϵ) exist for i = 1, 2, . . . , N, and endowed with the norm

∥y∥NPC1 = sup
t∈[−d,T ]

1∑
j=0

{
∥yj(t)∥X : y ∈ NPC1([−d, T ];X)

}
.

In in following lemma, we derive a formula of solution for non-instantaneous
impulsive neutral fractional integral boundary problem for linear case.

Lemma 2.1. A function y(t) is a solution of the following fractional integral bound-
ary value problem

C
t0D

α
t [y(t) + h(t)] = J2−α

t f(t), α ∈ (1, 2), t ∈ (si, ti+1], i = 0, 1, . . . ,m, (2.1)

y(t) = ϕ(t), t ∈ [−d, t0]; ay′(t0) + by′(T ) = c

∫ T

t0

q(s)ds, (2.2)

y(t) = gi(t); y
′(t) = qi(t), t ∈ (ti, si], i = 1, 2, . . . ,m, (2.3)
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if y(t) is a solution of following the fractional integral equation

y(t) =


ϕ(t0) + (t− t0)c1 − h(t) +

∫ t

t0
(t− s)f(s)ds, t ∈ (t0, t1]

gi(t), t ∈ (ti, si],

c2 + (t− si)c3 − h(t) +
∫ t

si
(t− s)f(s)ds, t ∈ (si, ti+1],

(2.4)

where constants c1; c2 and c3 are as follow

c1 =
c

a

∫ T

t0

q(s)ds+
b

a
h′(T ) + h(0)− b

a
qm(sm)− b

a
h′(sm)− b

a

∫ T

sm

f(s)ds,

c2 = gi(si) + h(si); c3 = qi(si) + h′(si), , i = 1, 2, . . . ,m.

Proof. If t ∈ (t0, t1] then by using Riemann-Liouvill fractional integral operator on
Eq. (2.1) we get

y(t) + h(t) = b0 + c1t+

∫ t

t0

(t− s)f(s)ds, (2.5)

using the initial condition y(t0) = ϕ(t0), then Eq. (2.5) we have

y(t) + h(t) = ϕ(t0) + h(t0) + c1t+

∫ t

t0

(t− s)f(s)ds. (2.6)

If t ∈ (t1, s1], then the solution of Eq. (2.3) will be

y(t) = g1(t).

If t ∈ (s1, t2], then again by using Riemann- Liouvill fractional integral operator on
Eq. (2.1) we get

y(t) + h(t) = e2 + e3(t− s1) +

∫ t

s1

(t− s)f(s)ds. (2.7)

By the impulsive conditions y(s1) = g1(s1); y′(s1) = q1(s1), Eq. (2.7) becomes

y(t) + h(t) = g1(s1) + h(s1) + (t− s1)q1(s1) + (t− s1)h
′(s1) +

∫ t

s1

(t− s)f(s)ds.

Now, for the general subinterval if t ∈ (ti, si], i = 1, 2, . . . ,m, the solution of
Eq. (2.3) will be

y(t) = gi(t), i = 1, 2, . . . ,m, (2.8)

and again for the subinterval t ∈ (si, ti+1], i = 1, 2, . . . ,m, and using Riemann-
Liouvill fractional integral operator on Eq. (2.1) we get

y(t) + h(t) = c2 + c3(t− si) +

∫ t

si

(t− s)f(s)ds, (2.9)

by the impulsive conditions y(si) = gi(si); y′(si) = qi(si) the Eq. (2.9) becomes

y(t) + h(t) = gi(si) + h(si) + (t− si)qi(si) + (t− si)h
′(si) +

∫ t

si

(t− s)f(s)ds.(2.10)

Now, differentiation of Eq. (2.6) and Eq. (2.10) with respect to t, we get

y′(t) + h′(t) = c1 +

∫ t

0

f(s)ds, (2.11)

y′(t) + h′(t) = qi(si) + h′(si) +

∫ t

si

f(s)ds. (2.12)
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Using the boundary condition ay′(t0)+ by
′(T ) = c

∫ T

t0
q(s)ds and by Eq. (2.11) and

Eq. (2.12)

c1 =
c

a

∫ T

t0

q(s)ds+
b

a
h′(T ) + h(t0)−

b

a
qm(sm)− b

a
h′(sm)− b

a

∫ T

sm

f(s)ds. (2.13)

It is obvious that Eq. (2.6), Eq. (2.8) and Eq. (2.13) gives the result of Eq. (2.4). �

Remark 2.2. We assume that the functions f, h, gi, qi are smooth enough, such
that the boundary value problem (2.1)-(2.3) has a solution under some sufficient
condition.

Now, we are going to present the definition of solution for the problem (1.1)-(1.3)
based on cited research paper [16].

Definition 2.3. A function y(t) is a solution of the problem (1.1)-(1.3) if y(t) is
a solution of following the fractional integral equation

y(t) =


ϕ(t0) + (t− t0)C1 −

∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

t0
(t− s)f(s, yt)ds, t ∈ (t0, t1],

gi(t, y(t)), t ∈ (ti, si],

C2 + (t− si)C3 −
∫ t

0
(t− s)βh(s, yt)ds+

∫ t

si
(t− s)f(s, yt)ds, t ∈ (si, ti+1],

where constants C1;C2 and C3 are as follow

C1 =
c

a

∫ T

t0

(T − s)γ−1

Γ(γ)
y(s)ds+

b

a

∫ T

t0

β(T − s)β−1h(s, yt)ds−
b

a
qm(sm)

− b

a

∫ sm

t0

β(sm − s)β−1h(s, yt)ds−
b

a

∫ T

sm

f(s, yt)ds,

C2 = gi(si, y(si)) +

∫ si

t0

(si − s)βh(s, yt)ds,

C3 = qi(si, y(si)) +

∫ si

t0

β(si − s)β−1h(s, yt)ds.

Theorem 2.4. (Banach fixed point theorem) Let C be a closed subset of a Banach
space X and let J be a contraction mapping from C in to C. i.e.

∥J (y)− J (z)∥ ≤ δ∥y − z∥ ∀ y, z ∈ C; 0 < δ < 1.

Then there exists a unique z ∈ J such that J (z) = z.

Theorem 2.5. (Schauder fixed point theorem) Let B be a nonempty closed convex
subset of a Banach space X, and let K be a continuous map with a compact image
from B to B, then K has a fixed point.

Theorem 2.6. (Ascoli-Arzela Theorem) Let L be a class of continuous functions
defined over some interval J. Then L is relatively compact iff L is equi-continuous
and uniformly bounded.

3. Existence Results

To established the existence and uniqueness results of the model problem (1.1)-
(1.3), we assume that functions gi ; qi are constants at the impulse moments ti and
further, we have the following basic and weak assumptions:
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(A1) f ; h : (si, ti+1] × C([−d, t0], X) → X; g : (ti, si] × C([−d, t0], X) → X
are jointly continuous functions and there exist p1, u1, r1 ∈ (1, α) and real

functions l1(t) ∈ L
1
p1 ((si, ti+1],R+), v1(t) ∈ L

1
u1 ((si, ti+1],R+), w1(t) ∈

L
1
r1 ((ti, si],R+) such that

∥f((si, ti+1], φ)∥X ≤ l1(t); ∥h((si, ti+1], φ)∥X ≤ v1(t), t ∈ (si, ti+1], φ ∈ C([−d, t0], X),

∥g((ti, si], φ)∥X ≤ w1(t), t ∈ (ti, si], φ ∈ C([−d, t0], X).

(A2) There exist p2, u2, r2 ∈ (1, α) and real functions l2(t) ∈ L
1
p2 ((si, ti+1],R+), v2(t) ∈

L
1
u2 ((si, ti+1],R+), w2(t) ∈ L

1
r2 ((ti, si],R+) such that

∥f((si, ti+1], φ)−f((si, ti+1], ψ)∥X ≤ l2(t)∥φ−ψ∥C([−d,t0],X), t ∈ (si, ti+1], φ ∈ C([−d, t0], X),

∥h((si, ti+1], φ)−h((si, ti+1], ψ)∥X ≤ v2(t)∥φ−ψ∥C([−d,t0],X), t ∈ (si, ti+1], φ ∈ C([−d, t0], X),

∥g((ti, si], φ)−g((ti, si], ψ)∥X ≤ w2(t)∥φ−ψ∥C([−d,t0],X), t ∈ (ti, si], φ ∈ C([−d, t0], X).

Theorem 3.1. Let the assumption A1 hold and let B(r) be a nonempty closed
convex subset of a Banach space X. Let T : B(r) → B(r) be a mapping such that
T (y) = y and defines as

T (y) =


ϕ(t0) + (t− t0)C1 −

∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

t0
(t− s)f(s, yt)ds, t ∈ (t0, t1],

gi(t, y(t)), t ∈ (ti, si],

C2 + (t− si)C3 −
∫ t

0
(t− s)βh(s, yt)ds+

∫ t

si
(t− s)f(s, yt)ds, t ∈ (si, ti+1].

(3.1)

Then T is well defined and T (y) ⊆ B.

Proof. Let us consider the polynomial p that satisfies the conditions of Eq. (1.2)-
(1.3) and is defined as

p(t) =

 ϕ(t0) + (t− t0)C1, t ∈ (t0, t1],
0, t ∈ (ti, si],
C2 + (t− si)C3, t ∈ (si, ti+1],

and the set B(r) = {y ∈ NPC1
T : ∥y − p∥X ≤ r}. It is evident that B(r) is a closed

and convex subset of the Banach space of NPC1
T . Since the polynomial p is an

element of B(r), so it is nonempty set. It is obvious by assumption A1 that f, h are
continuous functions. Therefore, this implies that T is well defined map on B(r).
Next, we show that T (y) ⊆ B(r).

Let y(t), p(t) ∈ B(r) and for t ∈ (t0, t1], we have

∥T y(t)− p(t)∥X ≤
∫ t

t0

(t− s)β∥h(s, yt)∥Xds+
∫ t

t0

(t− s)∥f(s, yt)∥Xds

≤ T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

.

For the t ∈ (ti, si], we obtain

∥T y(t)− p(t)∥X ≤ ∥w1∥
L

1
p1 ((ti,si],R+)

.

For t ∈ (si, ti+1], we have

∥T y(t)− p(t)∥X ≤
∫ t

t0

(t− s)βh(s, yt)ds+

∫ t

si

(t− s)f(s, yt)ds

≤ T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

.
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Gathering the results for operational intervals, we get

∥T y(t)− p(t)∥X ≤

max

{
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

, ∥w1∥
L

1
p1 ((ti,si],R+)

}
≤ r.

This implies that T (y) ⊆ B(r). The proof is now completed. �

Theorem 3.2. Let the assumptions A1 A2 hold and there exists a constant Π < 1.
Then problem (1.1)-(1.3) has unique solution.

Proof. Consider the operator T : B(r) → B(r) defined in Theorem 3.1 by the
Eq. (3.1) as

T (y) =


ϕ(t0) + (t− t0)C1 −

∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

t0
(t− s)f(s, yt)ds, t ∈ (t0, t1],

gi(t, y(t)), t ∈ (ti, si],

C2 + (t− si)C3 −
∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

si
(t− s)f(s, yt)ds, t ∈ (si, ti+1].

(3.2)

We prove that T is a contraction. For this, let y, y∗ ∈ B(r).
First, for t ∈ (t0, t1], we have

∥T y − T y∗∥X ≤
∫ t

t0

(t− s)β∥h(s, yt)− h(s, y∗t )∥Xds+
∫ t

t0

(t− s)∥f(s, yt)− f(s, y∗t )∥Xds

∥v1∥
L

1
u1 ((si,ti+1],R+)

∥y − y∗∥X
∫ t

t0

(t− s)βds

+∥l1∥
L

1
p1 ((si,ti+1],R+)

∥y − y∗∥X
∫ t

t0

(t− s)ds

+
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

∥y − y∗∥X +
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

∥y − y∗∥X

≤
{
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

}
∥y − y∗∥X .

Now for the t ∈ (ti, si], we have

∥T y − T y∗∥X ≤ ∥w1∥
L

1
p1 ((ti,si],R+)

∥y − y∗∥X .

Finally for t ∈ (si, ti+1], we have

∥T y − T y∗∥X ≤
∫ t

t0

(t− s)β∥h(s, yt)− h(s, y∗t )∥Xds+
∫ t

si

(t− s)∥f(s, yt)− f(s, y∗t )∥Xds

∥v1∥
L

1
u1 ((si,ti+1],R+)

∥y − y∗∥X
∫ t

t0

(t− s)βds

+∥l1∥
L

1
p1 ((si,ti+1],R+)

∥y − y∗∥X
∫ t

si

(t− s)ds

+
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

∥y − y∗∥X +
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

∥y − y∗∥X

≤
{
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

}
∥y − y∗∥X .
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For the operational intervals, let

Π =

{
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

, ∥w1∥
L

1
p1 ((ti,si],R+)

}
.

Gathering above results, we get

∥T y − T y∗∥X ≤ Π∥y − y∗∥X .

Since Π < 1, therefore the operator T is a contraction and hence by the Theorem 2.4
there exists a unique fixed point which is the unique solution of problem (1.1)-(1.3).
The proof is now completed. �

Now, if relax the assumption A2, then problem (1.1)-(1.3) lost the uniqueness
property of the solution. In this case to show the existence result of the problem
(1.1)-(1.3) we apply the Theorem 2.5.

Theorem 3.3. Let the assumption A1 hold. Then problem (1.1)-(1.3) has at-least
one solution.

Proof. Consider the operator T : B(r) → B(r) defined in Theorem 3.1 by the
Eq. (3.1) as

T (y) =


ϕ(t0) + (t− t0)C1 −

∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

t0
(t− s)f(s, yt)ds, t ∈ (t0, t1],

gi(t, y(t)), t ∈ (ti, si],

C2 + (t− si)C3 −
∫ t

t0
(t− s)βh(s, yt)ds+

∫ t

si
(t− s)f(s, yt)ds, t ∈ (si, ti+1].

(3.3)

Now, to prove our desire existence result, we have to show that T (y) = y has a
fixed point. Our first target in this step is to show that T is continuous. To this
end, consider a convergent sequence yn which converge to y in B(r).

Primarily for t ∈ (t0, t1], we have

∥T (yn)− T (y)∥X ≤
∫ t

t0

(t− s)β∥h(s, ynt )− h(s, yt)∥Xds

+

∫ t

t0

(t− s)∥f(s, ynt )− f(s, yt)∥Xds. (3.4)

Secondly for the t ∈ (ti, si] we obtain

∥T (yn)− T (y)∥X ≤ ∥gi(t, yn(t))− gi(t, y(t))∥X . (3.5)

Now for the interval t ∈ (si, ti+1],

∥T (yn)− T (y)∥X =

∫ t

t0

(t− s)β∥h(s, ynt )− h(s, yt)∥Xds

+

∫ t

si

(t− s)∥f(s, ynt )− f(s, yt)∥Xds. (3.6)

It is clear that, the function f, h, g are continuous, and by the dominant convergent
theorem, the expressions on the right-hand side of (3.4),(3.5) and (3.6) converges
to 0 as yn converge to y. Which proves that T is a continuous operator. Our next
target is to show that the space T (B) = {T (y) : y ∈ B} is a relatively compact.
For this, first we show that T (B) is uniformly bounded. Let ȳ ∈ T (B).

For t ∈ (t0, t1], we have

∥ȳ∥ ≤ ∥T y(t)∥X ≤ ∥ϕ(t0)∥X + T∥C1∥X
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+

∫ t

t0

(t− s)β∥h(s, yt)∥Xds+
∫ t

t0

(t− s)∥f(s, yt)∥Xds

≤ ∥ϕ(t0)∥X + T∥C1∥X +
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

,

where

∥C1∥X =
c

a

∫ T

t0

(T − s)γ−1

Γ(γ)
y(s)ds+

b

a

∫ T

t0

β(T − s)β−1∥h(s, yt)∥Xds−
b

a
qm(sm)

− b

a

∫ sm

t0

β(sm − s)β−1∥h(s, yt)∥Xds−
b

a

∫ T

sm

∥f(s, yt)∥Xds,

=
rcT γ

aΓ(γ + 1)
+

2bβT β

aβ
∥v1(t)∥

L
1
u1 ((si,ti+1],R+)

+
b

a
∥ω1(t)∥

L
1
κ1 ((si,ti+1],R+)

+
bT

a
∥l1(t)∥

L
1
p1 ((si,ti+1],R+)

.

For the t ∈ (ti, si] we have

∥ȳ∥ ≤ ∥T y(t)∥X ≤ ∥w1∥
L

1
r1 ((ti,si],R+)

.

At last for the t ∈ (si, ti+1], we have

∥ȳ∥ ≤ ∥T y(t)∥X ≤ ∥C2∥X + |(t− si)|∥C3∥X +

∫ t

t0

(t− s)βh(s, yt)ds+

∫ t

si

(t− s)f(s, yt)ds

≤ ∥C2∥X + T∥C3∥X +
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

,

where

∥C2∥X = ∥gi(si, y(si))∥X +

∫ si

t0

(si − s)β∥h(s, yt)∥Xds,

= ∥w1(t)∥
L

1
r1 ((ti,si],R+)

+
T β+1

β + 1
∥v1(t)∥

L
1
u1 ((si,ti+1],R+)

,

∥C3∥X = ∥qi(si, y(si))∥X +

∫ si

t0

β(si − s)β−1∥h(s, yt)∥Xds

= ∥ω1(t)∥
L

1
κ1 ((ti,si],R+)

+
βT β

β
∥v1(t)∥

L
1
u1 ((si,ti+1],R+)

.

Gathering results for the operational intervals, we get

∥ȳ∥ ≤ ∥T y(t)∥X ≤ max{∥ϕ(t0)∥X + T∥C1∥X , ∥C2∥X + T∥C3∥X , ∥w1∥
L

1
r1 ((ti,si],R+)

}

+
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

,

∥ȳ∥ ≤ ∥T y(t)∥X ≤ C∗.

This implies that T (B) has the uniformly bounded-ness property. Next, we show
T (B) is a family of equi-continuous functions. This property can be derived as
fellow.
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Let x1, x2 ∈ (t0, t1] such that x1 < x2, then we have

∥T (y)(x2)− T (y)(x1)∥X ≤ C1|x2 − x1|+
∫ x2

x1

(x2 − s)∥f(s, yt)∥Xds

+

∫ x2

x1

(x2 − s)β∥h(s, yt)∥Xds

+

∫ x1

t0

[(x2 − s)β − (x1 − s)β ]∥h(s, yt)∥Xds

+

∫ x1

t0

[(x2 − s)− (x1 − s)]∥f(s, yt)∥Xds

≤ C1|x2 − x1|+ ∥l1∥
L

1
p1 ((si,ti+1],R+)

(
x22
2

− x21
2

)
+∥v1∥

L
1
u1 ((si,ti+1],R+)

(
xβ+1
2

β + 1
− xβ+1

1

β + 1

)
. (3.7)

For the x1, x2 ∈ (ti, si], we obtain

∥T (y)(x2)− T (y)(x1)∥X ≤ ∥gi(x2, y(x2))− gi(x1, y(x1))∥X . (3.8)

Similarly, for x1, x2 ∈ (si, ti+1] we have

∥T (y)(x2)− T (y)(x1)∥X ≤ C3|x2 − x1|+
∫ x2

x1

(x2 − s)∥f(s, yt)∥Xds

+

∫ x2

x1

(x2 − s)β∥h(s, yt)∥Xds

+

∫ x1

t0

[(x2 − s)β − (x1 − s)β ]∥h(s, yt)∥Xds

+

∫ x1

si

[(x2 − s)− (x1 − s)]∥f(s, yt)∥Xds

≤ C3|x2 − x1|+ ∥l1∥
L

1
p1 ((si,ti+1],R+)

(
(x2 − si)

2

2
− (x1 − si)

2

2

)
+∥v1∥

L
1
u1 ((si,ti+1],R+)

(
(x2)

β+1

β + 1
− (x1)

β+1

β + 1

)
. (3.9)

Noting that the expressions on the right-hand side of (3.7), (3.8) and (3.9) are
independent of y and x1 and x2, proving the equi-continuity of T (B). In either case
the Theorem 2.6 yields that T (B) is relatively compact, and hence Theorem 2.5
asserts that T has a fixed point. By construction, a fixed point of T is a solution
of our boundary value problem (1.1)-(1.3). The proof is now completed. �

Remark 3.4. If we take l1(t), v1(t), w1(t), l2(t), v2(t), w2(t) as a constants, then
conditions A1, A2 reduces to the Osgood condition and become simple and easy.

4. Example

Here a numerical example is presented to verify the existence and uniqueness
results:

C
0 D

α
t [Q(y(t))] =

1

Γ(2− α)

∫ t

0

(t− s)1−α

[
y(s− d) sin s2

16(1 + es2)(1 + |y(s− d)|)

]
ds,
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t ∈ (0,
1

2
] ∪ (

1

2
, T ], (4.1)

y(t) = ϕ(t), t ∈ [−d, 0], ay′(0) + by′(T ) = c

∫ T

0

(T − s)γ−1

Γ(γ)
y(s)ds, (4.2)

y(t) =
1

3
sin y(t) + et, t ∈ (0,

1

2
]; y′(t) =

1

3
cos y(t) + et, t ∈ (

1

2
, T ],(4.3)

where CDα
t denotes the classical Caputo’s derivative, 0 < ti = 1

2 < T, i = 1 and
Q(y(t)) is defined as

Q(y(t)) = y(t) +

∫ t

0

(t− s)

[
y(s− d)

25(1 + es2)(1 + |y(s− d)|)

]
ds.

Let y(t) ∈ NPC1
t and set the following function as

f(t, φ) =
φ sin t2

16(1 + et2)(1 + |φ|)
; h(t, φ) =

φ

25(1 + et2)(1 + |φ|)
;

gi(t, y) =
1

3
sin y(t) + et, qi(t, y) =

1

3
cos y(t) + et.

By simple computations, we can show that

∥f(t, φ)− f(t, ϕ)∥ = ∥ φ sin t2

16(1 + et2)(1 + |φ|)
− ϕ sin t2

16(1 + et2)(1 + |ϕ|)
∥

≤ ∥ sin t2

16(1 + et2)
∥ × ∥ φ

(1 + |φ|)
− ϕ

(1 + |ϕ|)
∥

≤ 1

32
∥φ− ϕ∥.

Similarly, by same computations, we have

∥h(t, φ)− h(t, ϕ)∥ ≤ 1

50
∥φ− ϕ∥; ∥gi(t, φ)− gi(t, ϕ)∥ ≤ 1

3
∥φ− ϕ∥.

It is obvious that the functions f ;h; g are followed the conditions of A2 with l1 =
1
32 , v1 = 1

50 , w1 = 1
3 . If we take T = 1 β = 1, then we can calculate

Π = max

{
T β+1

β + 1
∥v1∥

L
1
u1 ((si,ti+1],R+)

+
T 2

2
∥l1∥

L
1
p1 ((si,ti+1],R+)

, ∥w1∥
L

1
r1 ((ti,si],R+)

}
≈ 0.33 < 1.

Thus, our first result can be applied to the problem (4.1)-(4.3), i.e., problem (4.1)-
(4.1) has a unique solution.

Further, it is clear from the problem that f ;h; g are continuous functions and

∥f(t, φ)∥ ≤ 1

32
; ∥h(t, φ)∥ ≤ 1

50
; ∥gi(t, φ)∥ ≤ 1

3
.

Thus the conditions of Theorem 2.5 are satisfied which implies that problem (4.1)-
(4.3) has at least one solution.

References

[1] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives Theory
and Applications. Gordon and Breach, Yverdon, 1993.

[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equa-

tions, John Wiley, New York, 1993.
[3] I. Podlubny, Fractional Differential Equation, Academic, San Diego, 1999.



178 G R GAUTAM JFCA-2019/10(1)

[4] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional

Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Am-
sterdam 2006.

[5] V. Lakshmikantham , S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems,
Cambridge Scientific Publishers, 2009.

[6] G. R. Gautam and J. Dabas, Results of local and global mild solution for impulsive fractional
differential equation with state dependent delay, Differential Equations & Applications, 6(3),
429–440, 2014.

[7] J. Dabas and G. R. Gautam, Impulsive neutral fractional integro-differential equation with

state dependent delay and integral boundary condition, Elect. J. Diff. Equ.,Vol. 2013(273),
1–13, 2013.

[8] X. Fu and R. Huang, Existence of solutions for neutral integro-differential equations with
state-dependent delay, App. Math. Comp., 224, 743–759, 2013.

[9] M. Benchohra, F. Berhoun, Impulsive fractional differential equations with state dependent
delay, Commun. Appl. Anal., 14(2), 213–224, 2010.

[10] R. P. Agarwal and B. D. Andrade, On fractional integro-differential equations with state-
dependent delay, Comp. Math. App., 62, 1143–1149, 2011.

[11] M. Benchohra, S. Litimein and G. N’Guerekata, On fractional integro-differential inclusions
with state-dependent delay in Banach spaces, Applicable Analysis, 1–16, 2011.

[12] J. P. Carvalho dos Santos and M. M. Arjunan, Existence results for fractional neutral integro-

differential equations with state-dependent delay, Computers and Mathematics with Appli-
cations, 62 1275–1283, 2011.

[13] B. Ahmad and J.J. Nieto, Existence results for nonlinear boundary value problems of frac-
tional integrodifferential equations with integral boundary conditions, Bound. Value Probl.,

2009,1–11, 2009.
[14] B. Ahmad, A. Alsaedi and B. Alghamdi, Analytic approximation of solutions of the forced

Duffing equation with integral boundary conditions, Nonlinear Anal., RWA, 9, 1727–1740,
2008.

[15] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Non-
linear Anal., 70, 364–371, 2009.

[16] E. Hernandez, and D. O’Regan, On a new class of abstract impulsive differential equations,
Proceedings of the american mathemathical society, 141(5), 1641–1649, 2013

[17] M. Feckan, J. Wang and Y. Zhou, Periodic Solutions for Nonlinear Evolution Equations with
Non-instantaneous Impulses, Nonauton. Dyn. Syst., 1, 93–101, 2014

[18] J. Wanga and Y. Zhang, A class of nonlinear differential equations with fractional integrable
impulses, Commun Nonlinear Sci Numer Simulat, 19, 3001–3010, 2014.

[19] J. Wanga, Y. Zhou and Z. Zeng Lin, On a new class of impulsive fractional differential
equations, Applied Mathematics and Computation, 242, 649–657, 2014.

[20] S. Abbas, and M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional

differential equations with not instantaneous impulses, 257, 190–198, 2015.
[21] J. Wang and X. Li, Periodic BVP for integer/fractional order nonlinear differential equations

with non-instantaneous impulses, J Appl Math Comput, 46, 321-?334, 2014.
[22] G. R. Gautam and J. Dabas, Existence result of fractional functional integro-differential

equation with not instantaneous impulse, Int. J. Adv. Appl. Math. and Mech., 1(3), 11–21,
2014.

[23] G. R. Gautam and J. Dabas, Mild solutions for class of neutral fractional functional dif-
ferential equations with not instantaneous impulses, Appl. Math. Comput., 259, 480-489,

2015.
[24] V. Colaoa, L. Muglia and H. Xu, An existence result for a new class of impulsive functional

differential equations with delay, J. Math. Anal. Appl., 441, 668–683, 2016.
[25] R. Agarwal, S. Hristova and D. O’Regan, Non-instantaneous impulses in Caputo fractional

differential equations, Frac. Cal. Appl. Anal., 20(3), 595–622, 2017.

DST-Centre for Interdisciplinary Mathematical Sciences, Institute of Science
Banaras Hindu University, Varanasi-221005 India.

E-mail address: gangaiitr11@gmail.com; gangacims@bhu.ac.in


