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FRACTIONAL PARTIAL HYPERBOLIC DIFFERENTIAL

INCLUSIONS WITH STATE-DEPENDENT DELAY

MOHAMED HELAL

Abstract. In this paper we investigate the existence of solutions of initial

value problem for partial hyperbolic differential inclusions of fractional order
involving Caputo fractional derivative with state-dependent Delay when the
right hand side is convex valued by using a multi-valued version of nonlinear
alternative of Leray-Schauder type.

1. Introduction

The first result of this paper deals with the existence of solutions to fractional
order initial value problems (IV P for short), for the system

(cDr
0u)(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))), if (t, x) ∈ J, (1)

u(t, x) = ϕ(t, x), if (t, x) ∈ J̃ , (2)

u(t, 0) = φ(t), u(0, x) = ψ(x), (t, x) ∈ J, (3)

where φ(0) = ψ(0), J := [0, a]×[0, b], a, b, α, β > 0, J̃ := [−α, a]×[−β, b]\[0, a]×
[0, b], cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈
(0, 1] × (0, 1], F : J × C([−α, 0] × [−β, 0],Rn) → P(Rn), is a compact valued mul-
tivalued maps, P is a family of all subsets of Rn, ρ1 : J × C → [−α, a], ρ2 :
J×C → [−β, b] are given functions, ϕ ∈ C([−α, 0]× [−β, 0],Rn) is a given continu-
ous function with ϕ(t, 0) = φ(t), ϕ(0, x) = ψ(x) for each (t, x) ∈ J, φ : [0, a] → Rn,
ψ : [0, b] → Rn are given absolutely continuous functions.
We denote by u(t,x) the element of C([−α, 0]× [−β, 0],Rn) defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ [−α, 0]× [−β, 0],
here u(t,x)(·, ·) represents the history of the state u.

The second result deals with the existence of solutions to fractional order partial
differential equations

(cDr
0u)(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))), if (t, x) ∈ J, (4)
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u(t, x) = ϕ(t, x), if (t, x) ∈ J̃ ′, (5)

u(t, 0) = φ(t), u(0, x) = ψ(x), (t, x) ∈ J, (6)

where φ, ψ are as in problem (1)-(3), J̃ ′ := (−∞, a] × (−∞, b]\[0, a] × [0, b], F :
J × B→ P(Rn), is a compact valued multivalued maps, ρ1 : J × B→ (−∞, a], ρ2 :

J × B→ (−∞, b] are given functions, ϕ : J̃ ′ → Rn is a given continuous function
with ϕ(t, 0) = φ(t), ϕ(0, x) = ψ(x) for each (t, x) ∈ J and B is called a phase space
that will be specified in Section 4.

It is well known that differential equations and inclusions of fractional order play
a very important role in describing some real world problems. For example some
problems in physics, mechanics, viscoelasticity, electrochemistry, control, porous
media, electromagnetic, etc. (see [8, 30, 42, 45, 50]). The theory of differential
equations and inclusions of fractional order has recently received a lot of attention
and now constitutes a significant branch of nonlinear analysis. Numerous research
papers and monographs have appeared devoted to fractional differential equations
and inclusions, for example see the monographs of Kilbas et al. [38], Lakshmikan-
tham et al. [40], and the papers by Agarwal et al [3, 4], Belarbi et al. [7], Benchohra
et al. [10] and the references therein.

Differential delay equations and inclusions, or functional differential equations
and inclusions, have been used in modeling scientific phenomena for many years.
Often, it has been assumed that the delay is either a fixed constant or is given as
an integral in which case it is called a distributed delay; see for instance the books
by Hale and Verduyn Lunel [27], Hino et al. [31], Kolmanovskii and Myshkis [37],
Lakshmikantham et al. [41], Wu [54] and the papers [24].

In this paper, we present existence result for the problems (1)-(3) and (4)-(6).
Our main result for this problem is based a multi-valued version of nonlinear alter-
native of Leray-Schauder type [21].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.
By L1(J,Rn) we denote the space of Lebesgue-integrable functions u : J → Rn

with the norm

∥u∥L1 =

∫ a

0

∫ b

0

∥u(t, x)∥dxdt,

where ∥ · ∥ denotes a suitable complete norm on Rn.
Definition 2.1[52] Let r = (r1, r2) ∈ (0,∞)× (0,∞), θ = (0, 0) and u ∈ L1(J,Rn).
The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

∫ t

0

∫ x

0

u(s, τ)dτds; for almost all (t, x) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞) × (0,∞), when u ∈ L1(J,Rn). Note
also that when u ∈ C(J,Rn), then (Irθu) ∈ C(J,Rn), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; (t, x) ∈ J.
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Example 2.2 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθ t
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x , the
mixed second order partial derivative.
Definition 2.3[52] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J,Rn). The mixed fractional
Riemann-Liouville derivative of order r of u is defined by the expression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the expres-
sion

(cDr
0u)(t, x) = (I1−r

θ

∂2

∂t∂x
u)(t, x).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x), for almost all (t, x) ∈ J.

Example 2.4 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θt

λxω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ J.

In the sequel we will make use of the following generalization of Gronwall’s lemma
for two independent variables and singular kernel.
Lemma 2.5 [29] Let υ : J → [0,∞) be a real function and ω(., .) be a nonnegative,
locally integrable function on J. If there are constants c > 0 and 0 < r1, r2 < 1 such
that

υ(t, x) ≤ ω(t, x) + c

∫ t

0

∫ x

0

υ(s, τ)

(t− s)r1(x− τ)r2
dτds,

then there exists a constant δ = δ(r1, r2) such that

υ(t, x) ≤ ω(t, x) + δc

∫ t

0

∫ x

0

ω(s, τ)

(t− s)r1(x− τ)r2
dτds,

for every (t, x) ∈ J.

3. Some Properties of Set-Valued Maps

Let (X, ∥ · ∥) be a Banach space. Denote

• P(X) = {Y ∈ X : Y ̸= ∅},
• Pcl(X) = {Y ∈ P(X) : Y closed},
• Pb(X) = {Y ∈ P(X) : Y bounded},
• Pcp(X) = {Y ∈ P(X) : Y compact},
• Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}.

For each u ∈ C(J,Rn), define the set of selections of F by

SF,u = {f ∈ L1(J,Rn) : f(t, x) ∈ F (t, x, u(t, x)) a.e. (t, x) ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, ∥ · ∥). Consider
Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,
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where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X),Hd) is a metric

space and (Pcl(X),Hd) is a generalized metric space (see [39]).
Definition 3.1 A multivalued map T : X → P(X) is convex(closed) valued if T (x)

is convex (closed) for all x ∈ X. T is bounded on bounded sets if T (B) =
∪
x∈B

T (x)

is bounded in X for all B ∈ Pb(X) (i.e. supx∈B supy∈T (x) ∥y∥ <∞).

A multivalued map T : X → P(X) is called upper semi-continuous (u.s.c.) on X
if for each x0 ∈ X, the set T (x0) is a nonempty closed subset of X, and if for each
open set N of X containing T (x0), there exists an open neighborhood N0 of x0 such
that T (N0) ⊆ N. T is lower semi-continuous (l.s.c.) if the set {x ∈ X : T (x)∩A ̸= ∅}
is open for any open subset A ⊆ X. T is said to be completely continuous if T (B) is
relatively compact for every B ∈ Pb(X). T has a fixed point if there is x ∈ X such
that x ∈ T (x). The fixed point set of the multivalued operator T will be denoted
by FixT .

A multivalued map G : J → Pcl(Rn) is said to be measurable if for every v ∈ Rn,
the function (x) 7−→ d(v,G(x)) = inf{∥v − z∥ : z ∈ G(x)} is measurable.
Lemma 3.2 [25] Let G be a completely continuous multivalued map with nonempty
compact values, then G is u.s.c if and only if G has a closed graph (i.e. xn →
x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)).
Definition 3.3 A multivalued map F : J×Rn → P(Rn) is said to be Carathéodory
if

(i) (t, x) 7−→ F (t, x, u) is measurable for each u ∈ Rn;
(ii) u 7−→ F (t, x, u) is upper semicontinuous for almost all (t, x) ∈ J.

F is said to be L1-Carathéodory if (i), (ii) and the following condition holds;

(iii) for each c > 0, there exists σc ∈ L1(J,R+) such that

∥F (t, x, u)∥P = sup{∥f∥ : f ∈ F (t, x, u)}
≤ σc(t, x) for all ∥u∥ ≤ c and for a.e. (t, x) ∈ J.

For more details on multivalued maps see the books of Aubin and Cellina [5],
Aubin and Frankowska [6], Deimling [18], Gorniewicz [23], Hu and Papageorgiou
[25] and Kisielewiecz [39].
Theorem 3.4 (Nonlinear alternative of Leray-Schauder type) [21] Let X be a
Banach space and C a nonempty convex subset of X. Let U a nonempty open
subset of C with 0 ∈ U and T : U → P(C) an upper semicontinuous and compact
multivalued operator. Then either

(a) T has a fixed points. Or
(b) There exist u ∈ ∂U and λ ∈ [0, 1] with u ∈ λT (u).

4. Existence Results for the Finite Delay Case

In this section, we give our main existence result for the problem (1)-(3).
For each a, b > 0 we consider following set C(a,b) := C([−α, a]× [−β, b],Rn).
Let us start by defining what we mean by a solution of problem (1)-(3).
Definition 4.1 A function u ∈ C(a,b) is said to be a solution of (1)-(3) if there exists

a function f ∈ L1(J,Rn) with f(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) such that

(cDr
0u)(t, x) = f(t, x) and u satisfies equations (3) on J and the condition (2) on

J̃ .



JFCA-2019/10(1) FRACTIONAL PARTIAL HYPERBOLIC DIFFERENTIAL INCLUSIONS 183

Lemma 4.2 A function u ∈ C(a,b) is a solution of problem (1)-(3) if and only if u
satisfies the equation

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

for all (t, x) ∈ J and the condition (2) on J̃ , where

z(t, x) = φ(t) + ψ(x)− φ(0).

Set R :=R(ρ−
1 ,ρ−

2 )

= {(ρ1(s, τ, u), ρ2(s, τ, u)) : (s, τ, u) ∈ J × C, ρi(s, τ, u) ≤ 0; i = 1, 2}.

We always assume that ρ1 : J×C → [−α, a], ρ2 : J×C → [−β, b] are continuous
and the function (s, τ) 7−→ u(s,τ) is continuous from R into C.
Theorem 4.3 Assume the following hypotheses hold:

(H1) F : J × Rn → Pcp,c(Rn) is a Carath?odory multi-valued map.
(H2) There exist p ∈ C(J,R+) and Ψ : [0,∞) → (0,∞) continuous and nonde-

creasing such that

∥F (t, x, u)∥P ≤ p(t, x)Ψ(||u||), for (t, x) ∈ J and each u ∈ Rn,

(H3) There exists ℓ ∈ C(J,R+) such that

Hd(F (t, x, u).F (t, x, v)) ≤ ℓ(t, x)|u− v|, for any u, v ∈ Rn,

and

d(0, (F (t, x, 0)) ≤ ℓ(t, x), a.e. (t, x) ∈ J .

(H4) There exists an numbre M > 0 such that

M

||z||∞ + Ψ(M)p∗ar1br2

Γ(r1+1)Γ(r2+1)

> 1, (7)

where p∗ = sup
(t,x)∈J

p(t, x).

Then the IVP (1)-(3) has at least one solution on [−α, a]× [−β, b].
Proof: Transform the problem (1)-(3) into a fixed point problem. Consider the
operators N : C(a,b) →P(C(a,b)) defined by,

(Nu)(t, x) = h ∈ C(a,b)

such that

h(t, x) =


ϕ(t, x), (t, x) ∈ J̃ ,
z(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J,

where f ∈ SF,u(ρ1(t,x,u),ρ2(t,x,u))
.

We shall show that N satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof will be given in several steps.

Step 1: N(u) is convex for each u ∈ C(a,b). Indeed, if h1, h2 belong to N(u),
then there exist f1, f2 ∈ SF,u such that for each (t, x) ∈ J we have

hi(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1fi(s, τ)dτds, i = 1, 2.
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Let 0 ≤ d ≤ 1. Then, for each (t, x) ∈ J we have

[dh1 + (1− d)h2](t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

×[df1(s, τ) + (1− d)f2(s, τ)]dτds,

and for each (t, x) ∈ J̃ , we have

[dh1 + (1− d)h2](t, x) = ϕ(t, x).

Since SF,u is convex (because F has convex values), we have

[dh1 + (1− d)h2] ∈ N(u).

Step 2: N maps bounded sets into bounded sets in C(a,b). Let Bη = {u ∈
C(a,b) : ∥u∥∞ ≤ η} be bounded set in C(a,b) and u ∈ Bη. Then for each h ∈ N(u),
there exists f ∈ SF,u such that

h(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.

By (H2) we have for each (t, x) ∈ J ,

||h(t, x)|| ≤ ||z(t, x)||+ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ)||dτds

≤ ||z(t, x)||+ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

×p(s, τ)Ψ(||u(s,τ)||)dτds.

Then

||h||∞ ≤ ||z||∞ +
p∗Ψ(η)ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= ℓ1.

In other hand, for each (t, x) ∈ J̃ ,

||h||∞ ≤ ||ϕ||∞ := ℓ2.

Thus, for each (t, x) ∈ [−α, a]× [−β, b],

||h||∞ ≤ min{ℓ1, ℓ2} := ℓ.

Step 3: N maps bounded sets into equicontinuous sets in C(a,b). Let (t1, x1),
(t2, x2) ∈ J, t1 < t2 and x1 < x2, Bη be a bounded set of C(a,b) as in Step 2, let
u ∈ Bη and h ∈ N(u), then

||h(t2, x2)− h(t1, x1)|| ≤ ||z(t1, x1)− z(t2, x2)||
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+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]

×||f(s, τ)||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

≤ ∥z(t1, x1)− z(t2, x2)∥+
p∗ψ(η)

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)

r1

+2tr12 (x2 − x1)
r2 + tr11 x

r2
1 − tr12 x

r2
2 − 2(t2 − t1)

r1(x2 − x1)
r2 ].

As t1 → t2 and x1 → x2, the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases t1 < t2 < 0, x1 < x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤
0 ≤ x2 is obvious. As a consequence of Steps 1 to 3 together with Arzela-Ascoli
theorem, we can conclude that N : C(a,b) →P(C(a,b)) is a completely continuous.

Step 4: N has a closed graph. Let un → u∗, hn ∈ N(un) and hn → h∗. We
need to show that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists fn ∈ SF,un such that for each (t, x) ∈ J ,

hn(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1fn(s, τ)dτds

and for (t, x) ∈ J̃ , hn(t, x) = ϕ(t, x).
We must show that there exists f∗ ∈ SF,u∗ such that for each (t, x) ∈ J

h∗(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f∗(s, τ)dτds

and for (t, x) ∈ J̃ , h∗(t, x) = ϕ(t, x).
Since F (t, x, .) is upper semicontinuous, then for every ε > 0, there exist n0(ε) ≥ 0
such that for every n ≥ n0, we have

fn(t, x) ∈ F (t, x, un(t,x)) ⊂ F (t, x, u∗(t,x)) + εB(0, 1), a.e. (t, x) ∈ J.

Since F (., ., .) has compact values, then there exists a subsequence fnm such that

fnm(., .) → f∗(., .) as m→ ∞
and

f∗(., .) ∈ F (t, x, u∗(t,x)), a.e. (t, x) ∈ J.

For every w ∈ F (t, x, u∗(t,x)), we have

|fnm(., .)− f∗(t, x)| ≤ |fnm(., .)− w|+ |w − f∗(t, x)|.
Then

|fnm(., .)− f∗(., .)| ≤ d(fnm(., .), F (t, x, u∗(t,x))).

By an analogous relation, obtained by interchanging the roles of fnm and f∗, it
follows that

|fnm(., .)− u∗(t,x)| ≤ Hd(F (t, x, un(t,x)), F (t, x, u∗(t,x)))

≤ ℓ(t, x)||un − u∗||∞.
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Then

|hn(t, x)− h∗(t, x)| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

×|fm(s, τ)− f∗(s, τ)|dτds

≤ ℓ∗||unm − u∗||∞
Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds,

where ℓ∗ = sup
(t,x)∈J

ℓ(t, x). Hence

||hnm − h∗||∞ ≤ ar1br2ℓ∗

Γ(r1 + 1)Γ(r2 + 1)
||unm − u∗||∞ → 0 as m→ ∞.

Step 5: (A priori bounds) Let u be a possible solution of the problem (1)-(3).
Then, there exists f ∈ SF,u such that, for each (t, x) ∈ J ,

|u(t, x)| ≤ |z(t, x)|+ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1|f(s, τ)|dτds

≤ |z(t, x)|+ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

×p(s, τ)Ψ(||u(s,τ)||)dτds

≤ |z(t, x)|+
Ψ(||u(s,τ)||)
Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1p(s, τ)dτds

≤ ||z||∞ +
Ψ(||u||∞)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
,

and for each (t, x) ∈ J̃ , |u(t, x)| = |ϕ(t, x)|. This implies by (H2) that, for each
(t, x) ∈ J , we have

||u||∞
||z||∞ + Ψ(||u||∞)p∗ar1br2

Γ(r1+1)Γ(r2+1)

< 1.

Then by condition (7), there exists M such that ||u||∞ ̸=M .
Let

U = {u ∈ C(a,b) : ||u||∞ < M∗},
where M∗ = min{M, ||ϕ||C}. The operator N : U →P(C(a,b)) is upper semicontin-
uous and completely continuous. From the choice of U , there is no u ∈ ∂U such
that u ∈ λN(u) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative
of Leray-Schauder type, we deduce that N has a fixed point u ∈ U which is a
solution of the problem (1)-(3).

5. Existence Results for the Infinite Delay Case

5.1. The phase space B. The notion of the phase space B plays an important role
in the study of both qualitative and quantitative theory for functional differential
equations. A usual choice is a semi-normed space satisfying suitable axioms, which
was introduced by Hale and Kato (see [24]). For further applications see for instance
the books [27, 31, 41] and their references.

For any (t, x) ∈ J denote E(t,x) := [0, t]× {0} ∪ {0} × [0, x], furthermore in case
t = a, x = b we write simply E. Consider the space (B, ∥(., .)∥B) is a seminormed
linear space of functions mapping (−∞, 0] × (−∞, 0] into Rn, and satisfying the
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following fundamental axioms which were adapted from those introduced by Hale
and Kato for ordinary differential functional equations:

(A1) If y : (−∞, a] × (−∞, b] → Rn continuous on J and y(t,x) ∈ B, for all
(t, x) ∈ E, then there are constantsH,K,M > 0 such that for any (t, x) ∈ J
the following conditions hold:

(i) y(t,x) is in B;
(ii) ∥y(t, x)∥ ≤ H∥y(t,x)∥B,
(iii) ∥y(t,x)∥B ≤ K sup(s,τ)∈[0,t]×[0,x] ∥y(s, τ)∥+M sup(s,τ)∈E(t,x)

∥y(s,τ)∥B,
(A2) For the function y(., .) in (A1), y(t,x) is a B-valued continuous function on

J.
(A3) The space B is complete.

Now, we present some examples of phase spaces [15, 16].
Example 5.1.1 Let B be the set of all functions ϕ : (−∞, 0]×(−∞, 0] → Rn which
are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

∥ϕ∥B = sup
(s,τ)∈[−α,0]×[−β,0]

∥ϕ(s, τ)∥.

Then we have H = K = M = 1. The quotient space B̂ = B/∥.∥B is isometric to
the space C([−α, 0]× [−β, 0],Rn) of all continuous functions from [−α, 0]× [−β, 0]
into Rn with the supremum norm, this means that partial differential functional
equations with finite delay are included in our axiomatic model.
Example 5.1.2 Let γ ∈ R and let Cγ be the set of all continuous functions ϕ :

(−∞, 0] × (−∞, 0] → Rn for which a limit lim∥(s,τ)∥→∞ eγ(s+τ)ϕ(s, τ) exists, with
the norm

∥ϕ∥Cγ = sup
(s,τ)∈(−∞,0]×(−∞,0]

eγ(s+τ)∥ϕ(s, τ)∥.

Then we have H = 1 and K =M = max{e−(a+b), 1}.
Example 5.1.3 Let α, β, γ ≥ 0 and let

∥ϕ∥CLγ = sup
(s,τ)∈[−α,0]×[−β,0]

∥ϕ(s, τ)∥+
∫ 0

−∞

∫ 0

−∞
eγ(s+τ)∥ϕ(s, τ)∥dτds,

be the seminorm for the space CLγ of all functions ϕ : (−∞, 0] × (−∞, 0] → Rn

which are continuous on [−α, 0] × [−β, 0] measurable on (−∞,−α] × (−∞, 0] ∪
(−∞, 0]× (−∞,−β], and such that ∥ϕ∥CLγ <∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β

eγ(s+τ)dτds, M = 2.

5.2. Main Results. Let us start in this section by defining what we mean by a
solution of the problem (4)-(6). Let the space
Ω := {u : (−∞, a]× (−∞, b] → Rn : u(t,x) ∈ B for (t, x) ∈ E and u|J is continuous
}.
Definition 5.2.1 A function u ∈ Ω is said to be a solution of (4)-(6) if there exists
a function f ∈ L1(J,Rn) with f(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) such that

(cDr
0u)(t, x) = f(t, x) and u satisfies equations (6) on J and the condition (5) on

J̃ .
Set R′ :=R′

(ρ−
1 ,ρ−

2 )

= {(ρ1(s, τ, u), ρ2(s, τ, u)) : (s, τ, u) ∈ J× B, ρi(s, τ, u) ≤ 0; i = 1, 2}.
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We always assume that ρ1 : J×B→ (−∞, a], ρ2 : J×B→ (−∞, b] are continuous
and the function (s, τ) 7−→ u(s,τ) is continuous from R′ into B.

We will need to introduce the following hypothesis:

(Hϕ) There exists a continuous bounded function L :R′
(ρ−

1 ,ρ−
2 ) → (0,∞) such

that

∥ϕ(s,τ)∥B ≤ L(s, τ)∥ϕ∥B, for any (s, τ) ∈ R′.

In the sequel we will make use of the following generalization of a consequence
of the phase space axioms ([[26], Lemma 2.1]).
Lemma 5.2.2 If u ∈ Ω, then

∥u(s,τ)∥B = (M + L′)∥ϕ∥B +K sup
(θ,η)∈[0,max{0,s}]×[0,max{0,τ}]

∥u(θ, η)∥,

where

L′ = sup
(s,τ)∈R′

L(s, τ).

Theorem 5.2.3 Assume (Hϕ) and that the following hypotheses hold:

(H1) F : J × B → Pcp(R) is a Carath?odory multi-valued map.
(H2) There exists ℓ ∈ L∞(J,R+) such that

Hd(F (t, x, u).F (t, x, v)) ≤ ℓ(t, x)||u− v||B, for every u, v ∈ B,
and

d(0, (F (t, x, 0)) ≤ ℓ(t, x), a.e. (t, x) ∈ J .

Then the IV P (4)-(6) has at least one solution on (−∞, a]× (−∞, b].
Proof: Transform the problem (4)-(6) into a fixed point problem. Consider the

operator A : Ω →P(Ω) defined by,

(Au)(t, x) = h ∈ Ω

such that

h(t, x) =


ϕ(t, x), (t, x) ∈ J̃ ,
z(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, f ∈ SF,u (t, x) ∈ J.

Let v(., .) : (−∞, a]× (−∞, b] → Rn be a function defined by,

v(t, x) =

{
z(t, x), (t, x) ∈ J.

ϕ(t, x), (t, x) ∈ J̃ ,

Then v(t,x) = ϕ for all (t, x) ∈ E.
For each w ∈ C(J,Rn) with w(t, x) = 0 for each (t, x) ∈ E we denote by w the
function defined by

w(t, x) =

{
w(t, x) (t, x) ∈ J.

0, (t, x) ∈ J̃ ,

If u(., .) satisfies the integral equation,

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,
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we can decompose u(., .) as u(t, x) = w(t, x) + v(t, x); (t, x) ∈ J, which implies
u(t,x) = w(t,x) + v(t,x), for every (t, x) ∈ J, and the function w(., .) satisfies

w(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

where f ∈ SF,w+v. Set

C0 = {w ∈ C(J,Rn) : w(t, x) = 0 for (t, x) ∈ E},

and let ∥.∥(a,b) be the seminorm in C0 defined by

∥w∥(a,b) = sup
(t,x)∈E

∥w(t,x)∥B + sup
(t,x)∈J

∥w(t, x)∥ = sup
(t,x)∈J

∥w(t, x)∥, w ∈ C0.

C0 is a Banach space with norm ∥.∥(a,b). Let the operators P : C0 →P(C0) defined
by

(Pw)(t, x) = h ∈ C0,

such that

h(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

where f ∈ SF,w(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))
+v(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))

. Obviously, that the

operator A has a fixed point is equivalent to P has a fixed point.
Step 1: P (w) is convex for each w ∈ C0. Indeed, if h1, h2 belong to P (w), then

there exist f1, f2 ∈ SF,w+v such that for each (t, x) ∈ J we have

hi(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1fi(s, τ)dτds, i = 1, 2.

Let 0 ≤ ξ ≤ 1. Then, for each (t, x) ∈ J we have

[ξh1 + (1− ξ)h2](t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

×[ξf1(s, τ) + (1− ξ)f2(s, τ)]dτds,

Since SF,w+v is convex (because F has convex values), we have

[ξh1 + (1− ξ)h2] ∈ P (w).

Step 2: P maps bounded sets into bounded sets in C0. Indeed, it is enough to
show that there exists a positive constant ℓ such that, for each w ∈ Bη = {w ∈ C0 :

||w||(a,b) ≤ η}, one has ||P (w)|| ≤ ℓ̃. Let w ∈ Bη and h ∈ P (w), then there exists
f ∈ SF,w+v such that, for each (t, x) ∈ J , we have

h(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.
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Then, for each (t, x) ∈ J ,

||h(t, x)|| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ)||dτds

≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓ(s, τ)

×(1 + ||w(s,τ) + v(s,τ)||B)dτds

≤ ℓ∗(1 + η∗)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤ ar1br2ℓ∗(1 + η∗)

Γ(r1 + 1)Γ(r2 + 1)
:= ℓ̃,

where ℓ∗ = sup
(t,x)∈J

ℓ(t, x) and

∥w(s,τ) + v(s,τ)∥B ≤ ∥w(s,τ)∥B + ∥v(s,τ)∥B
≤ Kη +K∥ϕ(0, 0)∥+ (M + L′)∥ϕ∥B = η∗.

Hence ||P (w)|| ≤ ℓ̃.
Step 3: P (Bη) is equicontinuous. Let Bη as in Step 2 and let (t1, x1), (t2, x2) ∈

J, t1 < t2 and x1 < x2, let w ∈ Bη and h ∈ P (w), then there exists f ∈ SF,w+v

such that for each (t, x) ∈ J , we have

||h(t2, x2)− h(t1, x1)|| =

=
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]

×||f(s, τ)||dτds+ 1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ)||dτds

≤ ℓ∗(1 + η∗)

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)

r1

+2tr12 (x2 − x1)
r2 + tr11 x

r2
1 − tr12 x

r2
2 − 2(t2 − t1)

r1(x2 − x1)
r2 ].

As t1 → t2 and x1 → x2, the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1 to 3 together with Arzela-Ascoli theorem, we can
conclude that P : C0 →Pcp(C0) is a completely continuous.

Step 4: P has a closed graph. Let wn → w∗, hn ∈ P (wn) and hn → h∗. We
need to show that h∗ ∈ P (w∗).
hn ∈ P (wn) means that there exists fn ∈ SF,w+v such that for each (t, x) ∈ J ,

hn(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1fn(s, τ)dτds.

We must show that there exists f∗ ∈ SF,w+v such that for each (t, x) ∈ J

h∗(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f∗(s, τ)dτds.
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Since F (t, x, .) is upper semicontinuous, then for every ε > 0, there exist n0(ε) ≥ 0
such that for every n ≥ n0, we have

fn(t, x) ∈ F (t, x, wn(t,x)+v(t,x)) ⊂ F (t, x, w∗(t,x)+v(t,x))+εB(0, 1), a.e. (t, x) ∈ J.

Since F (., ., .) has compact values, then there exists a subsequence fnm such that

fnm(., .) → f∗(., .) as m→ ∞
and

f∗(t, x) ∈ F (t, x, w∗(t,x) + v(t,x)), a.e. (t, x) ∈ J.

Then for every w ∈ F (t, x, w(t,x) + v(t,x)), we have

||fnm(t, x)− f∗(t, x)|| ≤ ||fnm(t, x)− w||+ ||w − f∗(t, x)||.
Then

||fnm(t, x)− f∗(t, x)|| ≤ d(fnm(t, x), F (t, x, w∗(t,x) + v(t,x))).

By an analogous relation, obtained by interchanging the roles of fnm and f∗, it
follows that

||fnm(t, x)− f∗(t, x)|| ≤ Hd(F (t, x, wn(t,x) + v(t,x)), F (t, x, w∗(t,x) + v(t,x)))

≤ ℓ(t, x)||wn − w∗||B.
Then

||hnm(t, x)− h∗(t, x)|| ≤

≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓ(t, x)||wnm(s,τ) − w∗(s,τ)||dτds

≤ Kar1br2ℓ∗

Γ(r1 + 1)Γ(r2 + 1)
||wnm − w∗||(a,b)

Hence

||hnm − h∗||(a,b) ≤
Kar1br2ℓ∗

Γ(r1 + 1)Γ(r2 + 1)
||wnm − w∗||(a,b) → 0 as m→ ∞.

Step 5: (A priori bounds). We now show there exists an open U ⊆ C0 with
w ∈ λP (w), for λ ∈ (0, 1) and w ∈ ∂U . Let w ∈ λP (w) for some 0 < λ < 1. Thus
there exists f ∈ SF,w(t,x)+v(t,x)

such that, for each (t, x) ∈ J ,

w(t, x) =
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.

This implies by (H2) that, for each (t, x) ∈ J , we have

||w(t, x)|| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓ(s, τ)

×(1 + ||w(s,τ) + v(s,τ)||B)dτds

≤ ℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
ℓ∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||w(s,τ) + v(s,τ)||Bdτds.

But

∥w(s,τ) + v(s,τ)∥B ≤ ∥w(s,τ)∥B + ∥v(s,τ)∥B
≤ K sup{w(s̃, τ̃) : (s̃, τ̃) ∈ [0, s]× [0, τ ]}
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+ (M + L′)∥ϕ∥B +K∥ϕ(0, 0)∥. (8)

If we name y(s, τ) the right hand side of (8), then we have

∥w(s,τ) + v(s,τ)∥B ≤ y(t, x),

and therefore, for each (t, x) ∈ J we obtain

∥w(t, x)∥ ≤ ℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
ℓ∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, τ)dτds. (9)

Using the above inequality and the definition of y for each (t, x) ∈ J , we have

y(t, x) ≤ (M + L′)∥ϕ∥B +K∥ϕ(0, 0)∥+ Kℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
Kℓ∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, t)dτds.

Then by Lemma 2, there exists δ = δ(r1, r2) such that we have

∥y(t, x)∥ ≤ R+ δ
Kℓ∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1Rdτds,

where

R = (M + L′)∥ϕ∥B +K∥ϕ(0, 0)∥+ Kℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
.

Hence

∥y∥∞ ≤ R+
RδKℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= R̃.

Then, (9) implies that

∥w∥∞ ≤ ℓ∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
(1 + R̃) := R∗.

Set
U = {w ∈ C0 : ||w||(a,b) < R∗ + 1}.

The operator P : U → C0 is continuous and completely continuous. From the
choice of U , there is no w ∈ ∂U such that w ∈ λP (w) for some λ ∈ (0, 1). As a
consequence of the nonlinear alternative of Leray-Schauder type, we deduce that P
has a fixed point w ∈ U which is a solution of the problem (4)-(6).

6. Examples

Example 6.1As an application of our results we consider the following fractional
differential inclusions with finite delay of the form

(cDr
0u)(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))), a.e. (t, x) ∈ J := [0, 1]× [0, 1],

(10)

u(t, x) = t+ x, a.e. (t, x) ∈ J̃ := [−1, 1]× [−2, 1]\(0, 1]× (0, 1], (11)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (12)

where r = (r1, r2) and 0 < r1, r2 ≤ 1.
Set

F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) =
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{u ∈ R : f1(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) ≤ u ≤ f2(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x))))},

where f1, f2 : J × C(J̃ ,R) → R. We assume that for each (t, x) ∈ J, f1(t, x, ·) is

lower semi-continuous (i.e, the set {u ∈ C(J̃ ,R) : f1(t, x, u) > µ} is open for each
µ ∈ R) and assume that for each (t, x) ∈ J, f2(t, x, ·) is upper semi-continuous (i.e,

the set {u ∈ C(J̃ ,R) : f2(t, x, u) < µ} is open for each µ ∈ R). Assume that there
are p ∈ C(J,R+) and ψ∗ : [0,∞) → [0,∞) continuous and nondecreasing such that

max(|f1(t, x, u)|, |f2(t, x, u)|) ≤ p(t, x)ψ∗(||u||),

for each (t, x) ∈ J and all u ∈ C(J̃ ,R).
It is clear that F is compact and convex valued, and it is upper semi-continuous.
Since all the conditions of Theorem 4.3 are satisfied, problem (10)-(12) has at least
one solution u on [−1, 1]× [−2, 1].
Example 6.2 We consider now the following fractional differential inclusions with
infinite delay of the form

(cDr
0u)(t, x) ∈ F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))), if (t, x) ∈ J := [0, 1]×[0, 1], (13)

u(t, x) = t+ x, if (t, x) ∈ J̃ := (−∞, 1]× (−∞, 1]\(0, 1]× (0, 1], (14)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (15)

where r = (r1, r2) and 0 < r1, r2 ≤ 1.Let γ ≥ 0

Bγ= {u ∈ C((−∞, 0]× (−∞, 0],R) : lim∥(θ,η)∥→∞ eγ(θ+η)u(θ, η) exists ∈ R}.
The norm of Bγ is given by

∥u∥γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let

E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1] → R such that u(t,x) ∈ Bγ for (t, x) ∈ E, then

lim
∥(θ,η)∥→∞

eγ(θ+η)u(t,x)(θ, η) = lim
∥(θ,η)∥→∞

eγ(θ−t+η−x)u(θ, η)

= eγ(t+x) lim
∥(θ,η)∥→∞

u(θ, η) <∞.

Hence u(t,x) ∈ Bγ . Finally we prove that

∥u(t,x)∥γ = K sup{|u(s, τ)| : (s, τ) ∈ [0, t]×[0, x]}+M sup{∥u(s,τ)∥γ : (s, τ) ∈ E(t,x)},
where K =M = 1 and H = 1,
If t+ θ ≤ 0, x+ η ≤ 0 we get

∥u(t,x)∥γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]},
and if t+ θ ≥ 0, x+ η ≥ 0 then we have

∥u(t,x)∥γ = sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.
Thus for all (t+ θ, x+ η) ∈ [0, 1]× [0, 1], we get

∥u(t,x)∥γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]}
+sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Then

∥u(t,x)∥γ = sup{∥u(s,τ)∥γ : (s, τ) ∈ E}+ sup{|u(s, τ) : (s, τ) ∈ [0, t]× [0, x]|}.
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(Bγ , ∥.∥γ) is a Banach space. We conclude that Bγ is a phase space.
Set

F (t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) =

{u ∈ R : f1(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x)))) ≤ u ≤ f2(t, x, u(ρ1(t,x,u(t,x)),ρ2(t,x,u(t,x))))},
where f1, f2 : J × Bγ → R. We assume that for each (t, x) ∈ J, f1(t, x, ·) is lower
semi-continuous (i.e, the set {u ∈ Bγ : f1(t, x, u) > ν} is open for each ν ∈ R)
and assume that for each (t, x) ∈ J, f2(t, x, ·) is upper semi-continuous (i.e, the
set {u ∈ Bγ : f2(t, x, u) < ν} is open for each µ ∈ R). Assume that there are
ℓ ∈ L∞(J,R+) and ψ : [0,∞) → [0,∞) continuous and nondecreasing such that

max(|f1(t, x, u)|, |f2(t, x, u)|) ≤ ℓ(t, x)ψ(||u||),

for each (t, x) ∈ J and all u ∈ Bγ .
It is clear that F is compact and convex valued, and it is upper semi-continuous.
Since all the conditions of Theorem 5.2.3 are satisfied, problem (13)-(15) has at
least one solution defined on (−∞, 1]× (−∞, 1].
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