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FRACTIONAL NONLINEAR EVOLUTION EQUATIONS WITH

SECTORIAL LINEAR OPERATORS

BAMBANG HENDRIYA GUSWANTO

Abstract. We study the existence and uniqueness of a local mild solution for

a class of nonlinear evolution equations involving the Caputo fractional time
derivative of order α (0 < α < 1) and a sectorial linear operator A in the linear

part. We put on the nonlinear part some conditions involving the fractional

power of A. By applying Banach Fixed Point Theorem, a unique local mild
solution with smoothing effects, estimates, and a behavior at time t close to 0

is obtained. An example associated with anomalous diffusion with chemotaxis,

as an application of our result, is given.

1. Introduction

Consider the fractional chemotaxis-diffusion system

Dα
t u = ∆u−∇ · u∇v, in Ω× (0,∞),

Dα
t v = ∆v − v + u, in Ω× (0,∞),

∂v

∂n
=
∂u

∂n
= 0, on ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0, in Ω

(1.1)

where 0 < α < 1, Dα
t is the Caputo fractional derivative of order α, and Ω ⊂ R2 is

a bounded domain with C2 boundary. The first equation of the system (1.1) which
is called the fractional chemotaxis-diffusion equation was derived by Langlands and
Henry in [1]. When α = 1, the system (1.1) is well known by the Keller-Segel
chemotaxis (KS) model. In this model (KS), u and v stand for the concentration
of amoebae and acrasin, respectively, where acrasin is a chemoattractant produced
by the amoebae. The model (KS) describes the space and time evolution of the
concentration of diffusing amoebae that is chemotactically attracted by diffusing
acrasin (see [2]). In general, the model (KS) can be used to explain the space
and time evolution of the concentration of a diffusing species that is chemotacti-
cally attracted by a diffusing chemoattractant. Meanwhile, when 0 < α < 1, the
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system (1.1) describes the process in which the attracted species and attracting
chemoattractant diffuse anomalously.

In this paper, we study the existence and uniqueness of a local mild solution to
the fractional abstract Cauchy problem associated with the system (1.1), that is

Dα
t u = Au+ f(u), t > 0, 0 < α < 1,

u(0) = u0,
(1.2)

where X is a Banach space, Dα
t is the Caputo fractional derivative of order α,

A : D(A) ⊆ X → X is a sectorial linear operator, u0 ∈ X, and f : X → X satisfies
some nonlinear conditions. Guswanto and Suzuki in [3] also studied this problem
with f and u0 satisfying the conditions :

(f1) f(0) = 0,
(f2) there exist C0 > 0, ϑ > 1, and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0(‖Aβu‖+ ‖Aβv‖)ϑ−1‖Aβu−Aβv‖,
for all u, v ∈ D(Aβ),

(f3) u0 ∈ D(Aν) for some 0 < ν < 1.

Meanwhile, here, we use another conditions on f and u0 as stated below :

(F1) f(0) = 0,
(F2) there exist C0 > 0 and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0

[
(‖u‖+ ‖v‖)‖Aβu−Aβv‖

+(‖Aβu‖+ ‖Aβv‖)‖u− v‖
]
,

for all u, v ∈ D(Aβ),
(F3) u0 ∈ D(A).

The conditions (F1)-(F3) are the case of Yagi [4]. Von Wahl, in [5], used these
conditions to study the Navier-Stokes equations. As in [3, 4, 5], we apply Banach
Fixed Point Theorem to construct a local mild solution to the problem (1.2) by
employing the properties of the solution operators generated by A and the fractional
power of A. In this paper, we obtain the existence and uniqueness of a local mild
solution with smoothing effects, estimates, and a behavior at time t close to 0.

This paper is composed of four sections. In section 2, we introduce briefly the
fractional integration and differentiation of Caputo operator. In this section, we
also provides some properties of analytic solution operators for fractional evolution
equations including some estimates involving the fractional power of sectorial op-
erators. In the next section, our main result is shown. Finally, in the last section,
an application of our main result to investigate the solution to the system (1.1)
describing anomalous Diffusion problem with chemotaxis is given.

2. Preliminaries

2.1. Fractional Time Derivative. Let 0 < α < 1, a ≥ 0 and I = (a, T ) for some
T > 0. The fractional integral of order α is defined by

Jαa,tf(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds, f ∈ L1(I), t > a. (2.1)

We set J0
a,tf(t) = f(t). The fractional integral operator (2.1) obeys the semigroup

property

Jαa,tJ
β
a,t = Jα+β

a,t , 0 ≤ α, β < 1. (2.2)
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Caputo fractional derivative of order α is defined by

Dα
a,tf(t) = Dt

∫ t

a

(t− s)−α

Γ(1− α)
(f(s)− f(0))ds, t > a, (2.3)

if f ∈ L1(I), t−α ∗ f ∈W 1,1(I), or

Dα
a,tf(t) =

∫ t

a

(t− s)−α

Γ(1− α)
Dsf(s)ds, t > a, (2.4)

if f ∈W 1,1(I) where ∗ denotes the convolution of functions

(f ∗ g)(t) =

∫ t

a

f(t− τ)g(τ)dτ, t > a,

and W 1,1(I) is the set of all functions u ∈ L1(I) such that the distributional
derivative of u exists and belongs to L1(I). The operator Dα

a,t is a left inverse of
Jαa,t, that is

Dα
a,tJ

α
a,tf(t) = f(t), t > a, (2.5)

but it is not a right inverse, that is

Jαa,tD
α
a,tf(t) = f(t)− f(a), t > a. (2.6)

For a = 0, we set Jαa,t = Jαt and Dα
a,t = Dα

t . We refer to Kilbas et al. [6] or
Podlubny [7] for more details concerning the fractional integral and derivative.

2.2. Analytic Solution Operators. In this section, we provide briefly some re-
sults concerning solution operators for the fractional Cauchy problem

Dα
t u(t) = Au(t) + f(t), t > 0,

u(0) = u0.
(2.7)

For more details, we refer to Guswanto [8].
Henceforth, we assume that the linear operator A : D(A) ⊆ X → X satisfies the

properties that there is a constant θ ∈ (π/2, π) such that

ρ(A) ⊃ Sθ = {λ ∈ C : λ 6= 0, | arg(λ)| < θ}, (2.8)

‖R(λ;A)‖ ≤ M

|λ|
, λ ∈ Sθ, (2.9)

where R(λ;A) = (λ − A)−1 and ρ(A) are the resolvent operator and resolvent set
of A, respectively. We call A a sectorial operator.

Proposition 2.1. Every sectorial operator is closed

Proof. We suppose A is a sectorial operator. To prove A is closed, we must show
that if {xn}n∈N ⊆ D(A), xn → x ∈ X, and Axn → y ∈ X, as n → ∞, then
x ∈ D(A) and Ax = y.

Note that the resolvent set ρ(A) of A contains all λ ∈ C such that λ−A : D(A)→
X is bijective and the resolvent operator R(λ;A) of A is bounded. Thus, since, for
any λ ∈ ρ(A), λ−A is bijective, we have if zn = (λ−A)xx then xn = R(λ;A)zn for
n ∈ N. Observe that zn → λx − y, as n → ∞. Consequently, by the boundedness
(which is equivalent to the conitinuity) of R(λ;A), we get x = R(λ;A)(λx − y)
implying (λ−A)x = λx− y. We obtain x ∈ D(A) and Ax = y. �

Definition 2.1. For r > 0 and π/2 < ω < θ,

Γr,ω = {λ ∈ C : | arg(λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : | arg(λ)| ≤ ω, |λ| = r}.
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The linear operator A generates solution operators for the problem (2.7), those
are

Sα(t) =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ, t > 0, (2.10)

Pα(t) =
1

2πi

∫
Γr,ω

eλtR(λα;A)dλ, t > 0, (2.11)

where Γr,ω is oriented counterclockwise. By Cauchy’s theorem, the integral form
(2.10) and (2.11) are independent of r > 0 and ω ∈ (π/2, θ).

Let B(X;Y ) be the set of all bounded linear operators T : X → Y where X and
Y are Banach spaces. If X = Y then B(X;X) := B(X). Also, let BC((0, T ];X)
be the set of all bounded and continuous functions w : (0, T ]→ X.

The properties of the families {Sα(t)}t>0 and {Pα(t)}t>0 are given in the follow-
ing theorems.

Theorem 2.1. Let A be a sectorial operator and Sα(t) be the operator defined by
(2.10). Then the following statements hold.

(i) Sα(t) ∈ B(X) and there exists a constant C1 = C1(α) > 0 such that

‖Sα(t)‖ ≤ C1, t > 0,

(ii) Sα(t) ∈ B(X;D(A)) for t > 0, and if x ∈ D(A) then ASα(t)x = Sα(t)Ax.
Moreover, there exists a constant C2 = C2(α) > 0 such that

‖ASα(t)‖ ≤ C2t
−α, t > 0,

(iii) The function t 7→ Sα(t) belongs to C∞((0,∞);B(X)) and it holds that

S(n)
α (t) =

1

2πi

∫
Γr,ω

etλλα+n−1R(λα;A)dλ, n = 1, 2, . . .

and there exist constants Mn = Mn(α) > 0, n = 1, 2, . . . such that

‖S(n)
α (t)‖ ≤Mnt

−n, t > 0,

Moreover, it has an analytic continuation Sα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Sα(z) =
1

2πi

∫
Γr,η

eλzλα−1R(λα;A)dλ.

Theorem 2.2. Let A be a sectorial operator and Pα(t) be the operator defined by
(2.11). Then the following statements hold.

(i) Pα(t) ∈ B(X) and there exists a constant L1 = L1(α) > 0 such that

‖Pα(t)‖ ≤ L1t
α−1, t > 0,

(ii) Pα(t) ∈ B(X;D(A)) for all t > 0, and if x ∈ D(A) then APα(t)x =
Pα(t)Ax. Moreover, there exists a constant L2 = L2(α) > 0 such that

‖APα(t)‖ ≤ L2t
−1, t > 0,

(iii) The function t 7→ Pα(t) belongs to C∞((0,∞);B(X)) and it holds that

P (n)
α (t) =

1

2πi

∫
Γr,ω

etλλnR(λα;A)dλ, n = 1, 2, . . .

and there exist constants Kn = Kn(α) > 0, n = 1, 2, . . . such that

‖P (n)
α (t)‖ ≤ Knt

α−n−1, t > 0,
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Moreover, it has an analytic continuation Pα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Pα(z) =
1

2πi

∫
Γr,η

eλzR(λα;A)dλ.

The following theorem states some identities concerning the operators Sα(t) and
Pα(t) including the semigroup-like property.

Theorem 2.3. Let A be a sectorial operator, Sα(t) and Pα(t) be the operators
defined by (2.10) and (2.11), respectively. Then the following statements hold.

(i) For x ∈ X and t > 0,

Sα(t)x = J1−α
t Pα(t)x, DtSα(t)x = APα(t)x,

(ii) For x ∈ D(A) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x,

Sα(t+ s)x = Sα(t)Sα(s)x−A
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ.

Next theorem shows us the behavior of the operator Sα(t) at t close to 0+.

Theorem 2.4. Let A be a sectorial operator and Sα(t) be the operator defined by
(2.10). Then the following statements hold.

(i) If x ∈ D(A) then limt→0+ Sα(t)x = x,
(ii) For every x ∈ D(A) and t > 0,∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A),∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x,

(iii) If x ∈ D(A) and Ax ∈ D(A) then

lim
t7→0+

Sα(t)x− x
tα

=
1

Γ(α+ 1)
Ax.

The representation of the solution to (2.7) in term of Sα(t) and Pα(t) is given in
the following theorem.

Theorem 2.5. Let u ∈ C1((0,∞);X)∩L1((0,∞);X), u(t) ∈ D(A) for t ∈ [0,∞),
Au ∈ L1((0,∞);X), f ∈ L1((0,∞);D(A)), and Af ∈ L1((0,∞);X). If u is a
solution to the problem (2.7) then

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s)ds, t > 0. (2.12)

Now, we consider the fractional power of operator A

A−βx =
1

2πi

∫
Γr,ω

λ−βR(λ;A)xdλ, x ∈ X, (2.13)

and Aβ = (A−β)−1, for β > 0. If x ∈ D(A), we can denote Aβx by

Aβx = A(Aβ−1x) =
1

2πi

∫
Γr,ω

λβ−1R(λ;A)Axdλ, 0 < β < 1. (2.14)
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Proposition 2.2. Let A be a sectorial operator and β > 0. The fractional power
A−β of A is a bounded operator on X.

Proof. Since A is sectorial, there is a constant θ ∈ (π/2, π) such that (2.8) and (2.9)
are satisfied. Then, by Definition 2.1 and (2.13), for β > 0 and x ∈ X, we have

‖A−βx‖ ≤ 1

2π

∫
Γr,ω

‖λ−βR(λ;A)x‖|dλ|

≤ M

2π

∫
Γr,ω

|λ|−β−1|dλ|‖x‖

=
M

2π

(
2

∫ ∞
r

R−β−1dR+

∫ ω

−ω
r−βdθ

)
‖x‖

=
M

πrβ

(
1

β
+ ω

)
‖x‖.

Thus A−β is a bounded operator on X for β > 0. �

By the boundedness of A−β for β > 0, we get the closedness of Aβ for β > 0.

Proposition 2.3. Let A be a sectorial operator and β > 0. The fractional power
Aβ of A is closed.

Proof. To show that Aβ is closed, we must prove that if {xn}n∈N ⊆ D(Aβ), xn →
x ∈ X, and Aβxn → y ∈ X, as n → ∞, then x ∈ D(Aβ) and Aβx = y. Recall
that Aβ = (A−β)−1. It follows that if yn = Aβxn then xn = A−βyn for n ∈ N.
By Proposition 2.2, A−β is a bounded or continuous operator on X. Consequently,
since xn → x and yn → y, as n → ∞, we have x = A−βy. It implies x ∈ D(Aβ)
and y = Aβx. �

Some estimates involving Aβ and the operators families {Sα(t)}t>0, {Pα(t)}t>0

generated by the sectorial operator A are provided by the following theorem. These
estimates are analogous to those as stated in Theorem 6.13 in [9] for analytic semi-
groups.

Theorem 2.6. For each 0 < β < 1, there exist positive constants C ′1 = C ′1(α, β),
C ′2 = C ′2(α, β), and C ′3 = C ′3(α, β) such that for all x ∈ X,

‖AβSα(t)x‖ ≤ C ′1t−α(t−α(β−1) + 1)‖x‖, t > 0, (2.15)

‖AβPα(t)x‖ ≤ C ′2t−α(β−1)−1‖x‖, t > 0. (2.16)

Moreover, for all x ∈ D(Aβ),

‖Sα(t)x− x‖ ≤ C ′3tαβ‖Aβx‖, t > 0. (2.17)

Now, let ξζ = α(ζ − 1) + 1, for 0 < ζ < 1, and x+ = max{0, x}, for x ∈ R. Thus
we have the following results.

Corollary 2.1. For each β > (2− 1/α)+ and x ∈ X,

tξβ‖AβSα(t)x‖ ≤ 2C ′1‖x‖, 0 < t ≤ 1, (2.18)

tξβ‖AβSα(t)x‖ ≤ 2C ′1t
1−α‖x‖, t > 1, (2.19)

tξβ‖AβPα(t)x‖ ≤ C ′2‖x‖, t > 0, (2.20)

and
tξβ‖AβSα(t)x‖ → 0, as t→ 0+. (2.21)
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Remark 2.1. If β = 2 − 1/α > 0, implying ξβ − α = 0, the estimates (2.18),
(2.19), and (2.20) still hold for all x ∈ X. Furthermore, using (2.13), (2.14),
Theorem 2.1(i), Theorem 2.1(ii), and Proposition 2.2, if x ∈ D(A) then

‖AβSα(t)x‖ =

∥∥∥∥ 1

2πi

∫
Γr,ω

λβ−1R(λ;A)Sα(t)Axdλ

∥∥∥∥
= ‖Aβ−1Sα(t)Ax‖

≤ C1‖Aβ−1‖‖Ax‖

implying (2.21).

Furthermore, we have the same result as Theorem 2.3(ii) with weaker condition.

Theorem 2.7. Let 0 < β < 1. Then, for x ∈ D(Aβ) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x, (2.22)

Sα(t+ s)x = Sα(t)Sα(s)x−A
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ. (2.23)

3. Main Results

In this section, we show the existence and uniqueness of a mild solution for the
problem (1.2) under certain conditions by applying Banach Fixed Point Theorem.
Based on Theorem 2.5, we define a mild solution to the problem (1.2) as follows.

Definition 3.1. A continuous function u : (0, T ] → X is a mild solution to the
problem (1.2) if it satisfies

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(u(s))ds, 0 < t ≤ T.

The conditions on f are

(i) f(0) = 0,
(ii) there exist C0 > 0 and 0 < β < 1 such that

‖f(u)− f(v)‖ ≤ C0

[
(‖u‖+ ‖v‖)‖Aβu−Aβv‖

+(‖Aβu‖+ ‖Aβv‖)‖u− v‖
]
,

(3.1)

for all u, v ∈ D(Aβ).

Under the conditions on f above, we obtain the following result.

Theorem 3.1. Let A be sectorial, u0 ∈ D(A), and 1/2 < α < 1. Then there exists
rα > 0 such that if ‖u0‖ < rα then, for some T > 0, the problem (1.2) has a unique
mild solution u satisfying

u ∈ BC((0, T ];D(A2−1/α)), tαA2−1/αu ∈ BC((0, T ];X),

lim
t→0+

tαA2−1/αu(t) = 0

with

‖u(t)‖ ≤M1‖u0‖, ‖A2−1/αu(t)‖ ≤M2t
−α‖u0‖, t ∈ (0, T ],

for some Mi > 0, i = 1, 2.
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Proof. Observe that 1/2 < α < 1 assures that 0 < 2− 1/α < 1 and if β = 2− 1/α
then ξβ = α. We then define the Banach space

Eα,T =
{
u : [0, T ]→ X : u ∈ BC((0, T ];D(Aβ)), tαAβu ∈ BC((0, T ];X)

}
equipped with the norm

‖|u|‖α,T = sup
0<t≤T

tα‖Aβu(t)‖+ sup
0<t≤T

‖u(t)‖.

We also define a mapping F on Bα,T by

Fu(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(u(s))ds, 0 < t ≤ T,

where Bα,T is the closed subset of Eα,T defined by

Bα,T =

{
u ∈ Eα,T : sup

0<t≤T
tα‖Aβu(t)‖ ≤ K1, sup

0<t≤T
‖u(t)− u0‖ ≤ K2

}
with T , K1, and K2 are some positive constants which will be specified later.

Step 1. We prove that Eα,T is a Banach space. Suppose that {un}n∈N is a
Cauchy sequence in Eα,T . It means that ‖|um − un|‖α,T → 0, as m,n → ∞.
Consequently, for 0 < t ≤ T ,

‖um(t)− un(t)‖ ≤ sup
0<t≤T

‖um(t)− un(t)‖ → 0, as m,n→∞ (3.2)

and

tα‖Aβum(t)−Aβun(t)‖ ≤ sup
0<t≤T

tα‖Aβum(t)−Aβun(t)‖ → 0, as m,n→∞. (3.3)

In other words, from (3.2) and (3.3), both {un(t)}n∈N and {tαAβun(t)}n∈N, for
0 < t ≤ T , are Cauchy sequences in X. Since X is a Banach space, there exist
u(t) ∈ X and v(t) ∈ X such that un(t)→ u(t) and tαAβun(t)→ v(t), as n→∞, for
0 < t ≤ T , respectively. Moreover, both {un(t)}n∈N and {tαAβun(t)}n∈N converge
uniformly in X for 0 < t ≤ T . Note that, for 0 < t ≤ T ,

‖u(t)‖ = lim
n→∞

‖un(t)‖ <∞

and
‖v(t)‖ = lim

n→∞
tα‖Aβun(t)‖ <∞

implying that u(t), v(t) ∈ B((0, T ];X). Next, consider that, by Proposition 2.3, Aβ

is closed. It implies that u(t) ∈ D(Aβ) and tαAβu(t) = v(t), for 0 < t ≤ T . Finally,
since, for 0 < t ≤ T , both {un(t)}n∈N and {tαAβun(t)}n∈N converge uniformly in
X, we have u(t) ∈ C((0, T ];D(Aβ)) and tαAβu(t) ∈ C((0, T ];X). Thus u(t) ∈
BC((0, T ];D(Aβ)) and tαAβu(t) ∈ BC((0, T ];X). We obtain Eα,T is a Banach
space.

Step 2. We prove the continuity of AβFu(t) and Fu(t) with respect to t ∈ (0, T ]
in the norm ‖ · ‖ of X. Observe that, by Theorem 2.1(ii), for each x ∈ X, Sα(t)x ∈
D(A), t > 0. Then by (2.13), (2.14), and Theorem 2.1(ii) again, for u0 ∈ D(A) and
0 < β < 1,

AβSα(t)u0 =
1

2πi

∫
Γr,ω

λβ−1R(λ;A)Sα(t)Au0dλ = Aβ−1Sα(t)Au0. (3.4)

By Proposition 2.2, for 0 < β < 1, Aβ−1 is a bounded operator on X. Next,
note that, by Theorem 2.1(iii), Sα(t)Au0 is continuous with respect to t ∈ (0,∞).
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Consequently, by (3.4) and the boundedness of Aβ−1, for 0 < β < 1, we have, for
u0 ∈ D(A), AβSα(t)u0 is continuous with respect to t ∈ (0,∞). Thus it remains to
show the continuity of

Aβ
∫ t

0

Pα(t− s)f(u(s))ds, 0 < t ≤ T.

Consider that

Aβ
∫ t+h

0

Pα(t+ h− s)f(u(s))ds−Aβ
∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

−h
Pα(t− s)f(u(s+ h))ds−Aβ

∫ t

0

Pα(t− s)f(u(s))ds

= Aβ
∫ t

0

Pα(t− s)(f(u(s+ h))− f(u(s)))ds

+Aβ
∫ h

0

Pα(t+ h− s)f(u(s))ds.

Observe that, for u ∈ Bα,T ,

‖f(u(t+ h))− f(u(t))‖ ≤ 2C0

[
(K2 + ‖u0‖)‖Aβu(t+ h)−Aβu(t)‖

+K1t
−α‖u(t+ h)− u(t)‖

] (3.5)

and

‖f(u(t))‖ ≤ 2C0‖u(t)‖‖Aβu(t)‖ ≤ 2C0K1(K2 + ‖u0‖)t−α (3.6)

for 0 < t ≤ T . Then, by (2.16) and (3.5), we have∫ t

0

‖AβPα(t− s)(f(u(s+ h))− f(u(s)))‖ds

≤ 2C0C
′
2(α, β)(K2 + ‖u0‖)

∫ t

0

(t− s)−α‖Aβu(s+ h)−Aβu(s)‖ds

+ 2C0C
′
2(α, β)K1

∫ t

0

(t− s)−αs−α‖u(s+ h)− u(s)‖ds.

Note that, for 0 < s < t ≤ T ,

(t− s)−α‖Aβu(s+ h)−Aβu(s)‖ ≤ 2K1(t− s)−αs−α,

s 7→ 2K1(t− s)−αs−α ∈ L1((0, t);H).

Next, consider that since tαAβu ∈ BC((0, T ];X), we have that tαAβu(t) is bounded
and continuous with respect to t ∈ (0, T ] in the norm ‖ · ‖ of X. Then Aβu(t) =
t−α

(
tαAβu(t)

)
is also continuous with respect to t ∈ (0, T ] in the norm ‖ · ‖ of X.

Thus we have

‖Aβu(s+ h)−Aβu(s)‖ → 0, ash→ 0.

Hence, by the Dominated Convergence Theorem, we get∫ t

0

(t− s)−α‖Aβu(s+ h)−Aβu(s)‖ds→ 0, ash→ 0. (3.7)

Similarly, we obtain∫ t

0

(t− s)−αs−α‖u(s+ h)− u(s)‖ds→ 0, ash→ 0. (3.8)
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By (3.7) and (3.8), we have∫ t

0

‖AβPα(t− s)(f(u(s+ h))− f(u(s)))‖ds→ 0, ash→ 0.

Next, observe that, by (2.16) and (3.6),∫ h

0

‖AβPα(t+ h− s)‖‖f(u(s))‖ds

≤ 2C0C
′
2(α, β)K1(K2 + ‖u0‖)

∫ h

0

(t+ h− s)−αs−αds

= 2C0C
′
2(α, β)K1(K2 + ‖u0‖)(t+ h)1−2α

∫ h
t+h

0

(1− r)−αr−αdr

= 2C0C
′
2(α, β)K1(K2 + ‖u0‖)(t+ h)1−2α · 1

1− α

·
(

h

t+ h

)1−α

H

(
1− α, α; 2− α;

h

t+ h

)
=

2C0C
′
2(α, β)K1(K2 + ‖u0‖)

1− α
h1−α(t+ h)−αH

(
1− α, α; 2− α;

h

t+ h

)
where

H(a, b; c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− xt)a
dt, c− b− a > 0, |x| ≤ 1,

is Hypergeometric function (see [6]). Thus∫ h

0

‖AβPα(t+ h− s)‖‖f(u(s))‖ds→ 0, ash→ 0.

Hence AβFu(t) is continuous with respect to t ∈ (0, T ] in X since AβSα(t)u0 is
also continuous with respect to t ∈ (0,∞) in X. Using the way which is similar to
that used to prove that AβFu(t) is continuous with respect to t ∈ (0, T ] in X, we
can also obtain that Fu(t) is continuous with respect to t ∈ (0, T ] in X.

Step 3. We shall find K1 > 0,K2 > 0, and T > 0 such that

sup
0<t≤T

tα‖AβFu(t)‖ ≤ K1, sup
0<t≤T

‖Fu(t)− u0‖ ≤ K2. (3.9)

By Theorem 2.2(i) and (3.6), we have, for 0 < t ≤ T ,∫ t

0

‖Pα(t− s)f(u(s))‖ds ≤ 2C0L1(α)K1(K2 + ‖u0‖)
∫ t

0

(t− s)α−1s−αds

= 2C0L1(α)K1(K2 + ‖u0‖)B(1− α, α)

where

B(η, ν) =

∫ 1

0

rη−1(1− r)ν−1dr, η, ν > 0

is Beta function. Hence

‖Fu(t)− u0‖ ≤ ‖Sα(t)u0 − u0‖+ 2C0L1(α)K1(K2 + ‖u0‖)B(1− α, α). (3.10)
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Similarly, by (2.16) and (3.6), we get∫ t

0

‖AβPα(t− s)f(u(s))‖ds ≤ 2C0C
′
2(α, β)K1(K2 + ‖u0‖)

∫ t

0

(t− s)−αs−αds

= 2C0C
′
2(α, β)K1(K2 + ‖u0‖)B(1− α, 1− α)t1−2α

implying

tα‖AβFu(t)‖ ≤ tα‖AβSα(t)u0‖
+ 2C0C

′
2(α, β)K1(K2 + ‖u0‖)B(1− α, 1− α)t1−α.

(3.11)

We shall choose K1 = K2 = K > 0 such that

K/4− 2C0L1(α)K(K + ‖u0‖)B(1− α, α) > 0 (3.12)

and
K/4− 2C0C

′
2(α, β)K(K + ‖u0‖)B(1− α, 1− α) > 0. (3.13)

In order to do it, we take first

rα =
1

8C0
min

{(
L1(α)B(1− α, α)

)−1
,
(
C ′2(α, β)B(1− α, 1− α)

)−1
}
.

It follows that if ‖u0‖ < rα then

a = 1/4− 2C0L1(α)B(1− α, α)‖u0‖ > 0

and
b = 1/4− 2C0C

′
2(α, β)B(1− α, 1− α)‖u0‖ > 0

implying that we can find such a K since (3.12) and (3.13) are equivalent to

aK − cK2 > 0

and
bK − dK2 > 0,

respectively, where
c = 2C0L1(α)B(1− α, α) > 0

and
d = 2C0C

′
2(α, β)B(1− α, 1− α) > 0.

Note that, by Theorem 2.4(i),

‖Sα(t)u0 − u0‖ → 0, as t→ 0+ (3.14)

and, by Remark 2.1,
tα‖AβSα(t)u0‖ → 0, as t→ 0+. (3.15)

Then, by (3.14) and (3.15), we can choose T > 0 such that

sup
0<t≤T

‖Sα(t)u0 − u0‖ ≤ K/4− 2C0L1(α)K(K + ‖u0‖)B(1− α, α) (3.16)

and

sup
0<t≤T

tα‖AβSα(t)u0‖ ≤ K/4− 2C0C
′
2(α, β)K(K + ‖u0‖)B(1− α, 1− α), (3.17)

respectively. Applying (3.16) to (3.10), we have

sup
0<t≤T

‖Fu(t)− u0‖ ≤ sup
0<t≤T

‖Sα(t)u0 − u0‖

+ 2C0L1(α)K(K + ‖u0‖)B(1− α, α)

≤ K/4.
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Similarly, applying (3.17) to (3.11), we get

sup
0<t≤T

tα‖AβFu(t)‖ ≤ sup
0<t≤T

tα‖AβSα(t)u0‖

+ 2C0C
′
2(α, β)K(K + ‖u0‖)B(1− α, 1− α)

≤ K/4.
Thus (3.9) is satisfied.

Step 4. We prove F is a contraction in Bα,T . Observe that

‖f(u(t))− f(v(t))‖ ≤ 2C0(K1 +K2 + ‖u0‖)t−α‖|u− v|‖α,T .

Therefore, by Theorem 2.2(i),

‖Fu(t)− Fv(t)‖ ≤ 2C0L1(α)(K1 +K2 + ‖u0‖)
∫ t

0

(t− s)α−1s−αds‖|u− v|‖α,T

≤ 2C0L1(α)(K1 +K2 + ‖u0‖)B(1− α, α)‖|u− v|‖α,T
and, by (2.16),

tα‖AβFu(t)−AβFv(t)‖

≤ 2C0C
′
2(α, β)(K1 +K2 + ‖u0‖)tα

∫ t

0

(t− s)−αs−αds‖|u− v|‖α,T

≤ 2C0C
′
2(α, β)(K1 +K2 + ‖u0‖)B(1− α, 1− α)t1−α‖|u− v|‖α,T .

Then

‖|Fu− Fv|‖α,T ≤ K ′‖|u− v|‖α,T
where

K ′ = 2C0(K1 +K2 + ‖u0‖) [L1(α)B(1− α, α) + C ′2(α, β)B(1− α, 1− α)] .

Note that, with K > 0 specified as in (3.12) and (3.13), we have

C0L1(α)(K + ‖u0‖)B(1− α, α) < 1/8 (3.18)

and
C0C

′
2(α, β)(K + ‖u0‖)B(1− α, 1− α) < 1/8 (3.19)

implying 0 < K ′ < 1. It means that F is a contraction mapping from Bα,T into
itself.

Then, by Banach Fixed Point Theorem, we obtain a unique u ∈ Bα,T which is a
mild solution to the problem (1.2). Furthermore, consider that, based on (3.11),

tα‖Aβu(t)‖ ≤ tα‖AβSα(t)u0‖
+ 2C0C

′
2(α, β)K(K + ‖u0‖)B(1− α, 1− α)t1−α.

(3.20)

Since u0 ∈ D(A), we have

tα‖AβSα(t)u0‖ → 0, as t→ 0+

by Remark 2.1. It implies that

lim
t→0+

tα‖Aβu(t)‖ = 0

by (3.20). Moreover, we can find that there exist Mi > 0, i = 1, 2, such that

‖u(t)‖ ≤M1‖u0‖, ‖Aβu(t)‖ ≤M2t
−α‖u0‖, t ∈ (0, T ].

�
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4. Applications

We consider again the fractional chemotaxis-diffusion system (1.1)

Dα
t u = ∆u−∇ · u∇v, in Ω× (0,∞),

Dα
t v = ∆v − v + u, in Ω× (0,∞),

∂v

∂n
=
∂u

∂n
= 0, on ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0, in Ω

with 4/5 < α < 1 and Ω ⊂ R2 is a bounded domain with C2 boundary. We define
the Banach space

X =

{(
u
v

)
: u ∈ L2(Ω), v ∈ H2

N (Ω)

}
where

H2
N (Ω) =

{
u ∈ H2(Ω) :

∂u

∂n
= 0 on ∂Ω

}
equipped with the norm∥∥∥∥(uv

)∥∥∥∥ =
(
‖u‖2L2(Ω) + ‖v‖2H2(Ω)

) 1
2

,

(
u
v

)
∈ X.

The abstract formulation of the problem (1.1) is

Dα
t U = AU + F (U), t > 0,

U(0) = U0

in X =

{(
u
v

)
: u ∈ L2(Ω), v ∈ H2

N (Ω)

}
where

A =

(
A1 0
I A2

)
, F (U) = −

(
∇ · u∇v

0

)
, U =

(
u
v

)
, U0 =

(
u0

v0

)
with A1 = ∆, A2 = ∆− I, and

D(A) =

{(
u
v

)
: u ∈ H2

N (Ω), v ∈ H4
N2(Ω)

}
where

H4
N2(Ω) =

{
v ∈ H2

N (Ω) : ∆v ∈ H2
N (Ω)

}
.

The operator Ai, i = 1, 2 is dissipative and self adjoint implying that Ai, i = 1, 2
is sectorial in H2

N (Ω). Moreover, for any λ ∈ Sθ with θ ∈ (π/2, π), we get

(λ−A)−1 =

(
(λ−A1)−1 0

(λ−A2)−1(λ−A1)−1 (λ−A2)−1

)
=

(
(λ−A1)−1 0

A−1
2 A2(λ−A2)−1(λ−A1)−1 (λ−A2)−1

)
=

(
(λ−A1)−1 0

A−1
2 [λ(λ−A2)−1 − I](λ−A1)−1 (λ−A2)−1

)
.

Thus, there exists M > 0 such that ‖(λ−A)−1‖ ≤M/|λ| for all λ ∈ Sθ.
For 3/4 < β ≤ 1, we define

H2β
N (Ω) =

{
u ∈ H2β(Ω) :

∂u

∂n
= 0 on ∂Ω

}
.
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Since ∇ · u∇v = ∇u · ∇v + u∆v, we have, for 1/2 < β ≤ 1,

‖∇ · u∇v‖L2(Ω) ≤ C‖u‖H2β(Ω)‖v‖H2(Ω), u ∈ H2β(Ω), v ∈ H2(Ω), (4.1)

for some constant C > 0. Next, for 3/4 < β ≤ 1, D(Aβ1 ) = D(Aβ2 ) = H2β
N (Ω) and

‖u‖H2β(Ω) ≤ Ri‖A
β
i u‖L2(Ω), u ∈ H2β

N (Ω), i = 1, 2, (4.2)

for some constants Ri > 0, i = 1, 2. Furthermore, we obtain that, for 3/4 < β ≤ 1,

D(Aβ) =

{(
u
v

)
: u ∈ H2β

N (Ω), v ∈ H2(β+1)
N2 (Ω)

}
(4.3)

where

H2(β+1)
N2 (Ω) =

{
v ∈ H2

N (Ω) : ∆v ∈ H2β
N (Ω)

}
(see [4]).

Thus, using (4.1), (4.2), (4.3), and the inequalities

(a+ b)p ≤ 2p−1(ap + bp), a, b ≥ 0, p ≥ 1,

a2 + b2 ≤ (a+ b)2, a, b ≥ 0,

for 3/4 < β ≤ 1, F satisfies

‖F (U)− F (V )‖2

=

∥∥∥∥(∇ · (u1 − u2)∇v1 −∇ · u2∇(v2 − v1)
0

)∥∥∥∥2

= ‖∇ · (u1 − u2)∇v1 −∇ · u2∇(v2 − v1)‖2L2(Ω)

≤ C2
[
‖u1 − u2‖H2β(Ω)‖v1‖H2(Ω) + ‖u2‖H2β(Ω)‖v1 − v2‖H2(Ω)

]2
≤ C2R2

1

[
‖Aβ1 (u1 − u2)‖L2(Ω)‖v1‖H2(Ω) + ‖Aβ1u2‖L2(Ω)‖v1 − v2‖H2(Ω)

]2
≤ 2C2R2

1

[
‖Aβ1u1 −Aβ1u2‖2L2(Ω)‖v1‖2H2(Ω) + ‖Aβ1u2‖2L2(Ω)‖v1 − v2‖2H2(Ω)

]
≤ 2C2C ′

[
‖AβU −AβV ‖2 (‖U‖+ ‖V ‖)2

+
(
‖AβU‖+ ‖AβV ‖

)2 ‖U − V ‖2]
≤ 2C2C ′

[
‖AβU −AβV ‖ (‖U‖+ ‖V ‖) +

(
‖AβU‖+ ‖AβV ‖

)
‖U − V ‖

]2
for some constant C ′ > 0 with

U =

(
u1

v1

)
∈ D(Aβ), V =

(
u2

v2

)
∈ D(Aβ).

It follows that, for some constant C0 > 0,

‖F (U)−F (V )‖ ≤ C0

[
(‖U‖+ ‖V ‖) ‖AβU −AβV ‖+

(
‖AβU‖+ ‖AβV ‖

)
‖U − V ‖

]
.

By Theorem 3.1, for β = 2−1/α with 4/5 < α < 1 and U0 ∈ D(A) with ‖U0‖ < rα,
we conclude that, for some T > 0, the problem (1.1) has a unique mild solution U
satisfying

U ∈ BC((0, T ] : D(Aβ)), tαAβU ∈ BC((0, T ] : X),

lim
t→0+

tαAβU(t) = 0

with
‖U(t)‖ ≤M1‖U0‖, ‖AβU(t)‖ ≤M2t

−α‖U0‖, t ∈ (0, T ]

for some Mi > 0, i = 1, 2.
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