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APPROXIMATE CONTROLLABILITY OF FRACTIONAL

INTEGRO-DIFFERENTIAL EVOLUTION EQUATIONS WITH

NONLOCAL AND NON-INSTANTANEOUS IMPULSIVE

CONDITIONS

ARSHI MERAJ, DWIJENDRA N. PANDEY

Abstract. In this article, we will discuss the existence of mild solutions
and approximate controllability for a class of fractional semilinear integro-
differential equations with nonlocal and impulsive conditions for which the

impulses are not instantaneous. The results are obtained by using semigroup
theory, Kuratowski measure of noncmpactness and ρ-set contractive fixed point
theorem, without imposing the condition of Lipschitz continuity on nonlinear

term as well as the condition of compactness on impulsive functions and non-
local function. At the end, an example is presented to illustrate the obtained
results.

1. Introduction

In the recent years, many researchers paid attention to study the differential
equations with instantaneous impulses, which have been used to described abrupt
changes such as shocks, harvesting and natural disasters. Particularly, the theory
of instantaneous impulsive equations has wide applications in control, mechanics,
electrical engineering, biological and medical fields.

It seems that models with instantaneous impulses could not explain certain dy-
namics of evolution process in pharmacotherapy. For example, one considers the
hemodynamic equilibrium of a person, the introduction of the drugs in bloodstream
and the consequent absorbtion for the body are gradual and continuous process,
we can interpret the above situations as an impulsive action which starts abruptly
and stays active for a finite time interval. Hernández and O’Regan [11] and Pierri
et al. [23], initially studied Cauchy problems of first order evolution equations
with non-instataneous impulses. Kumar et al. [14] established the existence and
uniqueness of mild solutions for non-instantaneous impulsive fractional differential
equations. Chen et al. [6] invetigated the existence of mild solutions for first order
semi-linear evolution equations with non-instantaneous impulses using noncompact
semigroup. Kumar et al. [15] derived a set of sufficient conditions for the existence
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and uniqueness of mild solutions to fractional integro-differential equations with
non-instantaneous impulses. Nonlocal initial value problem was first studied by
Byszewski. In [4], Byszewski established the existence and uniqueness of solutions
for a semilinear nonlocal Cauchy problem. In many cases, the nonlocal condition
has better effect rather than the classical initial condition.

Controllability is one of the most important issue in mathematical control the-
ory and engineering. The problem of controllability for various kinds of differential,
integro-differential equations and impulsive differential equations are studied. In
case of controllability, the literature on abstract impulsive differential equations con-
sists basically problems for which the impulses are abrupt and instantaneous. In [5],
Balasubramaniam et al. derived sufficient conditions for approximate controllabil-
ity of impulsive fractional integro-differential equations with nonlocal conditions, by
assuming the compactness of impulsive and nonlocal functions in a Hilbert space.
Zhang et al. [30] discussed the approximate controllability of fractional impulsive
integro-differential equations in a Hilbert space with the help of Krasnoselskii fixed
point theorem and comapact analytic semigroup theory. Dong et al. [8] studied
approximate controllability of semilinear fractional evolution equations with non-
local conditions via approximate technique.

The purpose of this article is to establish sufficient conditions for the approxi-
mate controllability of a certain class of abstract fractional evolution equations of
the form :

cDqx(t) = Ax(t) + f

(
t, x(t),

∫ t

0

h(t, s, x(s))ds

)
+Bu(t), t ∈ ∪m

k=0(sk, tk+1],

x(t) = γk(t, x(t)), t ∈ ∪m
k=1(tk, sk],

x(0) + g(x) = x0, (1)

where cDq is the Caputo fractional derivative of order q, 0 < q < 1, J = [0, b], b > 0
is a constant, the state variable x takes values in a separable reflexive Banach space
X, A : D(A) ⊂ X → X is closed linear operator that generates a C0 semigroup
T (t)(t ≥ 0) on X, the control function u ∈ L2(J, U) where U is a Banach space, B :
U → X is a bounded linear operator, 0 < t1 < t2 < . . . < tm < tm+1 := b, s0 := 0,
sk ∈ (tk, tk+1) for each k = 1, 2, . . . ,m and f : J ×X ×X → X, g : PC(J,X) → X
are given functions satisfying certain assumptions, γk : (tk, sk] × X → X is non-
instataneous impulsive function for all k = 1, 2, . . . ,m, h : D×X → X is continuous
function where D := {(t, s) : 0 ≤ s < t ≤ b} and x0 ∈ X.

To the best of our knowledge, there is no work yet reported on approximate
controllability of fractional integro-differential equation with nonlocal and non-
instantaneous impulsive conditions. Therefore inspired by this fact, we consider the
system (1) to study the approximate controllability with the help of Kuratowski
measure of noncompactness and ρ-set contractive fixed point theorem without as-
suming the compactness condition on impulsive and nonlocal functions.

The rest of the paper is organized as following. In section 2, we will recall some
basic definitions, notations, theorems and will introduce the expression of mild solu-
tions for the system (1). In section 3, we will discuss the existence of mild solutions
for the system (1) under the feedback control uλ(t, x) defined in (9). In section
4, we will show that the control system (1) is approximately controllable on [0, b].
Finally, in section 5, we will present an example to illustrate our results.
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2. Preliminaries

Now, we recall some basic theory which is required for our main results. LetX be
a separable reflexive Banach space with norm ∥ · ∥, and C(J,X) be a Banach space
of all continuous functions from J into X endowed with supremum norm ∥x∥C =
sup
t∈J

∥x(t)∥. Consider the space PC(J,X) = {x : J → X : x is continuous at t ̸=

tk, x(tk−) = x(tk) and x(tk+) exists for all k = 1, 2, . . . .m}, which is a Banach
space with supremum norm ∥x∥PC = sup

t∈J
∥x(t)∥. For each finite constant r > 0, let

Ωr = {x ∈ PC(J,X) : ∥x(t)∥ ≤ r, t ∈ J}, we use θ to denote the zero function in
PC(J,X). Let Lp(J,X)(1 ≤ p <∞) be the Banach space of all X-valued Bochner

integrable functions defined on J with norm ∥x∥Lp(J,X) = (
∫ b

0
∥x(t)∥pdt)

1
p . Let

M = supt∈J ∥T (t)∥L(X), where L(X) stands for the Banach space of all linear and

bounded operators on X, note that M ≥ 1. We denote Gx(t) :=
∫ t

0
h(t, s, x(s))ds.

Lemma 2.1.([9]) If h satisfies a uniform Hölder continuity with exponent β ∈ (0, 1],
then the unique solution of the Cauchy problem

cDqx(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0 ∈ X, (2)

is given by

x(t) = U(t)x0 +

∫ t

0

(t− s)q−1V (t− s)h(s)ds, (3)

where

U(t) =

∫ ∞

0

ζq(θ)T (t
qθ)dθ , V (t) = q

∫ ∞

0

θζq(θ)T (t
qθ)dθ, (4)

ζq(θ) =
1

q
θ−1− 1

q ρq(θ
−1
q ),

ρq(θ) =
1

π

∞∑
n=0

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq), θ ∈ (0,∞),

ζq(θ) is a probability density function defined on (0,∞).

Remark 2.2. ζq(θ) ≥ 0, θ ∈ (0,∞),
∫∞
0
ζq(θ)dθ = 1,

∫∞
0
θζq(θ)dθ =

1
Γ(1+q) .

Lemma 2.3.([29]) The operators U and V have the following properties :

(i) U(t) and V (t) are strongly continuous for t ≥ 0.
(ii) U(t) and V (t) are linear and bounded operators for any fixed t ≥ 0 and

satisfying ∥U(t)x∥ ≤M∥x∥, ∥V (t)x∥ ≤ M
Γ(q)∥x∥ for any x ∈ X.

(iii) If T (t)(t > 0) is a compact semigroup, then U(t) and V (t) are compact
operators on X for t > 0.

Definition 2.4.([14]) A function x ∈ PC(J,X) is said to be a mild solution of the
problem (1) if for any u ∈ L2(J, U), x satifies x(0) = x0 − g(x), x(t) = γk(t, u(t))
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for all t ∈ ∪m
k=1(tk, sk], and

x(t) =


U(t)(x0 − g(x)) +

∫ t

0
(t− s)q−1V (t− s)[f(s, x(s), Gx(s))

+Bu(s)]ds, t ∈ (0, t1];

U(t− sk)γk(sk, x(sk)) +
∫ t

sk
(t− s)q−1V (t− s)[f(s, x(s), Gx(s))

+Bu(s)]ds, t ∈ ∪m
k=1(sk, tk+1].

Let xb(x0, u) be the state value of (1) at terminal time b corresponding to the
control u and the initial value x0. Introduce the set R(b, x0) = {xb(x0, u) : u ∈
L2(J, U)}, which is called the reachable set for the system (1) at terminal time b,

it’s closure in X is denoted by R(b, x0).

Definition 2.5.([22]) The system (1) is said to be approximately controllable on

J , if R(b, x0) = X, that is, given any ϵ > 0, it is possible to steer from the point x0
to within a distance ϵ from all points in the state space X at time b.

Consider the following linear fractional control system

cDqx(t) = Ax(t) +Bu(t), t ∈ J,

x(0) = x0. (5)

Now, we introduce the controllability and resolvent operators associated with (5)
as :

Γb
0 =

∫ b

0

(b− s)q−1V (b− s)BB∗V ∗(b− s)ds, (6)

R(λ,Γb
0) = (λI + Γb

0)
−1, λ > 0. (7)

respectively, where B∗ and V ∗(t) denote the adjoint of B and V (t) respectively. It
is easy to see that Γb

0 is a linear bounded operator. Let us consider the following
basic hypothesis :

(H0) λR(λ,Γb
0) → 0 as λ→ 0+ in the strong operator topology.

Theorem 2.6.([20]) Let Z be a separable reflexive Banach space and let Z∗ stands
for it’s dual space. Assume that Γ : Z∗ → Z is a symmetric map, then the following
are equivalent :

(i) Γ : Z∗ → Z is positive, that is ⟨z∗,Γb
0z

∗⟩ > 0 for all nonzero z∗ ∈ Z∗..
(ii) For all z ∈ Z, λ(λI +ΓJ)−1(z) strongly converges to zero as λ→ 0+. Here

J is the duality map from Z → Z∗.

Lemma 2.7.([22]) The linear fractional control system (5) is approximately con-
trollable on J if and only if (H0) holds.

Proof. The system (5) is approximately controllable on J if and only if ⟨x,Γb
0x⟩ > 0,

for all nonzero x ∈ X (see Theorem 4.1.7 of [7]). Hence the lemma is straightforward
consequence of Theorem 2.6. �

Remark 2.8. Notice that the system (5) is approximately controllable on J if and

only if ⟨x,Γb
0x⟩ =

∫ b

0
(b−s)q−1∥B∗V ∗(b−s)x∥2ds > 0, for all nonzero x ∈ X, which

is further equivalent to B∗V ∗(b− s)x = 0, 0 ≤ s < b =⇒ x = 0.
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Next, we introduce the Kuratowski measure of noncompactness α(·) defined on
each bounded subset of a Banach space X. For more details, we refer [2, 10]. The
following results are useful to prove our main results.

Lemma 2.9.([2]) Let X be a Banach space and S ⊂ C(J,X). For t ∈ J, the set
S(t) = {x(t) : x ∈ S}. If S is bounded and equicontinuous in C(J,X), then α(S(t))
is continuous on J and α(S) = sup

t∈J
α(S(t)).

Lemma 2.10.([10]) If X be a Banach space and D = {xn}∞n=1 ⊂ PC(J,X) be a
bounded sequence, then α(D(t)) is Lebesgue integrable on J and

α

({∫ t

0

xn(s)ds

}∞

n=1

)
≤ 2

∫ t

0

α({xn(s)}∞n=1ds.

Lemma 2.11.([3]) Let X be a Banach space and S is a bounded subset of X, then
there exists a countable set D = {xn}∞n=1 ⊂ S such that α(S) ≤ 2α(D).

Lemma 2.12.([2]) Let X and E be Banach spaces and C,D ⊂ X be bounded
subsets, then the following properties are satisfied :

(i) D is precompact if and only if α(D) = 0.
(ii) α(C +D) ≤ α(C) + α(D).
(iii) Q : D(Q) ⊂ E → X is Lipschitz continuous with Lipschitz constant L,

then α(Q(V )) ≤ Lα(V ) for any bounded subset V ⊂ D(Q).

Definition 2.13.([6]) Let X be a Banach space and S be a nonempty subset of X.
A continuous map Q : S → X is called ρ-set contractive if there exists a constant
ρ ∈ [0, 1) such that

α(Q(Ω)) ≤ ρα(Ω), for every bounded set Ω ⊂ S.

Theorem 2.14.([6]) Let X be a Banach space, Ω ⊂ X be a closed bounded and
convex subset. Suppose that Q : Ω → Ω is a ρ-set contractive map, then Q has
atleast one fixed point in Ω.

3. Existence of Mild Solutions

In this section, we prove the existence of mild solutions to the system (1), with
the help of following basic assumptions :

(H1) T (t)(t > 0) is a compact semigroup.
(H2) The function f(t, ·, ·) : X × X → X is continuous for each t ∈ J and the
function f(·, x, y) : J → X is Lebesgue measurable for all (x, y) ∈ X ×X.
(H3) There exist a continuous nondecreasing function ψ : R+ → R+, a constant

q1 ∈ (0, q) and a function ϕ ∈ L
1
q1 (J,R+) such that

∥f(t, x, y)∥ ≤ ϕ(t)ψ(∥x∥), ∀x , y ∈ X ; t ∈ J.

(H4) g : PC(J,X) → X is continuous and there exists a constant α > 0 such that

∥g(x)− g(y)∥ ≤ α∥x− y∥, ∀x , y ∈ PC(J,X).

(H5) γk : [tk, sk]×X → X is continuous and there exists a constant Kγk
> 0 , k =

1, 2, . . . ,m, such that

∥γk(t, x)− γk(t, y)∥ ≤ Kγk
∥x− y∥, ∀x , y ∈ X ; t ∈ [tk, sk].
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For our convenience, we use the following notations:

K = max
k=1,2,...,m

Kγk
, K1 = max{K,α}, MB := ∥B∥,

M =
bqM2(MB)

2

qλ(Γ(q))2
, q2 =

q − 1

1− q1
∈ (−1, 0), M1 = ψ(R)∥ϕ∥

L
1
q1 (J,R+)

,

Mb =
MM1

Γ(q)(1 + q2)1−q1
b(1+q2)(1−q1). (8)

For an arbitrary function x ∈ PC(J,X), considering the form of a mild solution as
defined in Definition 2.4, as well as the controllability and resolvent operator in (6),
(7), we choose the feedback control function associated with the nonlinear system
(1) as following :

u(t) = uλ(t, x) = B∗V ∗(b− t)R(λ,Γb
0)p(x), (9)

where

p(x) =


xb − U(b)(x0 − g(x))−

∫ b

0
(b− s)q−1V (b− s)f(s, x(s), Gx(s))ds,

for t ∈ (0, t1],

xb − U(b− sk)γk(sk, x(sk))−
∫ b

sk
(b− s)q−1V (b− s)f(s, x(s), Gx(s))ds,

for t ∈ ∪m
k=1(sk, tk+1].

By using the control function (9), for any λ > 0 define the operator Fλ on PC(J,X)
as following :

(Fλx)(t) = (Φλx)(t) + (Ψλx)(t), (10)

where

(Φλx)(t) =

 U(t)(x0 − g(x)), t ∈ [0, t1],
γk(t, x(t)), t ∈ ∪m

k=1(tk, sk],
U(t− sk)γk(sk, x(sk)), t ∈ ∪m

k=1(sk, tk+1],
(11)

(Ψλx)(t) =


∫ t

sk
(t− s)q−1V (t− s)[f(s, x(s), Gx(s))

+Buλ(s, x)]ds, t ∈ ∪m
k=0(sk, tk+1]

0, otherwise.

(12)

Theorem 3.1. Assume that the functions g(θ) and γk(·, θ) are bounded for k =
1, 2, . . . ,m, and the assumptions (H1)-(H5) are satisfied. Then the system (1) has
atleast one PC- mild solution provided that

ρ :=MK1 < 1. (13)

Proof. Obviously, the fractional Cauchy problem (1) with the control (9) has a
mild solution if and only if the operator Fλ has a fixed point.

First let us observe that, for x ∈ ΩR (R > 0) with the help of Hölder inequality
and (H3), we obtain∫ t

0

∥(t− s)q−1f(s, x(s), Gx(s))∥ds ≤
(∫ t

0

(t− s)q2ds

)1−q1

ψ(R)∥ϕ∥
L

1
q1 (J,R+)

≤ M1

(1 + q2)1−q1
b(1+q2)(1−q1). (14)

The proof of this theorem is long and technical. Therefore it is convenient to
divide it into several steps.
Step 1: For any λ > 0, there exists a constant R = R(λ) > 0 such that Fλ(ΩR) ⊂
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ΩR. Let x ∈ Ωr for any positive constant r. If t ∈ [0, t1], then by using (9)and (14),
we have

uλ(t, x) = B∗V ∗(b− t)R(λ,Γb
0)

[
xb − U(b)(x0 − g(x))

−
∫ b

0

(b− s)q−1V (b− s)f(s, x(s), Gx(s))ds

]
∥uλ(t, x)∥ ≤ MMB

λΓ(q)

[
∥xb∥+M(∥x0∥+ α∥x− θ∥+ ∥g(θ)∥) +Mb

]
≤ MMB

λΓ(q)

[
∥xb∥+M(αr + ∥x0∥+ ∥g(θ)∥) +Mb

]
, (15)

and from (10), (15), we obtain

(Fλx)(t) = U(t)(x0 − g(x)) +

∫ t

0

(t− s)q−1V (t− s)f(s, x(s), Gx(s))ds

+

∫ t

0

(t− s)q−1V (t− s)Buλ(s, x)ds

∥(Fλx)(t)∥ ≤ M(αr + ∥x0∥+ ∥g(θ)∥) +Mb +

∫ t

0

(t− s)q−1∥V (t− s)∥∥Buλ(s, x)∥ds

≤ M(αr + ∥x0∥+ ∥g(θ)∥) +Mb

+
bqM2(MB)

2

qλ(Γ(q))2

[
∥xb∥+M(αr + ∥x0∥+ ∥g(θ)∥) +Mb

]
. (16)

If t ∈ (tk, sk]; k = 1, 2, . . . ,m, then by (10) and (H5), we obtain

∥(Fλx)(t)∥ = ∥γk(t, x(t))∥
≤ Kγk

∥x(t)∥+ ∥γk(t, θ)∥
≤ Kr + β ≤M(Kr + β), (17)

where β = max
k=1,2,...,m

{sup
t∈J

∥γk(t, θ)∥}. If t ∈ (sk, tk+1]; k = 1, 2, . . . ,m then (9),

(10)and (14) yield the following estimations

∥uλ(t, x)∥ ≤ MMB

λΓ(q)

[
∥xb∥+M(Kr + β) +Mb

]
, (18)

∥(Fλx)(t)∥ ≤ M(Kr + β) +Mb

+
bqM2(MB)

2

qλ(Γ(q))2

[
∥xb∥+M(Kr + β) +Mb

]
. (19)

Combining (16), (17) and (19), we obtain

∥(Fλx)(t)∥ ≤ Mb +M(Kr + β) +M(αr + ∥x0∥+ ∥g(θ)∥) +MM(Kr + β)

+M

[
∥xb∥+M(αr + ∥x0∥+ ∥g(θ)∥) +Mb

]
. (20)

Then we get that for large enough R > 0, Fλ(ΩR) ⊂ ΩR holds.
Step 2: We show that Φλ : ΩR → ΩR is Lipschitz continuous. Let x, y ∈ ΩR, for
t ∈ [0, t1] using (11) and (H4) we have

∥(Φλx)(t)− (Φλy)(t)∥ ≤M∥g(x)− g(y)∥ ≤Mα∥x− y∥, (21)
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for t ∈ (tk, sk], k = 1, 2, . . . ,m, by (11) and the assumption (H5), we obtain

∥(Φλx)(t)− (Φλy)(t)∥ ≤ Kγk
∥x(t)− y(t)∥ ≤MK∥x− y∥, (22)

for t ∈ (sk, tk+1], k = 1, 2, . . . ,m, using (H5), we have

∥(Φλx)(t)− (Φλy)(t)∥ ≤ M∥γk(sk, x(sk))− γk(sk, y(sk))∥
≤ MK∥x− y∥. (23)

From (21), (22) and (23), we obtain

∥Φλx− Φλy∥ ≤MK1∥x− y∥. (24)

Step 3: Ψλ is continuous in ΩR. Let {xn} be a sequence in ΩR such that
limn→∞ xn = x in ΩR. By the continuity of nonlinear term f with respect to
second and third variables, for each s ∈ J , we have

lim
n→∞

f(s, xn(s), Gxn(s)) = f(s, x(s), Gx(s)). (25)

So, we can conclude that

sup
s∈J

∥f(s, xn(s), Gxn(s))− f(s, x(s), Gx(s))∥ → 0 as n→ ∞. (26)

For t ∈ (sk, tk+1] , (H5) and (26) yield the following

∥p(xn)− p(x)∥ ≤ M∥γk(sk, xn(sk))− γk(sk, x(sk))∥

+
M

Γ(q)

∫ b

sk

(b− s)q−1∥f(s, xn(s), Gxn(s))− f(s, x(s), Gx(s))∥ds

≤ M∥γk(sk, xn(sk))− γk(sk, x(sk))∥

+
Mbq

Γ(q + 1)
sup
s∈J

∥f(s, xn(s), Gxn(s))− f(s, x(s), Gx(s))∥

→ 0 as n→ ∞. (27)

Therefore, (9) and (27) imply that

∥uλ(s, xn)− uλ(s, x)∥ → 0 as n→ ∞, (28)

also (12), (26) and (28) yield

∥(Ψλxn)(t)− (Ψλx)(t)∥ ≤ M

Γ(q)

∫ t

sk

(t− s)q−1∥f(s, xn(s), Gxn(s))− f(s, x(s), Gx(s))∥ds

+
M

Γ(q)

∫ t

sk

(t− s)q−1∥B∥∥uλ(s, xn)− uλ(s, x)∥ds

≤ Mbq

Γ(q + 1)
sup
s∈J

∥f(s, xn(s), Gxn(s))− f(s, x(s), Gx(s))∥

+
bqMMB

Γ(q + 1)
sup
s∈J

∥uλ(s, xn)− uλ(s, x)∥

→ 0 as n→ ∞, (29)

which means that Ψλ is continuous in ΩR.
Step 4: Ψλ : ΩR → ΩR is compact. We shall get this result by using Arzela-Ascoli
theorem. For this we have to prove that
(i): For any t ∈ J , the set {(Ψλx)(t) : x ∈ ΩR} is relatively compact in X. For
t ̸∈ (sk, tk+1], k = 0, 1, 2, . . . ,m, obviously the set {(Ψλx)(t) : x ∈ ΩR} = {0} which
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is compact in X. Let t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,m be fixed. For any ε ∈ (sk, t)

and δ > 0, we define an operator Ψε,δ
λ on ΩR as following

(Ψε,δ
λ x)(t) = q

∫ t−ε

sk

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s)) +Buλ(s, x)]dθds

= T (εqδ)q

∫ t−ε

sk

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ − εqδ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

:= T (εqδ)y(t, ε).

Since T (εqδ)(εqδ > 0) is compact on X and y(t, ε) is bounded on ΩR, we obtain

that the set {(Ψε,δ
λ x)(t) : x ∈ Ωr} is relatively compact in X. On the other hand

∥(Ψλx)(t)− (Ψε,δ
λ x)(t)∥ = q

∥∥∥∥∫ t

sk

∫ δ

0

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

+

∫ t

sk

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

−
∫ t−ε

sk

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

∥∥∥∥
= q

∥∥∥∥∫ t

sk

∫ δ

0

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

+

∫ t

t−ϵ

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s))

+Buλ(s, x)]dθds

∥∥∥∥
≤ q(I1 + I2), (30)

where

I1 = ∥
∫ t

sk

∫ δ

0

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s)) +Buλ(s, x)]dθds∥,

I2 = ∥
∫ t

t−ϵ

∫ ∞

δ

θ(t− s)q−1ζq(θ)T ((t− s)qθ)[f(s, x(s), Gx(s)) +Buλ(s, x)]dθds∥.

Now, by (14) and (18) we have

I1 ≤ M

(∫ δ

0

θζq(θ)dθ

)[∫ t

sk

(t− s)q−1∥f(s, x(s), Gx(s))∥ds+MB∥uλ∥
bq

q

]
≤ M

(∫ δ

0

θζq(θ)dθ

)[
M1

(1 + q2)1−q1
b(1+q2)(1−q1)

+
M(MB)

2

λΓ(q)
[∥xb∥+M(Kr + β) +Mb]

bq

q

]
. (31)



12 ARSHI MERAJ, DWIJENDRA N. PANDEY JFCA-2019/10(2)

Similarly using Remark 2.2, we can obtain

I2 ≤ M

(∫ ∞

δ

θζq(θ)dθ

)[
M1

(1 + q2)1−q1
ϵ(1+q2)(1−q1) +

M(MB)
2

λΓ(q)
[∥xb∥

+M(Kr + β) +Mb]
ϵq

q

]
≤ M

Γ(q + 1)

[
M1

(1 + q2)1−q1
ϵ(1+q2)(1−q1) +

M(MB)
2

λΓ(q)
[∥xb∥

+M(Kr + β) +Mb]
ϵq

q

]
. (32)

Therefore by (30), (31), and (32) we conclude that

∥(Ψλx)(t)− (Ψε,δ
λ x)(t)∥ → 0 as ε→ 0, δ → 0.

This implies that for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,m, the set {(Ψλx)(t) : x ∈ ΩR}
is relatively compact in X.
(ii): The family of functions {Ψλx : x ∈ ΩR} is bounded and equicontinuous.
Boundedness is obvious. For any x ∈ ΩR and sk ≤ t1 < t2 ≤ tk+1 for k =
0, 1, 2, . . . ,m, we have

∥(Ψλx)(t2)− (Ψλx)(t1)∥ ≤
∥∥∥∥∫ t2

t1

(t2 − s)q−1V (t2 − s)f(s, x(s), Gx(s))ds

∥∥∥∥
+

∥∥∥∥∫ t2

t1

(t2 − s)q−1V (t2 − s)Buλ(s, x)ds

∥∥∥∥
+

∥∥∥∥∫ t1

sk

[(t2 − s)q−1 − (t1 − s)q−1]V (t2 − s)f(s, x(s), Gx(s))ds

∥∥∥∥
+

∥∥∥∥∫ t1

sk

[(t2 − s)q−1 − (t1 − s)q−1]V (t2 − s)Buλ(s, x)ds

∥∥∥∥
+

∥∥∥∥∫ t1

sk

(t1 − s)q−1[V (t2 − s)− V (t1 − s)]f(s, x(s), Gx(s))ds

∥∥∥∥
+

∥∥∥∥∫ t1

sk

(t1 − s)q−1[V (t2 − s)− V (t1 − s)]Buλ(s, x)ds

∥∥∥∥
= J1 + J2 + J3 + J4 + J5 + J6,

Now, we only need to check that J1, J2, J3, J4, J5 and J6 tends to 0 independently
of x ∈ ΩR when t2 → t1. By (14), we have

J1 ≤ M1M

Γ(q)(1 + q2)1−q1
(t2 − t1)

(1+q2)(1−q1) → 0 as t2 → t1,

J2 ≤ MMB

Γ(q + 1)
(t2 − t1)

q∥uλ∥ → 0 as t2 → t1.
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By (H3), Lemma 2.3, and Hölder inequality, we get that

J3 ≤ M

Γ(q)

(∫ t1

sk

[(t2 − s)q−1 − (t1 − s)q−1]
1

1−q1 ds

)1−q1

ψ(R)∥ϕ∥
L

1
q1 (J,R)

≤ M1M

Γ(q)

(∫ t1

sk

[(t1 − s)q2 − (t2 − s)q2 ]ds

)1−q1

≤ M1M

Γ(q)(1 + q2)1−q1
[(t1)

1+q2 − (t2)
1+q2 + (t2 − t1)

1+q2 ]1−q1

≤ M1M

Γ(q)(1 + q2)1−q1
(t2 − t1)

(1+q2)(1−q1) → 0 as t2 → t1,

and

J4 ≤ MMB

Γ(q + 1)

[
(t2 − sk)

q − (t1 − sk)
q − (t2 − t1)

q

]
∥uλ∥ → 0 as t2 → t1.

For t1 = sk, it is easy to see that J5 = 0. For t1 > sk and ϵ > 0 small enough, by
(H3) and Lemma 2.3, we obtain

J5 ≤ ∥
∫ t1−ϵ

sk

(t1 − s)q−1[V (t2 − s)− V (t1 − s)]f(s, x(s), Gx(s))ds∥

+∥
∫ t1

t1−ϵ

(t1 − s)q−1[V (t2 − s)− V (t1 − s)]f(s, x(s), Gx(s))ds∥

≤
∫ t1−ϵ

sk

∥(t1 − s)q−1f(s, x(s), Gx(s))∥ds sup
s∈[sk,t1−ϵ]

∥V (t2 − s)− V (t1 − s)∥

+
2M

Γ(q)

∫ t1

t1−ϵ

∥(t1 − s)q−1f(s, x(s), Gx(s))∥ds

≤ M1

(1 + q2)1−q1
((t1 − sk)

1+q2 − ϵ1+q2)1−q1 sup
s∈[sk,t1−ϵ]

∥V (t2 − s)− V (t1 − s)∥

+
2M1M

Γ(q)(1 + q2)1−q1
ϵ(1+q2)(1−q1) → 0 as t2 → t1, ϵ→ 0,

similarly

J6 ≤ MB

q
[(t1 − sk)

q − ϵq]∥uλ∥ sup
s∈[sk,t1−ϵ]

∥V (t2 − s)− V (t1 − s)∥

+
2MMB

Γ(q + 1)
ϵq∥uλ∥ → 0 as t2 → t1, ϵ→ 0.

As a result ∥(Ψλx)(t2)−(Ψλx)(t1)∥ → 0 independently of x ∈ ΩR as t2 → t1, which
means that Ψλ : ΩR → ΩR is equicontinuous. Thus, by Arzela-Ascoli theorem Ψλ

is compact on ΩR.
Step 5: We show that Fλ is ρ-set contractive map. For any bounded set D ⊂ ΩR,
by Lemma 2.11, we know that there exists a countable set D0 = {xn} ⊂ D such
that

α(Ψλ(D)) ≤ 2α(Ψλ(D0)).

Since Ψλ(D0) ⊂ Ψλ(ΩR) is bounded and equicontinuous, by Lemma 2.9 we obtain

α(Ψλ(D0)) = max
t∈[sk,tk+1],k=0,1,2,...,m

α(Ψλ(D0)(t)).
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By Lemma 2.12 (i) and Step 4 (i), we have α(Ψλ(D0)(t)) = 0 for all t ∈ J , therefore
α(Ψλ(D)) = 0. From (24) and Lemma 2.12 (iii), we know that for any bounded
set D ⊂ ΩR

α(Φλ(D)) ≤MK1α(D).

Thus, by Lemma 2.12 (ii)

α(Fλ(D)) ≤ α(Φλ(D)) + α(Ψλ(D))

≤ MK1α(D) = ρα(D). (33)

Now combining (33) with (13) and Definition 2.13, we conclude that Fλ : ΩR → ΩR

is a ρ-set-contractive map with ρ = MK1. Hence from Theorem 2.14, it follows
that Fλ has atleast one fixed point x ∈ ΩR, which is a PC-mild solution of (1).
Thus the proof of the theorem is completed.

4. Approximate Controllability

In this section, the approximate controllability of (1) will be discussed.
Theorem 4.1. Assume that the assumptions of Theorem 3 hold and in addi-
tion, hypothesis (H0) is satisfied. Moreover assume that the functions f, g, γk (k =
1, 2, . . . ,m) are uniformly bounded by positive constants L1, L2 and Nk(k = 1, 2, . . . ,m).
Then the semilinear fractional system (1) is approximately controllable on J .
Proof. Let xλ be a fixed point of Fλ in ΩR. Any fixed point of Fλ is a mild solution
of the problem (1) under the control

uλ(t, xλ) = B∗V ∗(b− t)R(λ,Γb
0)p(xλ),

and satisfies the equality

xλ(b) = xb − λR(λ,Γb
0)p(xλ), (34)

where

p(xλ) =


xb − U(b)(x0 − g(xλ))−

∫ b

0
(b− s)q−1V (b− s)f(s, xλ(s), Gxλ(s))ds,

for t ∈ (0, t1],

xb − U(b− sk)γk(sk, xλ(sk))−
∫ b

sk
(b− s)q−1V (b− s)f(s, xλ(s), Gxλ(s))ds,

for t ∈ ∪m
k=1(sk, tk+1].

According to the compactness of U(t)(t > 0) and the uniform boundedness of g,
we see that there exists a subsequence of {U(b)g(xλ) : λ > 0}, still denoted by
it, converges to some xg ∈ X as λ → 0. Similarly there exists a subsequence of
{U(b − sk)γk(sk, xλ(sk)) : λ > 0}, still denoted by it, converges to some xγk

∈ X
as λ→ 0. By the assumption that f is uniformly bounded, we have∫ b

0

∥f(s, xλ(s), Gxλ(s))∥2ds ≤ L2
1b.

Hence the sequence f(·, xλ(·), Gxλ(·)) is bounded in L2(J,X). Then there exists a
subsequence of {f(·, xλ(·), Gxλ(·)) : λ > 0}, still denoted by it, converges weakly to
some f(·) ∈ L2(J,X). Define

ω =

{
xb − U(b)(x0) + xg −

∫ b

0
(b− s)q−1V (b− s)f(s)ds, t ∈ (0, t1];

xb − xγk
−
∫ b

sk
(b− s)q−1V (b− s)f(s)ds, t ∈ ∪m

k=1(sk, tk+1].

It follows that for t ∈ (0, t1] and t ∈ (sk, tk+1], k = 1, 2, . . . ,m,

∥p(xλ)− ω∥ → 0 as λ→ 0+, (35)
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because of compactness of the operator (see [27])

l(·) →
∫ ·

0

(· − s)q−1V (· − s)l(s)ds : L2(J,X) → C(J,X).

Then, from (34), (35), and (H0), we obtain

∥xλ(b)− xb∥ ≤ ∥λR(λ,Γb
0)p(xλ)∥

≤ ∥λR(λ,Γb
0)ω∥+ ∥λR(λ,Γb

0)∥∥p(xλ)− ω∥
≤ ∥λR(λ,Γb

0)ω∥+ ∥p(xλ)− ω∥ → 0 as λ→ 0+.

This proves the approximate controllability of the system (1) on J .

5. Example

As an application, we consider a control system governed by a fractional partial
differential equation of the form :

cD
1
2x(t, z) = ∂2

∂z2x(t, z) + u(t, z) + 1
25

e−t

1+et
|x(t,z)|

1+|x(t,z)| +
∫ t

0
1
50e

−s |x(s,z)|
1+|x(s,z)|ds,

z ∈ (0, 1), t ∈ (0, 13 ] ∪ ( 23 , 1],
x(t, 0) = x(t, 1) = 0, t ∈ [0, 1],

x(t, z) = e−(t− 1
3
)

4
|x(t,z)|

1+|x(t,z)| , z ∈ (0, 1), t ∈ ( 13 ,
2
3 ],

x(0, z) +
2∑

i=1

1

3i
x( 1i , z)

1 + x( 1i , z)
= x0(z), z ∈ [0, 1],

(36)

where X = U = L2[0, 1], J = [0, 1], x0(z) ∈ X. Define Ax = x′′ with

D(A) = {x ∈ X : x, x′ are absolutely continuous and x′′ ∈ X,x(0) = x(1) = 0}.

Then

Ax =
∞∑

n=1

−n2 < x, en > en, x ∈ D(A), (37)

where en(z) =
√

2
π sin(nz), 0 ≤ z ≤ 1, n = 1, 2, . . . . It is well known that A

generates a compact semigroup T (t)(t > 0), on X and is given by

T (t)x =

∞∑
n=1

e−n2t < x, en > en, x ∈ X, (38)

with ∥T (t)∥ ≤ 1, for any t ≥ 0. Let b = t2 = 1, t0 = s0 = 0, t1 = 1
3 , s1 = 2

3 . Put
x(t) = x(t, ·), that is x(t)(z) = x(t, z), t, z ∈ [0, 1]. Let u(t) = u(t, ·) is continuous
and the bounded linear operator B : U → X is defined as Bu(t) = u(t, ·). Further

f(t, x(t), Gx(t)) =
1

25

e−t

1 + et
|x(t, ·)|

1 + |x(t, ·)|
+

∫ t

0

1

50
e−s |x(s, ·)|

1 + |x(s, ·)|
ds,

Gx(t) =

∫ t

0

1

50
e−s |x(s, ·)|

1 + |x(s, ·)|
ds,

γ1(t, x(t)) =
e−(t− 1

3 )

4

|x(t, ·)|
1 + |x(t, ·)|

,

g(x) =
2∑

i=1

1

3i
x( 1i , ·)

1 + x( 1i , ·)
.
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Then the system (36) can be rewritten into the abstract form of (1) for m = 1. It
is easy to verify that the assumptions (H1)-(H5) and condition (13) hold with

q =
1

2
, M = 1, ϕ(t) =

1

25

e−t

1 + et
+

1

50
, ψ(r) = r,

α =
4

9
, Kγ1 =

1

4
, ρ =

4

9
< 1.

Also f, g and γ1 are uniformly bounded with L1 = 3
50 , L2 = 4

9 , N1 = 1
4 respectively.

Moreover linear system corresponding to (36) is approximately controllable on [0, 1],
based on the argument in [22], it yields that (H6) also holds. Thus by Theorem 4.1,
the system (36) is approximately controllable.
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