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TREATISE ON FRACTIONAL ORDER DYNAMICAL

EQUATIONS INVOLVING RANDOM VARIABLE

S. HARIKRISHNAN, RABHA W. IBRAHIM, K. KANAGARAJAN

Abstract. In this paper, fractional order dynamical equation involving ran-
dom walk is discussed. The solution of a dynamical system is obtained using
ψ-Hilfer fractional derivative. Firstly, the solutions of the fractional dynami-

cal system with random initial conditions are obtained. Further, the random
impulsive effect is taken into account to verify the system. The sufficient condi-
tions are obtained using the standard fixed point method. The stability check

is made sure by Ulam-Hyers stability method.

1. Introduction

Arbitrary (non-integer) order differential equations arise in many engineering and
scientific order as the mathematical modelling of systems and progression in the
fields of biology, physics and so on, and they gained much value and consideration,
due to their relevance in many other fields. During the last two decades, fractional
calculus has increasingly attracted the attention of researchers of many different
fields, (see [5, 11, 12, 13, 14, 19] ) and the references therein.
Here we study the idea of fractional derivative on time scale T. Interesting in
applications, it is the possibility to deal with more complex time domains. One
extreme case, covered by the theory of time scales and surprisingly relevant also for
the process of signals, appears when one fix the time scale to be the Cantor set. For
further information about the theoretical and potential applications of time scales,
(see [1, 2, 3, 4]).
The knowledge about the parameters of a dynamic equation is of probabilistic
nature; modelling of such systems is called random differential equations (RDEs)
or stochastic differential equations. The analyses of FDEs with random variable
are studied in, [9, 15, 20].
The Ulam-Hyers(U-H) and Ulam-Hyers-Rassias(U-H-R) types of stability of func-
tional differential equation are discussed vastly in recent days. The stability prop-
erties of dynamical equations have attracted many mathematicians. Particularly,
the U-H-R stability was briefly studied in, [8, 10, 19, 21].
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More recently, a new fractional derivative has established by Sousa and Oliveira
[17] so-called ψ-Hilfer fractional derivative (HFD), which unifies several fractional
derivatives, that is, by generalizing those kernels of function can be seen in [17].
Dynamical behaviour of FDEs involving ψ-HFD is discussed in [7, 17, 18].
Motivated by all the above works here we study dynamic equation on, time scales
with ψ-HFD with random variable ω and random initial condition is given by{

T∆α,β;ψu(τ, ω) = g(τ, u(τ, ω), ω), τ ∈ J ⊆ T,
TI1−γ;ψu(τ, ω)|τ=0 = u0(ω),

(1)

where (Ω, F, p) is a complete probability space, ω ∈ Ω, T∆α,β;ψ is the ψ-HFD
defined on T, 0 < α < 1, 0 ≤ β ≤ 1 and I1−γ;ψ is ψ-fractional internal of order
1− γ(γ = α+ β − αβ). Let T be a time scale, that is nonempty subset of Banach
space. The function g : J := [0, b]×R×Ω → R is a right-dense continuous function.
Here, the Eq. (1) satisfies the random integral equation of the form

u(t, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s. (2)

Next, we discuss the existence, uniqueness and stability of solutions of RDEs
with jump conditions involving ψ-HFD of the form

T∆α,β;ψu(τ, ω) = g(τ, u(τ, ω), ω), τ ∈ J ⊆ T,
∆TI1−γ;ψu(t, ϑ)|τ=τk = uτk(ω),
TI1−γ;ψu(τ, ω)|τ=0 = u0(ω)

(3)

where uk(ω) : J × Ω → R is continuous for all k = 1, 2, ...,m, and 0 = τ0 < τ1 <
... < τm < τm+1 = b, ∆TI1−γ;ψu(τ, ω)|τ=τk =T I1−γ;ψu(τ+

k )(ω) −T I1−γ;ψu(τ−
k )(ω),

TI1−γ;ψu(τ+
k )(ω) = limh→0+ u(τk+h)(ω) and

TI1−γ;ψu(τ−
k )(ω) = limh→0− u(τk+h)(ω)

represent the right and left limits of u(τ, ω) at τ = τk. The equivalent integral
equation of the Eq. (3) is given by

u(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

∑
0<tk<τ

utk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)ds. (4)

The novelty of the paper is given as follows: In Section 2, basic definitions and
preliminary are discussed. In section 3, existence, uniqueness and stability of RDEs
are discussed. Finally, the dynamical behavior of impulsive RDEs is obtained in
Section 4.

2. Preliminaries

Definition 2.1. Let C(J) be continuous function endowed with the norm

∥u∥C = max {|u(τ, ω)| : τ ∈ J} .

We denote the C1−γ,ψ(J) as follows

C1−γ,ψ(J) :=
{
g(τ, ω) : J × Ω → R| (ψ(τ)− ψ(0))

1−γ
g(τ, ω) ∈ C(J)

}
, 0 ≤ γ < 1

where C1−γ,ψ(J) is the weighted space of the continuous functions g on the finite
interval J .
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Obviously, C1−γ,ψ(J) is the Banach space with the norm

∥g∥C1−γ,ψ
=

∥∥∥(ψ(τ)− ψ(0))
1−γ

g(t, ω)
∥∥∥
C
.

Definition 2.2. Let the space PC(J) be a piecewise continuous space from J into
R with the norm

∥u∥PC = max {|u(τ, ω)| : τ ∈ J} .
The weighted space PC1−γ,ψ(J) of functions g on J is defined by

PC1−γ,ψ(J) =
{
g : J × Ω → R : (ψ(τ)− ψ(0))

1−γ
g(τ, ω) ∈ PC(J)

}
, 0 ≤ γ < 1,

with the norm

∥g∥PC1−γ,ψ
=

∥∥∥(ψ(τ)− ψ(0))
1−γ

g(τ, ω)
∥∥∥
PC

= max
τ∈J

∣∣∣(ψ(τ)− ψ(0))
1−γ

g
∣∣∣ .

Definition 2.3. Let time scale be T. The forward jump operator σ : T → T is
defined by σ(t) := inf {s ∈ T : s > t}, while the backward jump operator ρ : T → T
is defined by ρ(t) := sup {s ∈ T : s < t}.

Proposition 2.4. Suppose T is a time scale and [a, b] ⊂ T, g is increasing contin-
uous function on [a, b]. If the extension of g is given in the following form:

F (s) =

{
g(s); s ∈ T
g(τ); s ∈ (τ, σ(τ)) /∈ T.

Then we have ∫ b

a

g(τ)∆τ ≤
∫ b

a

F (τ)dτ.

Definition 2.5. Let T be a time scale, J ∈ T. The left-sided R-L fractional integral
of order α ∈ R+ of function f(τ) is defined by(TIαg) (τ) = ∫ τ

0

ψ
′
(s)

(ψ(τ)− ψ(s))
α−1

Γ(α)
g(s)∆s, (t > 0),

where Γ(·) is the Gamma function.

Definition 2.6. Suppose that T is a time scale, [0, b] is an interval of T. The
left-sided R-L fractional derivative of order α ∈ [n− 1, n), n ∈ Z+ of function f(t)
is defined by(T∆αg

)
(t) =

(
1

ψ′(τ)

d

dτ

)n ∫ τ

0

ψ
′
(s)

(ψ(τ)− ψ(s))
n−α−1

Γ(n− α)
g(s)∆s, (τ > 0).

Definition 2.7. [11] The left-sided ψ-HFD of function f(τ) is defined by

T∆α,β;ψg(τ) =
(
TIβ(1−α);ψ T∆(TI(1−β)(1−α);ψg)

)
(τ),

where T∆ := d
dτ .

Remark 2.8. (1) The operator T∆α,β;ψ also can be written as

T∆α,β;ψ = TIβ(1−α);ψ T∆TI(1−β)(1−α);ψ = TIβ(1−α);ψ T∆γ;ψ, γ = α+ β − αβ.

(2) Let β = 0, the left-sided R-L derivative can be presented as T∆α := T∆α,0.
(3) Let β = 0, left-sided Caputo fractional derivative can be presented as T

c∆
α :=

TI1−α T∆.
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Next, we review some lemmas which will be used to establish our existence results.

Lemma 2.9. If α > 0 and β > 0, there exists[
TIα (ψ(s)− ψ(0))

β−1
]
(τ) =

Γ(β)

Γ(β + α)
(ψ(τ)− ψ(0))

β+α−1

Lemma 2.10. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβg(τ)
a.e
= TIα+βg(τ).

Lemma 2.11. Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ Cγ(J) and
TI1−αg ∈ C1

γ(J), then

TIα T∆αg(τ) = g(τ)−
(TI1−αg) (0)

Γ(α)
(ψ(τ)− ψ(0))

α−1
.

Lemma 2.12. Suppose that α > 0, a(τ, ω) is a nonnegative function locally inte-
grable on 0 ≤ τ < b (some b ≤ ∞), and let g(τ, ω) be a nonnegative, nondecreasing
continuous function defined on 0 ≤ τ < b, such that g(τ, ω) ≤ K for some constant
K. Further, let u(τ, ω) be a nonnegative locally integrable on a ≤ t < b function with

|u(τ, ω)| ≤ a(τ, ω) + g(τ, ω)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
u(s, ω)∆s,

with some α > 0. Then

|u(τ, ω)| ≤ a(τ, ω)+

∫ τ

0

[ ∞∑
n=1

(g(τ, ω)Γ(α))n

Γ(nα)
ψ

′
(s) (ψ(τ)− ψ(s))

nα−1

]
u(s, ω)∆s, 0 ≤ τ < b.

Remark 2.13. Under the hypothesis of Lemma 2.12 let a(t, ω) be a nondecreasing
function on [0, b). Then u(t, ω) ≤ a(t, ω)Eα(g(t, ω)Γ(α) (ψ(τ)− ψ(0))

α
), where Eα

is the Mittag-Leffler function defined by

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, z ∈ C, Re(α) > 0.

Lemma 2.14. Let u ∈ PC1−γ,ψ(J) satisfies the following inequality

|u(τ, ω)| ≤ c1 + c2

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |u(s, ω)| ds+
∑

0<tk<t

|uτk(ω)| ,

where c1 and c2 are positive constants. Then

|u(τ, ω)| ≤ c1
(
1 + ψEα(c2Γ(α) (ψ(τ)− ψ(0))

α
)kEα(c2Γ(α) (ψ(τ)− ψ(0))

α)
for τ ∈ (tk.tk+1],

where ψ = sup {ψk : k = 1, 2, 3, ...,m}.

Theorem 2.15. [6](Schauder’s Fixed Point Theorem) Let E be a Banach space
and Q be a nonempty bounded convex and closed subset of E and N : Q → Q is
compact, and continuous map. Then N has at least one fixed point in Q.

Theorem 2.16. [6](Schaefer’s Fixed Point Theorem) Let K be a Banach space and
let P : K → K be completely continuous operator. If the set {h ∈ K : h = δPh for some δ ∈ (0, 1)}
is bounded, then P has a fixed point.
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3. Existence results

Here we list the following assumptions which are going to be useful in proving
the results:

(H1) The function g : J ×R→ R is a rd-continuous.
(H2) Let ℓ(τ, ω) be a positive constant satisfies

|g(τ, u, ω)− g(τ, v, ω)| ≤ ℓ(τ, ω) |u− v| .

(H3) Letm,n be a positive constants andM(ω) = supm(τ, ω), N(ω) = supn(τ, ω),
such that

|g(τ, u, ω)− g(τ, v, ω)| ≤ m(τ, ω) + n(τ, ω) |u(τ, ω)| .

(H4) For the increasing function φ ∈ C1−γ,ψ(J), there exists λφ > 0 such that

TIαφ(t) ≤ λφφ(τ, ω).

Theorem 3.1. Assume that (H1) and (H3) are fulfilled. Then, equation (1) has
at least one solution.

Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J). The equivalent integral
of (2) is of the operator form

(Pu)(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s (5)

Define Br =
{
u ∈ C1−γ,ψ(J) : ∥u∥C1−γ,ψ

≤ r
}
. Set

σ :=
|u0|
Γ(γ)

+
M(ω)

Γ(α+ 1)
(ψ(b)− ψ(0))

α−γ+1
,

ρ :=
B(γ, α)

Γ(α)
N(ω) (ψ(b)− ψ(0))

α
.

In order to prove the fixed point here we utilize Theorem 2.15. We prove the result
in the following steps
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Step 1: We check that P(Br) ⊂ Br.

∣∣∣(ψ(τ)− ψ(0))
1−γ

(Pu)(τ, ω)
∣∣∣

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, u(s, ω), ω)|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |m(s, ω) + n(s, ω)u(s, ω)|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)
M(ω)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
∆s

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)
N(ω)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
(ψ(s)− ψ(a))

γ−1
∆s ∥u∥C1−γ,ψ

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))

1−γ

Γ(α+ 1)
M(ω) (ψ(τ)− ψ(0))

α

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)
B(γ, α)N(ω) (ψ(τ)− ψ(0))

α+γ−1 ∥u∥C1−γ,ψ

≤ |u0|
Γ(γ)

+
M(ω)

Γ(α+ 1)
(ψ(b)− ψ(0))

α−γ+1
+
B(γ, α)

Γ(α)
N(ω) (ψ(b)− ψ(0))

α ∥u∥C1−γ,ψ

Hence

∥(Pu)∥C1−γ,ψ
≤ σ + ρr ≤ r.

Which yields that P(Br) ⊂ Br.
Next we prove that the operator P is completely continuous.
Step 2: The operator P is continuous.

Let un be a sequence such that un → u in C1−γ,ψ(J). Then for each τ ∈ J ,

∣∣∣(ψ(τ)− ψ(0))
1−γ

((Pun)(τ, ω)− (Pu)(τ, ω))
∣∣∣

≤ (ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, un(s, ω), ω)− g(s, u(s, ω), ω)|∆s

≤ (ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, un(s, ω), ω)− g(s, u(s, ω), ω)| ds, (by Proposition 2.4)

≤ B(γ, α)

Γ(α)
(ψ(b)− ψ(0))

α ∥g(·, un(·, ω), ω)− g(·, u(·, ω), ω)∥C1−γ,ψ
,

Since g is continuous, Lebesgue dominated convergence theorem implies

∥Pun − Pu∥C1−γ,ψ
→ 0 as n→ ∞.

Step 3: P(Br) is relatively compact.
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Thus P(Br) is uniformly bounded. Let τ1, τ2 ∈ J , τ1 < τ2, then∣∣∣(Pu)(τ2, ω) (ψ(τ2)− ψ(0))
1−γ − (Pu)(τ1, ω) (ψ(τ1)− ψ(0))

1−γ
∣∣∣

≤

∣∣∣∣∣ (ψ(τ2)− ψ(0))
1−γ

Γ(α)

∫ τ2

0

ψ
′
(s) (ψ(τ2)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s

− (ψ(τ1)− ψ(0))
1−γ

Γ(α)

∫ τ1

0

ψ
′
(s) (ψ(τ1)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s

∣∣∣∣∣
≤ 1

Γ(α)

∫ τ1

0

ψ
′
(s)

∣∣∣(ψ(τ2)− ψ(0))
1−γ

(ψ(τ2)− ψ(s))
α−1

− (ψ(τ1)− ψ(0))
1−γ

(ψ(τ1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)|∆s
+

(ψ(τ2)− ψ(0))
1−γ

Γ(α)

∫ τ2

τ1

ψ
′
(s) (ψ(τ2)− ψ(s))

α−1 |g(s, u(s, ω), ω)|∆s

≤ 1

Γ(α)

∫ τ1

0

ψ
′
(s)

∣∣∣(ψ(τ2)− ψ(0))
1−γ

(ψ(τ2)− ψ(s))
α−1

− (ψ(τ2)− ψ(0))
1−γ

(ψ(τ1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)| ds
+

(ψ(τ2)− ψ(0))
1−γ

Γ(α)
(ψ(τ2)− ψ(τ1))

α+γ−1
B(γ, α) ∥g∥C1−γ,ψ

.

Thus, the right-hand side of the above inequality tends to zero. Hence, along with
the Arzëla-Ascoli theorem and from Step 1-3, it is concluded that P is completely
continuous. Thus the proposed problem has at least one solution. �

Lemma 3.2. Assume that (H1) and (H3) are fulfilled. If(
ℓ(τ, ω)B(γ, α)

Γ(α)
(ψ(b)− ψ(0))

α

)
< 1 (6)

then the problem (1) has a unique solution.

Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J).

(Pu)(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s (7)

Let u1, u2 ∈ C1−γ,ψ(J) and t ∈ J , then we have∣∣∣(ψ(τ)− ψ(0))
1−γ

((Pu1)(τ, ω)− (Pu2)(τ, ω))
∣∣∣

≤ (ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, u1(s, ω), ω)− g(s, u2(s, ω), ω)|∆s

≤ (ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, u1(s, ω), ω)− g(s, u2(s, ω), ω)| ds

≤ ℓ(τ, ω) (ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |u1(s, ω)− u2(s, ω)| ds

≤ ℓ(τ, ω)B(γ, α)

Γ(α)
(ψ(b)− ψ(0))

α ∥u1 − u2∥C1−γ,ψ
.
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Then,

∥Pu1 − Pu2∥C1−γ,ψ
≤ ℓ(τ, ω)B(γ, α)

Γ(α)
(ψ(b)− ψ(0))

α ∥u1 − u2∥C1−γ,ψ
.

From (6), it follows that P has a unique solution. �

4. Stability analysis

Next, we shall give the definitions and the criteria generalized U-H-R stability
for ψ-HFD of dynamic equations on time scales.

Definition 4.1. Equation (1) is generalized U-H-R stable with respect to φ ∈
C1−γ(J) if there exists a real number cg,φ > 0 such that for each solution v ∈
C1−γ(J) of the inequality∣∣T∆α,βv(τ, ω)− g(τ, v(τ, ω), ω)

∣∣ ≤ φ(τ), (8)

there exists a solution u ∈ C1−γ(J) of equation (1) with

|v(τ, ω)− u(τ, ω)| ≤ cg,φφ(τ, ω), t ∈ J.

Theorem 4.2. Assume that (H1), (H3), (H4) and (6) are satisfied. Then, the
problem (1) is generalized U-H-R stable.

Proof. Let v ∈ C1−γ(J) be solution of the following inequality (8) and let u ∈
C1−γ(J) be the unique solution of the Hilfer type dynamics equation (1).

u(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)∆s.

By integration of (8) we obtain∣∣∣∣v(τ, ω)− u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 − 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, v(s, ω), ω)∆s

∣∣∣∣ ≤ λφφ(τ, ω). (9)

On the other hand, we have

|v(τ, ω)− u(τ, ω)| ≤
∣∣∣∣v(τ, ω)− u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 − 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, v(s, ω), ω)∆s

∣∣∣∣
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, v(s, ω), ω)− g(s, u(s, ω), ω)|∆s

≤
∣∣∣∣v(τ)− u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 − 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, v(s, ω), ω)∆s

∣∣∣∣
+
ℓ(τ, ω)

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |v(s, ω)− u(s, ω)| ds

≤ λφφ(τ, ω) +
ℓ(τ, ω)

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |v(s, ω)− u(s, ω)| ds.

By applying Lemma 2.12, we obtain

|v(τ, ω)− u(τ, ω)| ≤ [(1 + ν1ℓ(τ, ω)λφ)λφ]φ(τ, ω),

where ν1 = ν1(α) is a constant,then

|v(τ, ω)− u(τ, ω)| ≤ cgϵφ(τ, ω),

thus the proof is complete. �
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5. Random Differential Equation with Impulsive Effect

Here we declare some assumption that will be useful in this section

(H5) Let m∗ be a positive constant M∗(ω) = supm∗(τ, ω)

|g(τ, u, ω)− g(τ, v, ω)| ≤ m∗(τ, ω) |u(τ, ω)| .

(H6) Let n∗ be a positive constant and N∗(ω) = supn∗(τ, ω)

uτk(ω) ≤ n∗(τ, ω)

(H7) Let ℓ∗ be a positive constant, such that

|uτk(ω)− vτk(ω)| ≤ ℓ∗(τ, ω)

(H8) For the increasing function φ ∈ PC1−γ,ψ(J), there exists λφ > 0 such that

TIα;ψφ(τ, ω) ≤ λφφ(τ, ω).

Theorem 5.1. Assume that [H5] and [H6] are satisfied. Then, Eq.(3) has at least
one solution.

Proof. Consider the operator P : Ω× PC1−γ,ψ → PC1−γ,ψ. The operator form of
integral equation (6) is written as follows

u(τ, ω) = Pu(τ, ω),

where

(Pu)(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

∑
0<tk<τ

uτk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)ds. (10)

First, we prove that the operator P defined by (7) verifies the conditions of
Theorem 2.16.
Step 1: The operator P is continuous.

Let un be a sequence such that un → u in PC1−γ,ψ. Then for each t ∈ J ,∣∣∣Pun(τ, ω)−Pu(τ, ω)) (ψ(τ)− ψ(0))
1−γ

∣∣∣
≤ 1

Γ(γ)

∑
0<τk<τ

|ψk(ukn(τk))− ψk(u(τk))|

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, un(s, ω), ω)− g(s, u(s, ω), ω)| ds.

Since g is continuous, then we have

∥Pun −Pu∥PC1−γ,ψ
→ 0 as n→ ∞.

This proves the continuity of P.
Step 2: The operator P maps bounded sets into bounded sets in PC1−γ,ψ.

Indeed, it is enough to show that for r > 0, there exists a positive constant l
such that
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Br =
{
u ∈ PC1−γ : ∥u∥PC1−γ,ψ

≤ r
}
, we have ∥P(u)∥PC1−γ,ψ

≤ l.∣∣∣(Pu)(τ, ω) (ψ(τ)− ψ(0))
1−γ

∣∣∣
≤u0(ω)

Γ(γ)
+

∑
0<τk<τ

|uτk(ω)|
Γ(γ)

+
(ψ(τ)− ψ(0))

1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, u(s, ω), ω)| ds

≤|u0(ω)|
Γ(γ)

+
m |n∗(τ, ω)|

Γ(γ)
+

(ψ(τ)− ψ(0))
1−γ

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |m∗(s, ω)u(s, ω)| ds

≤|u0(ω)|
Γ(γ)

+
mN∗(ω)

Γ(γ)
+

(ψ(τ)− ψ(0))
1−γ

Γ(α)
M∗(ω)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |u(s, ω)| ds

≤|u0(ω)|
Γ(γ)

+
mN∗(ω)

Γ(γ)
+

(ψ(τ)− ψ(0))
1−γ

Γ(α+ 1)
M∗(ω) (ψ(τ)− ψ(0))

α ∥u∥PC1−γ,ψ

≤|u0(ω)|
Γ(γ)

+
mN∗(ω)

Γ(γ)
+

1

Γ(α+ 1)
M∗(ω) (ψ(b)− ψ(0))

α−1+γ ∥u∥PC1−γ,ψ

:=l

That is P is bounded.
Step 3: The operator P maps bounded sets into equicontinuous set of PC1−γ,ψ.
Let τl, τm ∈ J, τl > τm, Br be a bounded set of PC1−γ,ψ as in Step 2, and u ∈ Br.
Then,∣∣∣(ψ(τl)− ψ(0))

1−γ
(Pu)(τl, ω)− (ψ(τm)− ψ(0))

1−γ
(Pu)(τm, ω))

∣∣∣
=

∣∣∣∣∣∣∣∣
∑

0<τk<τl

uτk(ω)

Γ(γ)
+

(ψ(τl)− ψ(0))
1−γ

Γ(α)

∫ τl

0

ψ
′
(s) (ψ(τl)− ψ(s))

α−1
g(s, u(s, ω), ω)ds

−

∑
0<τk<τm

uτk(ω)

Γ(γ)
− (ψ(τm)− ψ(0))

1−γ

Γ(α)

∫ τm

0

ψ
′
(s) (ψ(τm)− ψ(s))

α−1
g(s, u(s, ω), ω)ds

∣∣∣∣∣∣∣∣ .
As tl → tm, the right hand side tends to zero. As a outcome of Step 1 - 3 together
with Arzelä-Ascoli theorem, we can conclude that P : PC1−γ,ψ → PC1−γ,ψ is
continuous and completely continuous. Now, it remains to show that the set

Ω = {u ∈ PC1−γ,ψ : u(τ, ω) = ηPu(τ, ω), 0 < η < 1}

is bounded set. Let u ∈ ω, u = ηP(t, ω) for some 0 < η < 1. Thus for each τ ∈ J .
We have

u(τ, ω) =η

[
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

∑
0<τk<τ

uτk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)ds

]
.

This shows that the set Ω is bounded. As a consequence of Theorem 2.16, Eq. (3)
has at least one solution. �



28 S. HARIKRISHNAN, RABHA W. IBRAHIM, K. KANAGARAJAN JFCA-2019/10(2)

Theorem 5.2. Assume that [H2] and [H7] are satisfied. If(
mℓ∗(τ, ω)

Γ(γ)
(ψ(b)− ψ(0))

1−γ
+
ℓ(τ, ω)

Γ(α)
(ψ(b)− ψ(0))

α
B(γ, α)

)
< 1, (11)

then, the Eq. (3) has a unique solution.

Definition 5.3. Eq. (3) is generalized U-H-R stable with respect to φ if there
exists a real number Cf,φ > 0 such that for each solution u : Ω → PC1−γ,ψ of the
inequality {∣∣T∆α,β;ψu(τ, ω)− g(τ, y(τ, ω), ω)

∣∣ ≤ φ(τ, ω),∣∣∆TI1−γ;ψy(τ, ω)|τ=τk − yτk(ω)
∣∣ ≤ φ(τ, ω).

(12)

there exists a solution y : Ω → PC1−γ,ψ of Eq. (3) with

|y(τ, ω)− u(τ, ω)| ≤ Cf,φφ(τ, ω), τ ∈ J, ω ∈ Ω.

Remark 5.4. A function y ∈ PC1−γ,ψ is a solution of the inequality

∣∣T∆α,β;ψy(τ, ω)− g(τ, y(τ, ω), ω)
∣∣ ≤ ϵ,

if and only if there exist a function g ∈ PC1−γ,ψ and a sequence gk, k = 1, 2, ...,m
such that

(i) |g(τ)| ≤ ϵ, |gk| < ϵ.
(ii) T∆α,β;ψy(τ, ω) = g(τ, y(τ, ω), ω) + g(τ).
(iii) ∆TI1−γ;ψy(τ, ω)|τ=τk = yτk(ω) + gk.

Theorem 5.5. Let the assumptions [H2], [H7], [H8] and (11) hold. Then, Eq.(3)
is generalized U-H-R stable.

Proof. Let y be solution of inequality (12) and by Theorem 5.2 there u is unique
solution of the problem

T∆u(τ, ω) = g(τ, u(τ, ω), ω),

∆TI1−γ;ψu(τ, ω)|τ=τk = uτk(ω),

TI1−γ;ψu(τ, ω)|τ=0 = u0(ω),

Then, we have

u(τ, ω) =
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

∑
0<τk<τ

uτk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)ds.
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By differentiating inequality (12), for each τ ∈ (τk, τk+1], we have∣∣∣∣y(τ, ω)− u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

∑
0<τk<τ

yτk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, y(s, ω), ω)ds

∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

0<τk<τ

gk

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
φ(s, ω)ds

∣∣∣∣∣∣∣∣
≤ m

Γ(γ)
(ψ(τ)− ψ(0))

γ−1
φ(τ, ω) + λφφ(τ, ω)

≤
(

m

Γ(γ)
(ψ(b)− ψ(0))

γ−1
+ λφ

)
φ(τ, ω).

Hence for each τ ∈ (τk, τk+1], it follows

|y(τ, ω)− u(τ, ω)|

≤
∣∣∣∣y(τ, ω)− u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 −
∑

0<τk<τ
utk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

− 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, u(s, ω), ω)ds

∣∣∣∣
≤

∣∣∣∣∣∣∣∣y(τ, ω)−
u0(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 −

∑
0<τk<τ

yk(ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

− 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1
g(s, y(s, ω), ω)ds

∣∣∣∣+
∑

0<τk<τ

|yk(ω)− uk(ω)|

Γ(γ)
(ψ(τ)− ψ(0))

γ−1

+
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |g(s, y(s, ω), ω)− g(s, u(s, ω), ω)| ds

≤
(

m

Γ(γ)
(ψ(b)− ψ(0))

γ−1
+ λφ

)
φ(τ, ω) +

mℓ∗(τ, ω)

Γ(γ)
(ψ(τ)− ψ(0))

γ−1 |y(τ, ω)− u(τ, ω)|

+
ℓ(τ, ω)

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))

α−1 |y(s, ω)− u(s, ω)| ds

By Lemma 2.12, there exists a constant K > 0 independent of λφφ(τ, ω) such that

|y(τ, ω)− u(τ, ω)| ≤ K

(
m

Γ(γ)
(ψ(b)− ψ(0))

γ−1
+ λφ

)
φ(τ, ω) := Cf,φφ(τ, ω).

Thus, Eq.(3) is generalized U-H-R stable. �
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