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ELLIPTIC WELL-POISED BAILEY LEMMA AND ITS
APPLICATIONS

SATYA PRAKASH SINGH, LAKSHMI NARAYAN MISHRA AND VIJAY YADAV

ABSTRACT. In this paper, we have established a theorem by using the elliptic
WP-Bailey lemma. Certain transformation formulae for elliptic hypergeomet-
ric series have also been obtained by making use of the theorem established
herein.

1. INTRODUCTION

Bailey in 1947 established a remarkable lemma which has been widely used
for obtaining transformation formulas for ordinary hypergeometric series as well
as for basic hypergeometric series. In order to obtain Rogers-Ramanujan type
identities Bailey introduced Bailey pair. Using Bailey lemma and Bailey pairs
Andrews [1], Bailey [2, 3], Denis, Remy Y., Singh, S.N. and Singh, S.P. [4, 5, 6],
Slater [16, 17], Verma [21] established a number of transformations and identities
involving q series. Andrews generalized Bailey pair and introduced WP-Bailey
pair, WP-Bailey chain and WP-Bailey tree. Making use of WP-Bailey pairs, several
mathematicians attempted to establish new transformations and identities for basic
hypergeometric series. Noteworthy works in this direction are due to Laughlin
[10, 11], Singh, S.N., Singh, Sunil and Singh, Priyanka [15], Srivastava, H.M., Singh,
S.N., Singh, S.P. and Yadav, Vijay [19, 20].

Later on in 2002 Spiridonov [18], Warnaar [23] extended the idea of WP-Bailey
pairs and introduced elliptic well-poised Bailey lemma and elliptic WP-Bailey chain.
Many useful summations and transformations for elliptic hypergeometric series have
been established by Spiridonov [18], Warnaar [22], Frankel, I.B. and Turaev, V.G.
[7], Singh, Satya Prakash, Singh, Ashutosh and Singh Dhirendra [12], Singh, Satya
Prakash, Mishra, Bindu Prakash, Mohd. Shahjade and Yadav, Vijay [13], Singh,
S.N., Singh, Priyanka and Sharma, Mahendra Kumar [14] and others [24-35].

Elliptic hypergeometric series and their extensions to theta hypergeometric series
has become an increasingly active area of research now these days. So for, many for-
mulas for very well-poised basic hypergeometric series have already been extended
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to the elliptic setting. Some interesting formulas for multi-basic hypergeometric
series appear in the work of Warnaar [23], Singh, Srivasatava, et.al.[19, 20].

In the present paper, we establish a theorem which will be used to obtain trans-
formation and summation formulas for elliptic hypergeometric series.

2. NOTATIONS AND DEFINITIONS

A modified Jacobi’s theta function with argument x and nome p is defined by,

0(z;p) = (2,p/%;D)oc = (T3P) oo (P/T: D)o, (1)
and .
(@;p)oo = [J (1 —2p").
r=0
Also,
O(z1, 22, ..., vr;p) = O(x1;p)0(x2;p)...0(2,; p) (2)

Following Gasper and Rahman [[8]; chapter 11] theta shifted factorial is defined by,
(a54,p)n = 0(a; p)0(ag; p)-..0(ag" s p)

(a;9,p)o =1

and
(_1)nqn(n+1)/2

a;q,p)—n = —F—F—.
( ) a(q/a;q,p)n

For the sake of brevity, we often write,

(a1,a2,...;ar; ¢, P)n = (015 ¢, P)n(a2; ¢, P)n---(ar; ¢, P)n,

where ay, as, ..., a, # 0.
Following Spiridonov [18], we define an 11 E,. theta hypergeometric series with
base q and nome p by,

- q oo
1,02, oy Qrt15 4, D3 2 (a1,a2, ..., ar41;9,p)n2"
E = 4
T bibas by ] nz::o (4,01,b,..,br;¢,D)n @
where a’s and b’s are never zero. If z, a’s and b’s are independent of p then
: [ a1,02; .- Ar415;4,P; 2 | A1,A2, ..., r41545 2
1 E = ) .
Pl_>n% e L b17b25-~-7br ] el |: b17b2a"'7bT (5)

The theta hypergeometric series .1 FE, defined in (4) becomes an elliptic hyperge-
ometric series with two fundamental periods o~! and /0 provided

a1ag...r41 = qblbg...br, (6)

where ¢ = €™ and p = 2™,

The elliptic hypergeometric series .1 E). is called well poised if,
qgai1 = bias = bsasz = ... = brayy1. (7)
In this case elliptic balancing condition
a1a2a3...0r4+1 = qb1by...b,

reduces to

(aq)™™ = (a1az...ar41)% (8)
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Following Spiridonov [18], the well-poised theta hypergeometric series is defined
by,

oo

a(aq2n;p)(a17a67a77"'7a’r‘+1;q7p)"(zq)n
V,las; 130, 7] =
r+1 r[alya&a?v y Gr415 4, D5 Z} nz:;) e(a;p)(%alq/a&m’alq/ar+1;q7p)n

jai
(Cll, q+/ a1, —q4~/a1,4 ;a —4+\/Q1P, A6y +--y Qpr41; qap)n(_z)n

oo
=2 — e ©)
n=0 (qa VA1, —4/Q1,/Q1D, =y [ — 9000y aqap)n
p ar Ar4q
If the argument z in .1V, is 1 then we supress 1 and denote it by,
T+1Vr[a1;a67a77"'7a7‘+1;q7p]' (10)
We shall make use of the following summation formula in our analysis,
( aq aq aq )
aq, 7—, 75 —5:49,P
10V9[a';b7c7 d7€7q_7 be_bd_cd G ) (11)

;CIap]: (% aq aq ﬂ'q p)
b’ c’d bed V' n

provided that bede = a?¢™ 1.

[Gasper & Rahman 8; (11.2.25) p. 307]

3. ErvripTic EXTENSION OF WP-BAILEY LEMMA

Following Warnaar [23] elliptic extension of WP-Bailey pair is defined as;
A pair of sequence (a,(a, k;q,p), Bn(a, k;q,p)) is said to be elliptic WP-Bailey
pair if

(k/a, q3p)n—7’(k; qap)n-‘ﬂ“
Bnla,k;q,p) = ar(a, k;q,p 12
( ) ;0 (44, P)n—r(aq; ¢ P)n+r ( ) (12)

Similarly, a pair of sequences (v, (a, k;q,p), on(a, k; q,p)) is said to be elliptic con-
jugate WP-Bailey pair if,

oo

(k/a; q,p)r(k; g, P)ri2n
n a7k§ ; = 6r n a,k; yP)s 13
o8 150:) ; (@0, 0)r (0 ¢, P)rpn (a:k:q,) (13)

provided the infinite series converges.
Again, following Bailey lemma we have;

If {ap(a, k;q,p), Bnla, k;q,p)) is elliptic WP-Bailey pair and the elliptic conju-
gate WP-Bailey pair is (v, (a, k; ¢, p), 0, (a, k; ¢, p)), then under suitable convergence
conditions, we have,

> anla,k;q,p)mla, ki q,p) =Y Bula, k;q,p)0n(a, ks, p). (14)
n=0 n=0

Theorem 1.
If (an(a, k;q,p), Bn(a, k; q,p)) is a elliptic WP-Bailey pair then

kq aq aq ak 1 N _N a\"
k y Ty 7 4, b7 y 7 + ) 54, (7)
(qbcbcqp NP 1 P ) g

= an(a, k;q,p)
(a 94 kg kg > =0 (aq ag be N,aq”N;q,p>

qbc’b’?’q’p N b’?’k‘q .
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_ Z kq?”,p b, c,akq ™ Jbe, N q,p)nBnla, ki q, p) (15)
(k;p)(kq/b, kq/c,beq=N [a, kq* TN q, p)n
Proof. . 1+N
Choosing 6, (a. k: 4. p) — 0(kq k, i(b bc %eq 7V54,p)r(1/k;5q,p) - N— in (13)
O(k; p) (3L, %2, 2N 4,0)0 (¢ ¢, D) N—r (RPN TL)"
we get,
(ki) = (—k)NgNWNED20 (kg™ p) (ks q,p)2n (b, ¢, g N ¢~ Niq,p)
T (kq,q;4,p) NO(k; p)(ag; ¢, p)an (5L, 9, beq=N kgN+1;q,p),,
2n n ak 1+n+N k —(N—n)
X 10Vs | kg™ bg" eq", o S ¢, p| - (16)
Now, summing 19Vy series by using (11) we find,
ol ks g, p) = Fa/besaa/b, aq/c; q,p)n (k)N gV D2
e (g, kq/b,kq/c,aq, aq/bc; q,p)n
o (bc,akg™ b, g™ g, p)n (g)” (17)
(aq/b,aq/c,bcq™™ [k, aq**N;q,p)n \k/

Putting the values of 4, (a, k; g, p) and v, (a, k; ¢, p) in (14) we get (15).

Applications of (15)
If we make use of elliptic WP-Bailey pair due to Warnaar [23; (4.2a), (4.2b)] we
have the following summation formula,

ak -~
"t q N;q,p>
n

o b,
29(6%12”;29) < E e

0(a;p aq aq bc _
T P R B L P CE
b ¢’k n

a ak
77bacai 1+N7 _N; )
k bcq q q,p

ag, 24 ka ka.
B ’bC’b’C’, N (18)

o, B aq aq.
q? bC’ b7 C,q’p N

Again, replacing a,q,p by a2, ¢%, p? respectively in (15) it takes the form,

=10 Vo [a;

kq2 a2q2 a2q2
k 2a7a ) ; 27 ?
(q be b q D v
X
5 o 0 qu kq2 2.p°
b bc b b b C ) b N
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a’k
9(kq4n )(b c, > q2+2N q—2N7q D ) ﬁn(CLQ k.q27p2>

kq* kq®> b

n=0 O(k;p?) =, T 222N g2V 2 p?
b ¢ a?

Using the elliptic WP-Bailey pair due to Warnaar [23], viz.,

2 L2 2 _e(a’q ,p)(GCLCI/qupn i
entet kit = e (7).

a’q
) = B P ('
Y (—aq;¢,p)2n(a%, k2 /0% >, p*)n \a?q
in (19) we get the transformation formula,

(19)

a“k 2k -
<b ¢, =—¢* N ¢ P) 0(aq®™; p)(a,a*q/k; q, p)n
n —n

q

a2 > be —2N ,2.2+42N.
= ° ,—q "V, a%q sq®,p° ) 0(a;p)(q, k/asq,p)n
b c 'k n

2 2 2y,
0(kq*™; p?) ( b, L b, c, =
N (q’p)<a k‘v,c,b
2k kq® kq® be

q2+2Naq72N,q » D ) (7k/a;Q7p)2n n
n k
—2N ;. 242N, a*q)
n= Oa(k p ) Eaiaiaiq kq 7q p (70’(];1171))271
n

Making use of another elliptic WP-Bailey pair due to Warnaar [23], viz.,

0(ag*";p)(a,a® /K> ¢*,p)n (k2>"

0(a;p)(q% k2q?/a;¢*,p)n \ a?
042n+1(a7 k; Qap) =0

(kq2/a;q27p)n(k7a/k;q,p)n( k)"
Bn a,k;q,p) = _
(@, k:¢.p) (aq; ¢, p)n(q, k2q/a; 4, p)n

a
i kq aq aq
q7 bc’ b ) c 7q7p N
aq aq kq kq 0p
’b ? b ) c ) N

ak _ n
N (b,c,bcq”N,q N;qm) 0(aq™; p)(a, a*/k* ¢, p)n
2n

an_;) (aq aq be

?7 ?a quaaq1+N;Qap> 9(a;p)(q2,k2q2/a;q2,p)n
2n

a2n(a7 kv q7p) =

n (15) we get

X
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akql-l-N B k2q
N 9(kq2”;p)(b,c, 4 Nigp 7;q27p (k, %:q,p),

k)"
Z —-N 2 (_ :
n=0 0(k; p) (kbq %7 bcqa kq' ™ g, p) (aq; ¢, p)n <q, i “1.q, p) ¢

Definition of the elliptic WP-Bailey pair (12) can be written as,

(k/a; q, p)n(k; ¢, p)n
n ak- 9 =
Pnla, ki 4.) (¢4, P)n(aq; ¢, p)n

~  (¢7"4.0)r(kq"; q.p)r (aq)
X — ) ar(a,k;q,p). 22
; (ag'="/k;q,p)r(ag*t™;q,p)r \ Kk ( ) (22)
Substituting the elliptic WP-Bailey pair due to Warnaar [23], viz.,
0(ag*";p)(a, a®/m? ¢* p)n (b, ¢4, p)2n (k>2"
0(a; p) (g%, m2q%/a; 4%, p)nlaq/b, aq/c; q,p)an ’
aony1 =0,
k,k/m,bk/a, ck/a;q,p)n x~ 0(mg®"; p)(m?q/a; ¢, p)r
@L(a’k;q,p):( / / /. ) 3 ( ')( ./2 )
(¢;mq,aq/b,aq/c;q,p)n =, 0(m;p)(ag; ¢* p)r
(ma b7 c, a‘/ma k.q'n,) q—n; q7p)7‘(_mQ/a/)r

(¢, mq/b,mq/c,m?q/a, mg' =" /k, mq**"; q,p),
n (22) we get the following transformation formula,

0427L(a7 k; Q7p) =

(k/m,bk/a,ck/a;q,p)n z”: 0(ma®";p)(m?q/a; 4> p)r
(mq,aq/b,aq/c;q,p)n = O(m;p)(ag; ¢, p)r

(ma ba c, a/m, kqn’ qin; Q>p)r(7mQ/a)r
(g, mq/b,mq/c,m?q/a,mq*=" [k, mqT"; ¢, p),
_ (k/a;q,p)n i (47":9:p)2r(kq"; ¢, P)ar
(ag; ¢, p)n = (aq' " /k; q,p)2r(aq™ " ¢, p)or
0(aq*";p)(a, a*/q*; ¢*,p)r (b, c; 4, ) 2r¢*"
0(a;p)(q?, m2q?/a; q2,p)r(aq/b, aq/c; q,p)2r

(23)

where m = bck/agq.

4. NEw ErrLipTic WP-BAILEY PAIRS

Warnaar [23] has given five theorems for constructing new WP-elliptic pair from
a known pair. We shall discuss one of these theorems here.
Theorem 2 of Warnaar [23] States that:

If {(ay(a,k;q,p), Bnla, k;q,p)) is an elliptic WP-Bailey pair then so is the pair
(aq,(a, ks q,p), By, (a, ki g, p)) given by,

b7C;Q7p)n k "
!/ k- — ( . " .
o, (a, k5 q,p) (aa/b.aa/ 0,00 ( ) an(a,m;q,p),

(mq/b,mq/c; q,p)n 27 p)(b, ¢ q,p)r
B (a, ks q,p) =
( )= (aq/b,aq/c;q,p)n TZOHmp (mq/b,mq/c; q,p)r
(k/m; ¢, p)n—r (K5 ¢, D)nir <k "
X _
(64 P)n—r(MG; ¢, P)ptr \M

> Bn(a,m;q,p), (24)
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where m = bck/aq.
An elliptic WP-Bailey pair due to Warnaar [23] is

o 0(ag®p)a,alkiq,p)n (K"
on(a:k:0,p) = 0(a;p)(q. kq;0,p)n \a
Bn(a, k;q,p) = dn.o- (25)

Using (25) in (24) we get new elliptic WP-Bailey pair as,

(b,¢;4,p)n <k>" 0(ag®™;p)(a, a/m;q,p)n (@)"
aq/b,aq/c; q,p)n 0(a; p)(q,mq: ¢, P)n a

O‘;z(avk;%p) = ( m
(mg/b,mq/c;q,p)n
(ag/b,aq/c;q,p)n
Putting these values of new elliptic WP-Bailey pair in (22) we have, following
summation formula

B (a,k;q,p) = (26)

(g, aq,mq/b,mq/c;q,p)n
(k7 k/av aq/bv CLQ/C; Qap)n ’

10V9[a/; b, C, a/m>kqn>q_n;q’p] = (27)

where m = bck/agq.
Omne can use (25), (26) to establish results as shown in (27).
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