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EXISTENCE OF MILD SOLUTIONS OF NONLINEAR

BOUNDARY VALUE PROBLEMS OF COUPLED HYBRID

FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

BAPURAO C. DHAGE, SHYAM B. DHAGE AND K. BUVANESWARI

Abstract. In this paper we investigate the study of a system of two non-
homogeneous boundary value problems of coupled hybrid integro-differential

equations of fractional order. Our main existence result is based on a hybrid
fixed point theorem due to Dhage in Banach algebras describing the sufficient
conditions for the existence of a mild coupled solution of the systems of two
fractional integrodifferential equations.

1. Introduction

Fractional calculus is the study of mathematical modeling of systems and pro-
cesses occurring in many engineering and scientific phenomena in the form of frac-
tional differential and integral equations. The popularity of this subject is the
non-local nature of fractional order operators. Due to this reason, fractional order
operators are used for describing the hereditary properties of many materials and
processes. For applications in applied and biomedical sciences and engineering, we
refer the reader to the research monographs [16, 17, 18]. Before stating the main
problem of this paper, we recall the following basic definitions of fractional calculus
[18, 20] which are useful in what follows.

Definition 1.1. If J∞ = [t0,∞) be an interval of the real line R for some t0 ∈ R
with t0 ≥ 0, then for any x ∈ C(J∞,R), the Riemann-Liouville fractional integral
of order q > 0 is defined as

Iqx(t) =
1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ J∞,

provided the right hand side is pointwise defined on (t0,∞).

Definition 1.2. If x ∈ ACn(J∞,R), then the Caputo derivative cDqx of x of
fractional order q is defined as

cDqx(t) =
1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s) ds, n− 1 < q < n, n = [q] + 1,
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where [q] denotes the integer part of the real number q, and Γ is the Euler’s gamma
function. Here ACn(J∞,R) denote the space of real valued functions x(t) which
have continuous derivatives up to order n− 1 on J∞ such that xn(t) ∈ AC(J∞,R).

Now we state a couple of useful lemmas which are helpful in transforming the
fractional differential equation into an equivalent Riemann-Louville integral equa-
tion.

Lemma 1.1 (Kilbas et.al. [16]). Suppose that x ∈ ACn[0, 1] and α ∈ (n − 1, n),
n ∈ N. Then, the general solution of the fractional differential equation cDαx(t) = 0
is

x(t) = C0 + C1t+ C2t
2 + · · ·+ Cn−1t

n−1,

for all t ∈ [0, 1], where Ci, i = 0, 1, . . . , n − 1 are constants and ACn[0, 1] is the
space of (n−1) times continuously differentiable real-valued functions x : [0, 1] → R
such that x(n) ∈ AC(J,R).

Lemma 1.2 (Podlumny [20]). Let x ∈ ACn[0, 1] and α > 0, then

Iαt
cDα

t x(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, . . . , n− 1, n = [α] + 1.

In recent days, existence of solutions of boundary value problems for coupled
system of fractional order differential equations have attracted more attentions. See
for example, [1, 4, 5, 6, 20] and references therein. It is because, the class of hybrid
fractional differential equations includes the perturbations of original differential
equations in different ways. See Dhage [11]and references therein.

To the best of our knowledge, the area concerned with the study of coupled
system of hybrid fractional order differential equations is not analyzed in a well
manner and very few articles are available see [5, 6, 7, 8, 9, 20, 21]. In [2], the
authors studied existence and uniqueness results for the following coupled system
of boundary value problems for hybrid fractional differential equations.

cDα

(
x(t)

f(t, x(t), y(t))

)
= h1(t, x(t), y(t)), 0 < t < 1,

cDβ

(
y(t)

g(t, x(t), y(t))

)
= h2(t, x(t), y(t)), 0 < t < 1,

x(0) = x(1) = 0, y(0) = y(1) = 0,


(1.1)

where α, β ∈ (1, 2], J = [0, 1], cD is the Caputo’s fractional derivative, f, g :
J × R × R → R \ {0} and h1, h2 : J × R × R → R are continuous functions. The
system was extended by Baleanu et.al. [6] to multi-point hybrid system and studied
sufficient conditions for existence and uniqueness of solutions. Amjad Ali, et.al. [3]
extended the result to the following coupled system

cDα

(
x(t)− f1(t, x(t), y(t))

f2(t, x(t), y(t))

)
= ϕ(t, x(t), y(t)) a.e. t ∈ J = [0, 1],

cDβ

(
y(t)− g1(t, x(t), y(t))

g2(t, x(t), y(t))

)
= ψ(t, x(t), y(t)) a.e. t ∈ J = [0, 1],

x(0) = a, x(1) = b, y(0) = c, y(1) = d,


(1.2)
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where α, β ∈ (1, 2], cD is the Caputo fractional derivative, a, b, c, d are real constants
and the nonlinear functions f2, g2 : J ×R×R → R \ {0}, f1, g1, ψ : J ×R×R → R
are continuous functions.

Motivated by the work mentioned above, in this paper, we study the existence
of coupled solutions to the following nonhomogeneous boundary value problem of
coupled hybrid integro differential equations of fractional order,

cDω

x(t)−
m∑
i=1

Iβihi(t, x(t), y(t))

f(t, x(t), y(t))

 = ϕ(t, x(t), y(t)) a.e. t ∈ J = [0, 1],

cDδ


y(t)−

n∑
j=1

Iγjkj(t, x(t), y(t))

g(t, x(t), y(t))

 = ψ(t, x(t), y(t)) a.e. t ∈ J = [0, 1],

x(0) = a, x(1) = b, y(0) = c, y(1) = d,


(1.3)

where ω, δ ∈ (1, 2], cD is the Caputo fractional derivative a, b, c, d are real constants
and the non-linear functions f, g : J × R× R → R \ {0}, ϕ, ψ : J × R× R → R are
continuous functions, hi, kj : J × R × R → R are continuous for i = 1, . . . ,m and
j = 1, . . . , n and βi > 0 and γj > 0 for i = 1, . . . ,m, j = 1, . . . , n.

By a coupled solution of the coupled boundary value problem of fractional
differential equations (1.3) we mean a pair of functions (x, y) ∈ C2(J,R)×C2(J,R)
that satisfies the equations in (1.3), where C2(J,R) is the space of twice continu-
ously differentiable real-valued functions defined on J .

We use standard hybrid fixed point theory developed in [7, 8, 9, 10] involving the
three operators in a Banach algebra to establish the sufficient conditions for exis-
tence of the coupled solutions to coupled system of quadratic fractional differential
equations (1.3). We also give a numerical example to illustrate our main result of
this paper.

2. Auxiliary Results

We place the nonhomogeneous boundary value problems of coupled fractional
differential equations in the function space X = C([0, 1],R) of continuous real-
valued functions f : [0, 1] → R. Clearly, X = C([0, 1],R) is a Banach space under
the supremum norm

∥x∥ = sup{|x(t)| : t ∈ [0, 1]} (2.1)

which is again a Banach algebra w.r.t. the multiplication “ · ” defined by

(x · y)(t) = x(t) · y(t). (2.2)

Given the Banach algebra X, consider the product space E = X ×X which is a
vector space w.r.t. the co-ordinatewise addition and scalar multiplication. Define
a norm ∥ · ∥ in the product linear space E by

∥(x, y)∥ = ∥x∥+ ∥y∥ . (2.3)
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Then, the normed linear space (E, ∥(·, ·)∥) is a Banach space which further be-
comes a Banach algebra w.r.t. the multiplication “ · ” defined by(

(x, y) · (u, v)
)
(t) = (x, y)(t) · (u, v)(t) =

(
x(t)u(t), y(t)v(t)

)
(2.4)

for all t ∈ J , where (x, y), (u, v) ∈ X × X = E. The following result concerning
this fact of algebraic structure of the product space E = X ×X is proved in Dhage
[13].

Lemma 2.1 (Dhage [13]). The product space E is a Banach algebra w.r.t. the
norm ∥(·, ·)∥ and the multiplication “ · ” defined by (2.3) and (2.4) respectively.

Proof. Let (x, y) and (u, v) be any two elements of E. Then, by definitions of the
the norm ∥(·, ·)∥ and the multiplication “ · ” in E, we obtain

∥
(
(x, y) · (u, v)

)
∥ = ∥

(
xu, yv

)
∥ = ∥xu∥+ ∥y v∥ ≤ ∥x∥ ∥u∥+ ∥y∥ ∥v∥, (2.5)

and

∥(x, y)∥ ∥(u, v)∥ =
[
∥x∥+ ∥u∥

][
∥y∥+ ∥v∥

]
. (2.6)

From (2.5) and (2.6) it follows that

∥
(
(x, y) · (u, v)

)
∥ ≤ ∥(x, y)∥ ∥(u, v)∥.

This shows that (E, ∥ · ∥, ·) is a Banach algebra and the proof of lemma is com-
plete. �

We employ the following hybrid fixed point theorem of Dhage [7, 8] as a basic
tool for proving the main existence result of coupled solutions of this paper. We
need the following definition in what follows.

Definition 2.1 (Dhage [6, 7]). Let E be a Banach space An operator T : E → E
is called Lipschitz if there exists a constant LT > 0 such that

∥T (x)− T (y)∥ ≤ LT ∥x− y∥

for all elements x, y ∈ X.

Theorem 2.1 (Dhage [7, 8]). Let S be a closed convex and bounded subset of the
Banach algebra X and let A, C : X → X and B : S → X be three operators such
that

(a) A and C are Lipschitzian with Lipschitz constants LA and LC respectively,
(b) B is compact and continuous,
(c) x = AxBy + Cx ∀y ∈ S =⇒ x ∈ S, and
(d) LAMB + LC < 1, where MB = ∥B(S)∥ = sup{∥Bx∥ : x ∈ S}.

Then the operator equation x = AxBx+ Cx has a solution in S.

We need the following assumptions in the sequel.

(H1) There exists a constant Lf > 0 such that

|f(t, x, y)− f(t, x̄, ȳ)| ≤ Lf (|x− x̄|+ |y − ȳ|) ,

for all t ∈ J and x, x̄, y, ȳ ∈ R.
(H2) There exists a constant Lg > 0 such that

|g(t, x, y)− g(t, x̄, ȳ)| ≤ Lg (|x− x̄|+ |y − ȳ|)

for all t ∈ J and x, x̄, y, ȳ ∈ R.
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(H3) There exists bounded functions Lhi , Lkj : J → R+, with bounds ∥Lhi∥ and
∥Lkj∥ such that

|hi(t, x, y)− hi(t, x̄, ȳ)| ≤ Lhi
(t) (|x− x̄|+ |y − ȳ|) , i = 1, . . . ,m,

and

|kj(t, x, y)− kj(t, x̄, ȳ)| ≤ Lkj (t) (|x− x̄|+ |y − ȳ|) , j = 1, . . . , n.

for t ∈ J and x, x̄, y, ȳ ∈ R.
(H4) There exist constants M1 > 0 and M2 > 0 such that∣∣∣∣ a

f(0, a, c)

∣∣∣∣ ≤M1 and

∣∣∣∣ c

g(0, a, c)

∣∣∣∣ ≤M2

and

F0 = sup
t∈J

|f(t, 0, 0)| , G0 = sup
t∈J

|g(t, 0, 0)|

G1(t, s) = sup
t∈[0,1]

[∫ t

0

(t− s)ω−1

Γ(ω)
ds− t

∫ 1

0

(1− s)ω−1

Γ(ω)
ds

]
,

G2(t, s) = sup
t∈[0,1]

[∫ t

0

(t− s)δ−1

Γ(δ)
ds− t

∫ 1

0

(1− s)δ−1

Γ(δ)
ds

]
MGi = max {|Gi(t, s)| : (t, s) ∈ [0, 1]× [0, 1]} , i = 1, 2;

H0 = sup
t∈J

|hi(t, 0, 0)| for all , i = 1, 2, · · · ,m and

K0 = sup
t∈J

|kj(t, 0, 0)| for all j = 1, 2, · · · , n.

(H5) There exist constants Mhi > 0,Mkj > 0 such that

|hi(t, x, y)| ≤Mhi
and |kj(t, x, y)| ≤Mkj

for all (t, x, y) ∈ J × R× R and i = 1, . . . ,m, j = 1, . . . , n.
(H6) The real functions ϕ and ψ are bounded on J×R×R with bounds Mϕ and

Mψ respectively.
(H7) The constants in the hypotheses (H1) through (H6) satisfy the following

conditions,

Ω = Lf

MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi+i)

|f(1, a, c)|



+ Lg

MG2 Mψ +M2 +

|d|+
n∑
j=1

Mkj

Γ(γj+1)

|g(1, b, d)|

 < 1.

3. Existence Result

In this section, we prove our main existence result for mild coupled solutions
of the coupled differential equations of fractional order (1.3). The following useful
lemma is immediate and follows from the theory of fractional calculus.
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Lemma 3.1. If a function x ∈ Cm([0, 1],R,R) is a solution of the hybrid fractional
integrodifferential equation

cDω

x(t)−
m∑
i=1

Iβihi(t, x(t), y(t))

f(t, x(t), y(t))

 = ϕ(t, x(t), y(t)) a.e. t ∈ J = [0, 1],

x(0) = a, x(1) = b,


(3.1)

then it satisfies the following hybrid fractional integral equation

x(t) =

m∑
i=1

Iβihi(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×

×

[∫ 1

0

G1(t, s)ϕ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, y(0))

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, y(1))

)]
, t ∈ J. (3.2)

Proof. Applying Riemann-Liouville fractional integral of order ω on both sides of
(3.1) and using Lemmas 1.1 and1.2, we obtain

x(t)−
m∑
i=1

Iβihi(t, x(t), y(t))

f(t, x(t), y(t))
=

∫ t

0

(t− s)ω−1

Γ(ω)
ϕ(s, x(s), y(s))ds+ C1 + C2t (3.3)

which implies

x(t) =

m∑
i=1

Iβihi(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×

×
(∫ t

0

(t− s)ω−1

Γ(ω)
ϕ(s, x(s), y(s))ds+ C1 + C2t

)
. (3.4)

Using the boundary conditions x(0) = a, x(1) = b, we have

C1 =
x(0)

f(0, x(0), y(0)
=

a

f(0, a, y(0))

C2 =

b−
m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, y(1))

−
∫ 1

0

(1− s)ω−1

Γ(ω)
ϕ(s, x(s), y(s))ds− a

f(0, a, y(0))
.

Substituting C1, C2 in (3.4),

x(t) =
m∑
i=1

Iβihi(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×



JFCA-2019/10(2) FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS 197

×

[∫ t

0

(t− s)ω−1

Γ(ω)
ϕ(s, x(s), y(s))ds+

a

f(0, a, y(0))

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, y(1))

−
∫ 1

0

(1− s)ω−1

Γ(ω)
ϕ(s, x(s), y(s))ds− a

f(0, a, y(0))

)]

=
m∑
i=1

Iβihi(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×

×

[∫ 1

0

G(t, s)ϕ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, y(0))

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, y(1))

)]
(3.5)

where,

G(t, s) =

[∫ t

0

(t− s)ω−1

Γ(ω)
ds− t

∫ 1

0

(1− s)ω−1

Γ(ω)
ds

]
.

The proof is complete. �

Theorem 3.1. A solution u ∈ C(J,R) of the hybrid fractional integral equation
3.2 is called a mild solution of the fractional differential equation 3.1 defined on
J . Similarly, a mild coupled solution (u, v) ∈ C(J,R)× C(J,R) of a system of the
coupled fractional differential equations 1.3 is defined on J .

We use the notations

A =

∣∣∣∣ a

f(0, a, c)

∣∣∣∣+
∣∣∣∣∣∣∣∣
b+

m∑
i=1

Mhi

Γ(βi + 1)

f(1, b, d)

∣∣∣∣∣∣∣∣ ,

B =

∣∣∣∣ c

g(0, a, c)

∣∣∣∣+
∣∣∣∣∣∣∣∣∣
d+

n∑
j=1

Mkj

Γ(γj + 1)

g(1, b, d)

∣∣∣∣∣∣∣∣∣ .
Theorem 3.2. Assume that the hypotheses (H1)− (H7) hold. Furthermore, if(

Lf + Lg
)(
A+MG1 Mϕ +B +MG2 Mψ)

)
+

m∑
i=1

∥Lhi∥
Γ(βi + 1)

+
n∑
j=1

∥∥Lkj∥∥
Γ(γj + 1)

< 1, (3.6)

then the coupled system (1.3) has a mild coupled solution defined on J .
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Proof. By Lemma 3.1, the mild coupld solutions of the coupled fractional inte-
grodifferential equations in (1.3) are the solutions to the coupled fractional integral
equations,

x(t) =

m∑
i=1

Iβihi(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×

×

[∫ 1

0

G1(t, s)ϕ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, c)

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, d)

)]
(3.7)

and

y(t) =
n∑
j=1

Iγjkj(t, x(t), y(t)) +
[
f(t, x(t), y(t))

]
×

×

[∫ 1

0

G2(t, s)ψ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, c)

+ t

(b− n∑
j=1

∫ 1

0

(1− s)γj−1

Γ(γj)
kj(s, x(s), y(s))ds

f(1, b, d)

)]
. (3.8)

Choose

ρ ≥
F0 [MG1 Mϕ +A] +G0 [MG2 Mψ +B] +

n∑
i=1

∥Lϕi∥
Γ(ρi+1)

+
m∑
j=1

∥∥Lψj

∥∥
Γ(γj+1)

1− Ω

and define a subset S of the Banach space X ×X by

S = {(x, y) ∈ X ×X : ∥(x, y)∥ ≤ ρ}. (3.9)

Clearly, S is a closed, convex and bounded subset of the Banach space E =
X × X. Define the operators A = (A1,A2) : E → E, C = (C1, C2) : E → E and
B = (B1,B2) : S → E by

A1(x, y) = f(t, x(t), y(t)), , t ∈ J,

A2(x, y) = g(t, x(t), y(t)), t ∈ J,

}
(3.10)
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B1(x, y) =

∫ 1

0

G1(t, s)ϕ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, c)

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, d)

)
, t ∈ J,

B2(x, y) =

∫ 1

0

G2(t, s)ψ(s, x(s), y(s))ds+ (1− t)
c

g(0, a, c))

+ t

(d− n∑
j=1

∫ 1

0

(1− s)γj−1

Γ(γj)
kj(s, x(s), y(s))ds

g(1, b, d)

)
, t ∈ J,



(3.11)

and

C1(x, y) =
m∑
i=1

Iβihi(t, x(t), y(t)), t ∈ J,

C2(x, y) =
n∑
j=1

Iγjkj(t, x(t), y(t)), t ∈ J.


(3.12)

Then the coupled system of hybrid integral equations (3.7) and (3.8) can be
written as the system of operator equations as

A(x, y)(t)B(x, y)(t) + C(x, y)(t) = (x, y)(t), t ∈ J, (3.13)

which further in view of the multiplication (2.4) of two elements in E yields(
A1(x, y)(t)B1(x, y)(t) + C1(x, y)(t) , A2(x, y)(t)B2(x, y)(t) + C2(x, y)(t)

)
= (x, y)(t), t ∈ [0, 1], (3.14)

This further implies that

A1(x, y)(t)B1(x, y)(t) + C1(x, y)(t) = x(t), t ∈ [0, 1],

A2(x, y)(t)B2(x, y)(t) + C2(x, y)(t) = y(t), t ∈ [0, 1].

}
(3.15)

Now we prove that the operators, A, B and C satisfy the conditions of Theorem
2.1 in a series of following steps.

Step I: First we show that A = (A1,A2) and C = (C1, C2) are Lipschitzian on

E with Lipschitz constants (Lf +Lg) and

(
m∑
i=1

∥Lhi∥
Γ(βi + 1)

+
n∑
j=1

∥Lkj∥
Γ(γj + 1)

)
respec-

tively. Let (x, y), (x̄, ȳ) ∈ E be arbitrary. Then, using (H4), we have

|A1(x, y)(t)−A1(x̄, ȳ)(t) = |f(t, x(t), y(t))− f(t, x̄(t), ȳ(t))|
≤ Lf (|x(t)− x̄(t)|+ |y(t)− ȳ(t)|)
≤ Lf

(
∥x− x̄∥+ ∥y − ȳ∥

)
for all t ∈ J . Taking the supremum over t, we obtain

∥A1(x, y)−A1(x̄, ȳ)∥ ≤ Lf
(
∥x− x̄∥+ ∥y − ȳ∥

)
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for all (x, y), (x̄, ȳ) ∈ E. Similarly, we obtain

∥A2(x, y)−A2(x̄, ȳ)∥ ≤ Lg
(
∥x− x̄∥+ ∥y − ȳ∥

)
for all (x, y), (x̄, ȳ) ∈ E. Therefore, by definition of the operator A, we obtain

∥A(x, y)−A(x̄, ȳ)∥
=
∥∥(A1(x, y),A2(x, y)

)
−
(
A1(x̄, ȳ),A2(x̄, ȳ)

)∥∥
=
∥∥(A1(x, y)−A1(x̄, ȳ) , A2(x, y)−A2(x̄, ȳ)

)∥∥
≤ ∥A1(x, y)−A1(x̄, ȳ)∥+ ∥A2(x, y)−A2(x̄, ȳ)∥
≤ Lf

(
∥x− x̄∥+ ∥y − ȳ∥

)
+ Lg

(
∥x− x̄∥+ ∥y − ȳ∥

)
= (Lf + Lg)

(
∥x− x̄∥+ ∥y − ȳ∥

)
for all (x, y), (x̄, ȳ) ∈ E, where LA = (Lf + Lg).

Similarly, by definition of the operator C, we obtain∣∣C1(x, y)(t)− C1(x̄, ȳ)(t)
∣∣

=

∣∣∣∣∣
m∑
i=1

Iβihi(t, x(t), y(t))−
m∑
i=1

Iβihi(t, x̄(t), ȳ(t))

∣∣∣∣∣
≤

m∑
i=1

∫ t

0

(t− s)βi−1

Γ(βi)
Lhi(s) (|x(s)− x̄(s)|+ |y(s)− ȳ(s)|) ds

≤
m∑
i=1

∥Lhi∥

Γ(βi + 1)
(∥(x− x̄)∥+ ∥(y − ȳ∥) ,

for all t ∈ [0, 1]. Taking the supremum over t, we get

∥C1(x, y)− C1(x̄, ȳ)∥ ≤
m∑
i=1

∥Lhi∥
Γ(βi + 1)

(∥(x− x̄)∥+ ∥(y − ȳ∥)

for all (x, y), (x̄, ȳ) ∈ E.

Similarly, we can prove that C2 is also a Lipschitzian with Lipschitz constant
n∑
j=1

∥∥∥Lkj∥∥∥
Γ(γj + 1)

, that is,

∥C2(x, y)− C2(x̄, ȳ)∥ ≤
n∑
j=1

∥Lkj∥
Γ(γj + 1)

(∥(x− x̄)∥+ ∥(y − ȳ∥)

for all (x, y), (x̄, ȳ) ∈ E.

Hence, it follows that

∥C(x, y)− C(x̄, ȳ)∥ ≤

 m∑
i=1

∥Lhi
∥

Γ(βi + 1)
+

n∑
j=1

∥Lkj∥
Γ(γj + 1)

 (∥(x− x̄)∥+ ∥(y − ȳ∥)

for all (x, y), (x̄, ȳ) ∈ E, that is, C is a Lipschitzian with Lipschitz constant

LC =

 m∑
i=1

∥Lhi∥
Γ(βi + 1)

+
n∑
j=1

∥Lkj∥
Γ(γj + 1)

 .
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Step II: Now we show that B = (B1,B2) is compact and continuous operator
from S into E. For continuity of B, let (xn, yn) be a sequence of points in S
converging to a point (x, y) ∈ S. Then, by Lebesgue Dominated Convergence
Theorem, we have

lim
n→∞

B1(xn, yn)(t) = lim
n→∞

∫ 1

0

G1(t, s)ϕ(s, xn(s), yn(s))ds+ (1− t)
a

f(0, a, c)

+ t lim
n→∞

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, xn(s), yn(s))ds

f(1, b, d)

)

=

∫ 1

0

G1(t, s)
[
lim
n→∞

ϕ(s, xn(s), yn(s))
]
ds+ (1− t)

a

f(0, a, c)

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)

[
lim
n→∞

hi(s, xn(s), yn(s))
]
ds

f(1, b, d)

)

=

∫ 1

0

G1(t, s)ϕ(s, x(s), y(s))ds+ (1− t)
a

f(0, a, c)

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, d)

)
= B1(x, y)(t)

for al t ∈ [0, 1]. Similarly, we prove

lim
n→∞

B2(xn, yn)(t) = B2(x, y)(t)

for all t ∈ [0, 1]. Hence B(xn, yn) = (B1(xn, yn);B2(xn, yn)) converges to B(x, y)
pointwise on [0, 1].

Next we show that {B(xn, yn)} is equi-continuous sequence of functions in E.
Choose τ1, τ2 ∈ [0, 1] such that τ1 < τ2, then∣∣∣B1(xn, yn)(τ1)− B1(xn, yn)(τ2)

∣∣∣
≤
∣∣∣∣∫ 1

0

(G1(τ1, s)−G1(τ2, s))ϕ(s, xn(s), y(s)ds

∣∣∣∣
+ |τ2 − τ1|

( |b|+M0

m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
|hi(s, xn(s), yn(s))| ds

|f(1, b, d)|

)
+ |τ2 − τ1|

a

f(0, a, c)

≤Mϕ

∫ 1

0

|G1(τ1, s)−G1(τ2, s)| ds

+ |τ2 − τ1|

( |b|+M0

m∑
i=1

Mhi

∫ 1

0

(1− s)βi−1

Γ(βi)
ds

|f(1, b, d)|

)
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+M1 |τ2 − τ1|
→ 0 as n→ ∞,

uniformly for all n ∈ N which implies that B1(xn, yn) → B1(x, y) uniformly and
hence is uniformly continuous on E. Similarly we can prove that B2 is uniformly
continuous. Thus B is uniformly continuous on E.

Next, we show that B is a compact operator on S. Let (x, y) ∈ S be any point.
Then, using (A4), we have

|B1(x, y)(t)| =

∣∣∣∣∣
∫ 1

0

G1(t, s)ϕ(s, x(s), y(s))ds

+ t

(b− m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, d)
− a

f(0, a, c)

)∣∣∣∣∣
≤MG1

∫ 1

0

|ϕ(s, x(s), y(s))| ds

+

∣∣∣∣∣
b−

m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
hi(s, x(s), y(s))ds

f(1, b, d)
− a

f(0, a, c)

∣∣∣∣∣
≤MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi+i)

|f(1, a, c)|

Taking the supremum over t in the above inequality, we obtain

∥∥B1(x, y)
∥∥ ≤MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi+i)

|f(1, a, c)|

for all (x, y) ∈ S. Hence B1 is a uniformly bounded operator on S. Similarly we
can show that B2 is also uniformly bounded operator on S. Hence B is a uniformly
bounded operator on S. Next, let (x, y) ∈ S be an arbitrary point and let t, r ∈ J .
Then, we have∣∣B1(x, y)(t)− B1(x, y)(r)

∣∣
≤
∣∣∣∣∫ 1

0

(G1(t, s)−G1(r, s))ϕ(s, xn(s), y(s)ds

∣∣∣∣
+ |t− r|

( |b|+
m∑
i=1

∫ 1

0

(1− s)βi−1

Γ(βi)
|hi(s, xn(s), yn(s))| ds

|f(1, b, d)|

)
+ |t− r| a

f(0, a, c)

≤Mϕ

∫ 1

0

|G1(t, s)−G1(r, s)| ds
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+ |t− r|

( |b|+
m∑
i=1

Mhi

∫ 1

0

(1− s)βi−1

Γ(βi)
ds

|f(1, b, d)|

)
+M1 |t− r|
→ 0 as t→ r,

uniformly for all (x, y) ∈ S. Similarly, we have

|B2(x, y)(t)− B2(x, y)(r)| → 0 as t→ r

uniformly for all (x, y) ∈ S. Hence, it follows that

|B(x, y)(t)− B(x, y)(r)| → 0 as t→ r

uniformly for all (x, y) ∈ S. Now, B(S) is uniformly bounded and equicontinuou
subset of the Banach space E, it is compact subset of E in view of Arzelá-Ascoli
theorem. Consequently, B is compact and continuous operator on S.

Step III: Now we prove the third condition (c) of Theorem 2.1 holds. Let for
(x, y) and (u, v) be two elements in E = X ×X such that

(x, y) = (A1(x, y)B1(u, v) + C1(x, y) , A2(x, y)B2(u, v) + C2(x, y)) .

Then, we have

|x(t)| = |A1(x, y)(t)B1(u, v)(t) + C1(x, y)|
≤ |A1(x, y)(t)B1(u, v)(t) + C1(x, y)|

≤
[
|f(t, x, y)− f(t, 0, 0)|+ |f(t, 0, 0)|

](∫ 1

0

∣∣∣G1(t, s)ϕ(s, u(s), v(s))
∣∣∣ds

+

∣∣∣∣ a

f(0, a, c)

∣∣∣∣+
∣∣∣∣∣
|b|+

m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

∣∣∣∣∣
)

+

m∑
i=1

Iβi |hi(t, x(t), y(t))|

≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

]
×

×

(
MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

)

+

(
m∑
i=1

∫ t

0

(t− s)βi−1

Γ(β1)
|hi(s, x(s), y(s)− hi(s, 0, 0))| ds+H0

)
≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

]
×

×

(
MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

)

+

(
m∑
i=1

∫ t

0

(t− s)βi−1

Γ(β1)

[
Lhi

(
∥x∥+ ∥y∥

)
+H0

])
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≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

]
×

×

(
MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

)

+
m∑
i=1

1

Γ(βi + 1)

[
Lhi

(
∥x∥+ ∥y∥

)
+H0

]
(3.16)

Taking the supremum in the above inequality (3.16), we obtain

∥x∥ ≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

]
×

×

(
MG1

Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

)

+

m∑
i=1

1

Γ(βi + 1)

[
Lhi

(
∥x∥+ ∥y∥

)
+H0

]
. (3.17)

Similarly, proceeding with the analogous arguments, we obtain

∥y∥ ≤
[
Lg
(
∥x∥+ ∥y∥

)
+G0

]
×

×

(
MG2 Mψ +M2 +

|b|+
n∑
j=1

Mkj

Γ(γj + 1)

|f(1, a, c)|

)

+
n∑
j=1

1

Γ(γj + 1)

[
Lkj
(
∥x∥+ ∥y∥

)
+K0

]
(3.18)

Adding the inequalities (3.17) and (3.18), we obtain

∥x∥+ ∥y∥ ≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

]
×

×

(
MG1 Mϕ +M1 +

|b|+
m∑
i=1

Mhi

Γ(βi + 1)

|f(1, a, c)|

)

+
m∑
i=1

1

Γ(βi + 1)

[
Lhi

(
∥x∥+ ∥y∥

)
+H0

]
+
[
Lg
(
∥x∥+ ∥y∥

)
+G0

]
×

×

(
MG2 Mψ +M2 +

|b|+
n∑
j=1

Mkj

Γ(γj + 1)

|f(1, a, c)|

)

+
n∑
j=1

1

Γ(γj + 1)

[
Lkj
(
∥x∥+ ∥y∥

)
+K0

]
≤
[
Lf
(
∥x∥+ ∥y∥

)
+ F0

](
MG1 Mϕ +A

)
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+
m∑
i=1

1

Γ(βi + 1)

[
Lhi

(
∥x∥+ ∥y∥

)
+H0

]
+
[
Lg
(
∥x∥+ ∥y∥

)
+G0

](
MG2 Mψ +B

)
+

n∑
j=1

1

Γ(γj + 1)

[
Lkj
(
∥x∥+ ∥y∥

)
+K0

]

≤
F0

(
MG1 Mϕ +A

)
+G0

(
MG2 Mψ +B

)
+

m∑
i=1

Mϕi

Γ(βi+1)
+

n∑
j=1

Mψj

Γ(γj+1)

1− Ω
≤ ρ,

As ∥(x, y)∥ = ∥x∥+ ∥y∥, we have that ∥(x, y)∥ ≤ ρ and so the hypothesis (c) of
Theorem 2.1 is satisfied.

Step IV: Finally, we have

MB = ∥B(S)∥ = sup
{
∥B(x, y)∥ : (x, y) ∈ S

}
= sup

{
∥B1(x, y)∥+ ∥B2(x, y)∥ : (x, y) ∈ S

}
≤ A+MG1 Mϕ +B +MG2 Mψ.

From above estimate, we obtain

LAMB + LC ≤
(
Lf + Lg

)(
A+MG1 Mϕ +B +MG2 Mψ)

)
+

m∑
i=1

∥Lhi∥
Γ(βi + 1)

+
n∑
j=1

∥∥Lkj∥∥
Γ(γj + 1)

< 1

and so the hypothesis(d) of Theorem 2.1 is satisfied.

Thus, the operator A, B and C satisfy all the conditions of Theorem 2.1 and
so, the operator equation A(x, y)B(x, y) + C(x, y) = (x, y) has a solution in S.
Consequently, the coupled hybrid system of fractional differential equations (1.3)
has a mild coupled solution defined on J . This completes the proof. �
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