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OF CLASSICAL DRINFELD�S SOKOLOV-WILSON (FDSW)

SYSTEM
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Abstract. In this paper, we studied the space-time fractional classical Drin-
feld�s Sokolov-Wilson (FDSW) system. This system does not have a La-
grangian. Noether�s approach was used to derive the conservation laws in
U and V variables. Finally, by reverting back to our original variables u and
v; we obtained the conservation laws for the space-time fractional of classical
Drinfeld�s Sokolov-Wilson (FDSW) system. This conservation laws consisted
of some local and nonlocal conserved vectors.

1. Introduction

Conservation laws are one of the most important gateways to understanding
physical properties of various systems, such as conservation of energy, mass, mo-
mentum and so on. They are important for investigating integrability and for
establishing existence and uniqueness of solutions. They have been used for the
development of appropriate numerical methods and construction of exact solutions
of partial di¤erential equations. They play an essential role in the development of
numerical methods and provide an essential starting point for �nding non-locally
related systems and potential variables.
Conservation laws play a central role in the solution and reduction of partial

di¤erential equations. It is well-known that if di¤erential equation is an Euler-
Lagrange equation, then conservation laws can be found using Noether�s theorem
by variational Lie point symmetries of this equation.
A generalization of Noether�s theorem was proved to give not only a necessary

but also a su¢ cient condition for the existence of conservation laws. Based on the
fundamental operator identity relating the in�nitesimal operator of the transforma-
tion group, the Euler�Lagrange di¤erential operator, and the Noether operators, a
simple and e¢ cient constructive algorithm for constructing conservation laws was
developed using symmetries of di¤erential equations that admit a Lagrangian [14].
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The objective of this paper is to construct the conservation laws of the space-time
fractional of classical Drinfeld�s Sokolov-Wilson (FDSW) system [2], [9]

u�t + pvvx = 0; (1)

v�t + qvxxx + ruvx + svux = 0; t > 0; 0 < � � 1; (2)

where p, q, r and s are some nonzero parameter by using the fractional generaliza-
tion of the Noether operators.
To motivate the generalizing conservation laws, we assume that r = s = p.

Eqs.(1) and (2) becomes

u�t + pvvx = 0; (3)

v�t + qvxxx + p (uvx + vux) = 0: (4)

u�t = @�u
@t� = D�

t denotes the Riemann�Liouville derivative de�ned by [8], [10],
which is de�ned by

@�u

@t�
=

(
@mu
@tm ; � = m 2 N;

1
�(m��)

@m

@tm

R t
0
(t� �)m���1 u (� ; x) d� ; m� 1 < � < m; m 2 N:

(5)
The ��th extended in�nitesimal related to Rieman-Liouville fractional time deriv-
ative with Eq.(5) reads [11], [12]

�0� = D
�
t (�) + �D

�
t (ux)�D�

t (�ux) +D
�
t (Dt(�)u)�D�+1

t (�u) + �D�+1
t (u): (6)

Here the operator D�
t denotes the total fractional derivative operator. We would

like to recall the generalized Leibnitz rule [3], [1] given by

D�
t (f(t)g(t)) =

1X
n=0

�
�

n

�
D��n
t f(t)Dn

t g(t); � > 0; (7)

where �
�

n

�
=
(�1)n�1��(n� �)
�(1� �)�(n+ 1) : (8)

Using Leibnitz rule (7), Eq.(6) can be written as

�0� = D�
t (�)� �Dt(�)

@�u

@t�
�

1X
n=1

�
�

n

�
Dn
t (�)D

��n
t (ux)

�
1X
n=1

�
�

n+ 1

�
Dn+1
t (�)D��n

t (u): (9)

2. Conservation laws for the space-time fractional of classical
Drinfeld�s Sokolov-Wilson (FDSW) system

In this section, we construct conservation laws for the space-time fractional of
classical Drinfeld�s Sokolov-Wilson (FDSW) system (3) and (4). We note that
this system does not have a Lagrangian. However, we can put the system into a
variational form by letting u = Ux; v = Vx in order to get conserved vectors. Then
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the space-time fractional of classical Drinfeld�s Sokolov-Wilson (FDSW) system (3)
and (4) transforms into

@�Ux
@t�

+ pVxVxx = 0; (10)

@�Vx
@t�

+ qVxxxx + p (UxVxx + sVxUxx) = 0; t > 0; 0 < � � 1: (11)

It can be readily veri�ed that L given by

L =
1

2

�
�@

�U

@t�
Ux �

@�V

@t�
Vx + qV

2
xx � pUxV 2x

�
; (12)

is a Lagrangian for the system (10) and (11). This is because L satis�es

�L

�U
= 0 and

�L

�V
= 0; (13)

where �
�U and �

�V are the Euler-Lagrange operators de�ned by

�

�U
=

@

@U
+ (D�

t )
� @

@D�
t U

�Dx
@

@Ux
+D2

x

@

@Uxx
: : : ;

�

�V
=

@

@V
+ (D�

t )
� @

@D�
t V

�Dx
@

@Vx
+D2

x

@

@Vxx
: : : : (14)

Here (D�
t )
� is the adjoint operator of D�

t . For the Riemann-Liouville and Caputo
fractional di¤erential operators, the corresponding adjoint operators have the form
[5]

(0D
�
t )
�
= (�1)n tI

n��
T (Dn

t ) �Ct D�
T ;�

C
0 D

�
t

��
= (�1)n Dn

t

�
tI
n��
T

�
�t D�

T ;

where tD�
T and

C
t D

�
T are the right-sided Riemann-Liouville and Caputo operators

of fractional di¤erentiation of order �, respectively.
Here tI

n��
T is the right-sided operator of fractional integration of order n � �

de�ned by �
tI
n��
T f

�
(t; x) =

1

� (n� �)

Z T

t

f (�; x)

(�� t)�+1�n
d�: (15)

Consider the vector �eld

�� = �01�
@

@(D�U)
+ �02�

@

@(D�V )
+ �

@

@x
+ �

@

@t
+ �1

@

@u
+ �2

@

@v

+�1x
@

@Ux
+ �2x

@

@Vx
+ �1xx

@

@Uxx
+ �2xx

@

@Vxx
+ : : : : (16)

where Dx denotes the total derivative with respect to x and Dt with respect to t:
The �th extended in�nitesimal given in Eq.(16) becomes [15]

�0�1 =
@��1
@t�

+ (�1u � �Dt(�))
@�u

@t�
� u@

��1u
@t�

+ �1

+
1X
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�
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�
�

�

n+ 1

�
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t (�)

�
D��n
t (u)

�
1X
n=1

�
�

n

�
Dn
t (�)D

��n
t (ux): (17)
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and

�1 =
1X
n=2

nX
m=2

mX
k=2

k�1X
r=0

�
�

n

��
n

m

��
k

r

�
1

k!

tn��

�(n+ 1� �) [�u]
r @

m

@tm
(uk�r)

@n�m+k�1
@tn�m@uk

:

(18)
The vector �eld ��, of the form Eq.(16), is called a Noether point symmetry gener-
ator corresponding to the Lagrangian L if there exists gauge functions �1(x; t; U; V )
and �2(x; t; U; V ) such that [4]

�� (L) + fDt(�) +Dx(�)gL = Dt(�1) +Dx(�2): (19)

The classical symmetry properties can be expanded if one studies Eqs.(10) and (11)
together with Eq.(16) as a over-determined system of fractional partial di¤erential
equations. The determining equations for a Noether point symmetry generator
�� are now obtained by equating to zero the coe¢ cients of the independent co-
ordinates [7]. By disbanding this system of linear fractional partial di¤erential
equations for �(x; t; U; V ), �(x; t; U; V ), �1(x; t; U; V ); �2(x; t; U; V ); �

1(x; t; U; V )
and �2(x; t; U; V ); we procure:

�1(x; t; U; V ) =
3C1 U

2
+A4 (t) ;

�2(x; t; U; V ) =
3C1 V

2
+A2 (t) ;

�(x; t; U; V ) = C1x+ C2;

�(x; t; U; V ) =
3C1
�

t+ C3;

�1(x; t; U; V ) = 0;

�2(x; t; U; V ) =
1

2

@�A4
@t�

U +
1

2

@�A2
@t�

V ; (20)

where C1; C2; C3 are arbitrary constants and A2 [t] ; A4 [t] are arbitrary functions.
The above results will now be used to �nd the components of the conserved vectors
for the �-order Lagrangian L.

3. Fractional Noether Operators

The x-component conserved vector can be given by the formula for di¤erential
equations of integer order. This formula has the form:

Nx = ��1 + �iL+W 1

�
@L

@Ux
�Dx

@L

@Uxx
+D2

x

@L

@Uxxx
+ : : :

�
+Dx

�
W 1

� � @L

@Uxx
�Dx

@L

@Uxxx

�
+D2

x

�
W 1

� � @L

@Uxxx

�
+W 2

�
@L

@Vx
�Dx

@L

@Vxx
+D2

x

@L

@Vxxx
+ : : :

�
+Dx

�
W 2

� � @L
@Vxx

�Dx
@L

@Vxxx

�
+D2

x

�
W 2

� � @L

@Vxxx

�
; (21)

where W 1
i = �1 � � iUt � �iUx and W 2

i = �2 � � iVt � �iVx are the characteristic
functions corresponding to the Lie symmetries �1; �2 and �3 [6]:
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Based on the fractional generalizations of the Noether operators, the t-component
conserved vector can be given by [13]:

N t = ��2 + � iL+
n�1X
k=0

((�1)k 0D
��1�k
t

�
W 1

�
Dk
t

@

@ (0D�
t U)

+ (�1)k 0D
��1�k
t

�
W 2

�
Dk
t

@

@ (0D�
t V )

)� (�1)n J
�
W 1; Dn

t

@

@ (0D�
t U)

�
� (�1)n J

�
W 2; Dn

t

@

@ (0D�
t V )

�
; (22)

where J is the integral

J (f; g) =
1

� (n� �)

Z t

0

Z T

t

f (s; x) g (�; x)

(�� s)�+1�n
d�ds: (23)

This integral has a property

DtJ (f; g) = f tI
n��
T g � g 0I

n��
t f: (24)

Thus, using Eqs.(21) and (22) together with Eq.(20) and u = Ux, v = Vx yields the
following independent conserved vectors for our system (3) and (4).

3.1. Conservation laws through X1. For this symmetry operator, the Lie char-
acteristics are

W 1
1 =

3

2
U � 3

�
tUt � xUx; W 2

1 =
3

2
V � 3

�
tVt � xVx: (25)

E¤ecting these values into the vector components Eqs.(21) and (22), we get

Cx1 = q

�
v � 3t

�
vt �

x

2
vx

�
vx + pxuv + qxvvxx;

Ct1 =
3t

2�
(qv2x � puv2)�

1

2
v0D

��1
t

�
3

2

Z
vxdx� xv

�
�1
2
u0D

��1
t

�
3

2

Z
uxdx� xu

�
� 3
4
J

�Z
uxdx; ut

�
+
3t

2�

�
0D

��1
t u

Z
utdx� ut tD��1

T

Z
utdx

�
+
3

�
J

�
tut � (�� 1)u;

Z
utdt

�
+
x

2
J (u; ut)�

3

4
J

�Z
vxdx; vt

�
+
3t

2�

�
0D

��1
t v

Z
vtdx� vt tD��1

T

Z
vtdx

�
+
3

�
J

�
tvt � (�� 1) v;

Z
vtdt

�
+
x

2
J (v; vt) : (26)

3.2. Conservation laws through X2. Substituting the Lie characteristics

W 1
2 = �Ux; W 2

2 = �Vx: (27)
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into Eqs.(21) and (22) gives

Cx2 = �3
2
qv2x +

3

2
puv2 � p

2
uv � qvxx;

Ct2 =
1

2
u0D

��1
t u� 1

2
J (u; ut) +

1

2
v0D

��1
t v � 1

2
J (v; vt) (28)

3.3. Conservation laws through X3. For this symmetry operator, the Lie char-
acteristics are

W 1
3 = �Ut; W 2

3 = �Vt: (29)

These reduce the vector components Eqs.(21) and (22) to

Cx3 =
1

2

Z
utdx

�Z
@�ux
@t�

dx+ pv2
�
+

Z
utdx

�
1

2

Z
@�vx
@t�

dx+ puv � qvxx
�
� qvtvx;

Ct3 =
q

2
v2x �

p

2
uv2 � 1

2
J

�Z
utdx; ut

�
� 1
2
J

�Z
vtdx; vt

�
: (30)

3.4. Conservation laws through XA4 and XA2 . For this generator, the Lie
characteristics are

W 1
A4
= A4 [t] ; W 2

A2
= A2 [t] : (31)

Substituting these values in Eqs.(21) and (22), we obtain

Cx(A4;A2)
= �1

2
A2(puv + qvxx);

Ct(A4;A2)
= �1

2

@�A4
@t�

Z
uxdx�

1

2

@�A2
@t�

Z
vxdx�

1

2
u0D

��1
t A4

�1
2
J (A4; ut)�

1

2
v0D

��1
t A2 �

1

2
J (A2; vt) : (32)

Since A2 [t] and A4 [t] are arbitrary functions, Eq.(32) gives in�nitely many con-
served vectors. We now extract one special case from the conserved vector Eq.(32)
by letting A2 [t] = 1 and A4 [t] = 0, which gives a local conserved vector

Cx(A4;A2)
= �1

2
(puv + qvxx);

Ct(A4;A2)
= �1

2
J (1; ut) : (33)

It should be noted that the conserved vectors Eqs.(26) and (30) are nonlocal con-
served vectors and Eq.(28) is a local conserved vector for the system (3) and (4).
We note that since the functions A2(t) and A4(t) are arbitrary, one obtains in�n-
itely many local and nonlocal conservation laws for the system (3) and (4) from the
conserved vector Eq.(32).

4. Conservation laws for the space-time fractional of classical
Drinfeld�s Sokolov-Wilson (FDSW) system with the Caputo

fractional derivative

Thus, using Eqs.(21) and (22) together with Eq.(20) and u = Ux, v = Vx yields
the following independent conserved vectors for our system (3) and (4):
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4.1. Conservation laws through X1 :. For this symmetry operator, the Lie
characteristics are

W 1
1 =

3

2
U � 3

�
tUt � xUx; W 2

1 =
3

2
V � 3

�
tVt � xVx: (34)

E¤ecting these values into the vector components Eqs.(21) and (22), we get

Cx1 = q

�
v � 3t

�
vt �

x

2
vx

�
vx + pxuv + qxvvxx;

Ct1 =
3t

2�
(qv2x � puv2)�

�
3

4

Z
vxdx�

xv

2

�
t

D��1
T (v)

�
�
3

4

Z
uxdx�

xu

2

�
t

D��1
T u� 3

4
J

�Z
uxdx; ut

�
+
3t

2�

�
tD

��1
T u

Z
utdx�

�Z
utdx

�
t

D��1
T u

�
+
3

�
J

�
tutt � (�� 1)ut;

Z
udt

�
+
x

2
J (ut; u)�

3

4
J

�Z
vtxdx; v

�
+
3t

2�

�
tD

��1
T v

Z
vtdx�

Z
vtdx tD

��1
T vt

�
+
3

�
J

�
tvtt � (�� 1) vt;

Z
vdt

�
+
x

2
J (vt; v) : (35)

4.2. Conservation laws through X2 :. Substituting the Lie characteristics

W 1
2 = �Ux; W 2

2 = �Vx: (36)

into Eqs.(21) and (22) gives

Cx2 = �3
2
qv2x +

3

2
puv2 � p

2
uv � qvxx;

Ct2 =
1

2
utD

��1
T u� 1

2
J (ut; u) +

1

2
vtD

��1
T v � 1

2
J (vt; v) : (37)

4.3. Conservation laws through X3 :. For this symmetry operator, the Lie
characteristics are

W 1
3 = �Ut; W 2

3 = �Vt: (38)

These reduce the vector components Eqs.(21) and (22) to

Cx3 =
1

2

Z
utdx

�Z
@�ux
@t�

dx+ pv2
�
+

Z
utdx

�
1

2

Z
@�vx
@t�

dx+ puv � qvxx
�
� qvtvx;

Ct3 =
q

2
v2x �

p

2
uv2 � 1

2
J

�Z
uttdx; u

�
� 1
2
J

�Z
vttdx; v

�
: (39)
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4.4. Conservation laws through XA4
and XA2

:. For this generator, the Lie
characteristics are

W 1
A4
= A4 [t] ; W 2

A2
= A2 [t] : (40)

Substituting these values in Eqs.(21) and (22), we obtain

Cx(A4;A2)
= �1

2
A2(puv + qvxx);

Ct(A4;A2)
= �1

2

@�A4
@t�

Z
uxdx�

1

2

@�A2
@t�

Z
vxdx�

1

2
A4tD

��1
T u

�1
2
J (A4t ; u)�

1

2
A2tD

��1
T v � 1

2
J (A2t ; v) : (41)

Since A2 [t] and A4 [t] are arbitrary functions, Eq. (41) gives in�nitely many con-
served vectors.
It should be noted that the conserved vectors Eqs.(35) and (39) are nonlocal

conserved vectors and Eq.(37) is a local conserved vector for the system (3) and
(4). We note that since the functions A2(t) and A4(t) are arbitrary, one obtains
in�nitely many local and nonlocal conservation laws for the system (3) and (4) from
the conserved vector Eq.(41).

5. Conclusion

The space-time fractional of classical Drinfeld�s Sokolov-Wilson (FDSW) system
(3) and (4) do not have a Lagrangian. We make the transformation u = Ux and v =
Vx which convert the space-time fractional of classical Drinfeld�s Sokolov-Wilson
(FDSW) system into a system of fractional-order partial di¤erential equations in
U and V variables, which has a Lagrangian. Noether�s approach is then used to
construct the conservation laws. Finally, the conservation laws are expressed in the
original variables u and v: Some local and nonlocal conserved quantities are found
for the space-time fractional of classical Drinfeld�s Sokolov-Wilson (FDSW) system
(3) and (4).
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