ON CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH RIEMANN LIOUVILLE q-DERIVATIVE DISTRIBUTION SERIES

N. RAVIKUMAR, S. LATHA, B.A. FRASIN

Abstract

By making use of the concepts of fractional q - calculus, we define the subclasses $\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ and $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ of analytic function. For functions belonging to these classes, we obtain coefficient estimates, distortion bounds and many more properties.

1. Introduction

The fractional q-calculus is the extension of the ordinary fractional calculus in the q-theory. The theory of q-calculus operators in recent past have been applied in the areas of ordinary fractional calculus, optimal control problems and in finding solutions of the q-difference and q-integral equations, and in q-transform analysis and also in the geometric function theory of complex analysis. For more details on the subject, one may refer to [6], 1], [3, [9] and [16].

Let \mathcal{S} denote the family of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Also denote by \mathcal{T}, the subclass of \mathcal{S} consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{m=2}^{\infty}\left|a_{m}\right| z^{m} \tag{2}
\end{equation*}
$$

which are univalent and normalized in \mathcal{U}. For $f \in \mathcal{S}$ and of the form (1) and $g(z) \in \mathcal{S}$ given by $g(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}$, we define the convolution (or Hadamard product) $f * g$ of two power series f and g by $(f * g)(z)=z+\sum_{m=2}^{\infty} a_{m} b_{m} z^{m}$.

The q-shifted factorial is defined for $\alpha, q \in \mathbb{C}$ as a product of n factors by

$$
(\alpha, q)_{n}= \begin{cases}1, & n=0 \tag{3}\\ (1-\alpha)(1-\alpha q) \cdots\left(1-\alpha q^{n-1}\right), & n \in \mathbb{N}\end{cases}
$$

[^0]and in terms of the basic analogue of the gamma function
\[

$$
\begin{equation*}
\left(q^{\alpha} ; q\right)_{n}=\frac{\Gamma_{q}(\alpha+n)(1-q)^{n}}{\Gamma_{q}(\alpha)},(n>0) \tag{4}
\end{equation*}
$$

\]

where the q-gamma functions [6, 7] is defined by

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}(1-q)^{1-x}}{\left(q^{x} ; q\right)_{\infty}}(0<q<1) \tag{5}
\end{equation*}
$$

Note that, if $|q|<1$, the q-shifted factorial (3), remains meaningful for $n=\infty$ as a convergent infinite product

$$
(\alpha ; q)_{\infty}=\prod_{m=0}^{\infty}\left(1-\alpha q^{m}\right)
$$

Now recall the following q-analogue definitions given by Gasper and Rahman 6]. The recurrence relation for q-gamma function is given by

$$
\begin{equation*}
\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x), \text { where },[x]_{q}=\frac{\left(1-q^{x}\right)}{(1-q)} \tag{6}
\end{equation*}
$$

and called q-analogue of x.
Jackson's q-derivative and q-integral of a function f defined on a subset of \mathbb{C} are, respectively, given by (see Gasper and Rahman [6])

$$
\begin{gather*}
D_{q} f(z)=\frac{f(z)-f(z q)}{z(1-q)}, \quad(z \neq 0, q \neq 0) . \tag{7}\\
\int_{0}^{z} f(t) d_{q}(t)=z(1-q) \sum_{m=0}^{\infty} q^{m} f\left(z q^{m}\right) . \tag{8}
\end{gather*}
$$

In view of the relation

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{\alpha} ; q\right)_{n}}{(1-q)^{n}}=(\alpha)_{n} \tag{9}
\end{equation*}
$$

we observe that the q-shifted fractional (3), reduces to the familiar Pochhammer symbol $(\alpha)_{n}$, where $(\alpha)_{n}=\alpha(\alpha+1) \cdots(\alpha+n+1)$.

Now recall the definition of the fractional q-calculus operators of a complex-valued function $f(z)$, which were recently studied by Purohit and Raina [13].

Definition 1 The fractional q-integral operator $I_{q, z}^{\delta}$ of a function $f(z)$ of order $\delta(\delta>0)$ is defined by

$$
\begin{equation*}
I_{q, z}^{\delta}=D_{q, z}^{-\delta} f(z)=\frac{1}{\Gamma_{q}(\delta)} \int_{0}^{z}(z-t q)_{1-\delta} f(t) d_{q} t \tag{10}
\end{equation*}
$$

where $f(z)$ is a analytic in a simply connected region in the z-plane containing the origin. Here, the term $(z-t q)_{\delta-1}$ is a q-binomial function defined by

$$
\begin{equation*}
(z-t q)_{\delta-1}=z^{\delta-1} \prod_{m=0}^{\infty}\left[\frac{1-\left(\frac{t q}{z}\right) q^{m}}{1-\left(\frac{t q}{z}\right) q^{\delta}+m-1}\right] \tag{11}
\end{equation*}
$$

$$
=z^{\delta}{ }_{1} \phi_{0}\left[q^{-\delta+1} ;-; q, \frac{t q^{\delta}}{z}\right]
$$

According to Gasper and Rahman [6], the series ${ }_{1} \phi_{0}[\delta ;-; q, z]$ is single-valued when $|\arg (z)|<\pi$. Therefore, the function $(z-t q)_{\delta-1}$ in (11), is single-valued when $\left\lvert\, \arg \left(\left.\frac{-t q^{\delta}}{z}\left|<\pi,\left|t q^{\frac{\delta}{z}}\right|<1\right.\right.$, and $| \arg (z) \right\rvert\,<\pi$. \right.
Definition 2 The fractional q-derivative operator $D_{q, z}^{\delta}$ of a $f(z)$ of order $\delta(0 \leq \delta<$ $1)$ is defined by

$$
\begin{equation*}
D_{q, z}^{\delta} f(z)=D_{q, z} I_{q, z}^{1-\delta} f(z)=\frac{1}{\Gamma_{q}(1-\delta)} D_{q} \int_{0}^{z}(z-t q)_{-\delta} f(t) d_{q} t \tag{12}
\end{equation*}
$$

where $f(z)$ is suitably constrained and the multiplicity of $(z-t q)_{-\delta}$ is removed as in Definition 1 above.

Definition 3 Under the hypotheses of Definition 2, the fractional q-derivative for the function $f(z)$ of order δ is defined by

$$
\begin{equation*}
D_{q, z}^{\delta} f(z)=D_{q, z}^{n} I_{q, z}^{n-\delta} f(z), \tag{13}
\end{equation*}
$$

where, $n-1 \leq \delta<n, n \in \mathbb{N}_{0}$.
Now we define a fractional q-differintegral operator $\Omega_{q, z}^{\delta} f(z)$ for the function $f(z)$ of the form (1), by

$$
\begin{gather*}
\Omega_{q}^{\delta} f(z)=\Gamma_{q}(2-\delta) z^{\delta} D_{q, z}^{\delta} f(z) \tag{14}\\
=z+\sum_{m=2}^{\infty} \frac{\Gamma_{q}(m+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(m+1-\delta)} a_{m} z^{m},
\end{gather*}
$$

where in $D_{q, z}^{\delta}(\sqrt[14]{ }$, represents, respectively, a fractional q-integral of $f(z)$ of order δ when $-\infty<\delta<0$ and a fractional q-derivative of $f(z)$ of order δ when $0<\delta<2$. We note that $q \rightarrow 1^{-}$, the operator Ω_{q}^{δ} reduces the operator Ω^{δ} defined by Owa and Srivastava [10].

Recently, several authors investigated applications of fractional q-calculus operators by introducing certain new classes of functions which are analytic in the open disc, (see for example, [12, 14, 15, 17, 18]).

By making use of the concepts of fractional q - calculus, we now define the following subclasses $\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ and $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ of analytic function.

Definition 4 For $-1 \leq \alpha<1, \beta \geq 0,0<\delta<2, b \in \mathbb{C}-\{0\}$ and $0<q<1$, let $\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ be the subclass of \mathcal{S} consisting of functions of the form (1 satisfying the analytic criterion

$$
\begin{equation*}
\Re\left\{1-\frac{2}{b}+\frac{2}{b} \cdot \frac{z D_{q}\left(\Omega_{q}^{\delta} f(z)\right)}{\Omega_{q}^{\delta} f(z)}\right\}>\beta\left|\frac{2}{b} \cdot \frac{z D_{q}\left(\Omega_{q}^{\delta} f(z)\right)}{\Omega_{q}^{\delta} f(z)}-\frac{2}{b}\right|+\alpha, z \in \mathcal{U} \tag{15}
\end{equation*}
$$

Let $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]=\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b) \cap \mathcal{T}$.
It can be seen that, the special cases of the class $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ as $q \rightarrow 1^{-}$ and for different choices of the parameters we get the results obtained by Altintas and Owa [2], Bharthi, Parvtham and Swaminathan [5], Padamanabhan and Jayamala [11], Owa and Srivastava [10], Kim and Ronning [8].

In this paper, we obtain coefficient estimates, distortion bounds and many more properties for functions in the classes $\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ and $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$.

$$
\text { 2. The Classes } \mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b) \text { and } \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b] .
$$

In this section we obtain a necessary, sufficient condition and extreme points for functions $f(z)$ in the class $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$

Theorem 1 A sufficient condition for a function $f(z)$ of the form (1) to be in $\mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ is that

$$
\begin{equation*}
\sum_{m=2}^{\infty}\left[2(1+\beta)\left([m]_{q}-1\right)+b(1-\alpha)\right] K_{q}(m, \delta)(\delta) a_{m} \leq b(1-\alpha) \tag{16}
\end{equation*}
$$

where, $K_{q}(m, \delta)=\frac{\Gamma_{q}(m+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(m+1-\delta)},-1 \leq \alpha<1, \beta \geq 0,0<\delta<2, b \in \mathbb{C}-\{0\}$ and $0<q<1$.

Proof. Suppose $f \in \mathcal{S}_{p}^{q}(\alpha, \beta, \delta, b)$ then,

$$
\begin{aligned}
& \beta\left|\frac{2}{b}\left(\frac{z D_{q} \Omega_{q}^{\delta} f(z)}{\Omega_{q}^{\delta} f(z)}-1\right)\right|-\Re\left\{\frac{2}{b}\left(\frac{z D_{q} \Omega_{q}^{\delta} f(z)}{\Omega_{q}^{\delta} f(z)}-1\right)\right\} \\
\leq & (1+\beta)\left|\frac{2}{b}\left(\frac{z D_{q} \Omega_{q}^{\delta} f(z)}{\Omega_{q}^{\delta} f(z)}-1\right)\right| \\
\leq & \frac{2(1+\beta)}{b} \frac{\sum_{m=2}^{\infty}\left([m]_{q}-1\right) K_{q}(m, \delta)\left|a_{m}\right||z|^{m-1}}{1-\sum_{m=2}^{\infty} K_{q}(m, \delta)\left|a_{m}\right||z|^{m-1}} \\
\leq & \frac{2(1+\beta)}{b} \frac{\sum_{m=2}^{\infty}\left([m]_{q}-1\right) K_{q}(m, \delta)\left|a_{m}\right|}{1-\sum_{m=2}^{\infty} K_{q}(m, \delta)\left|a_{m}\right|}
\end{aligned}
$$

This is bounded above by $1-\alpha$ if

$$
\sum_{m=2}^{\infty}\left[2(1+\beta)\left([m]_{q}-1\right)+b(1-\alpha)\right] K_{q}(m, \delta)\left|a_{m}\right| \leq b(1-\alpha)
$$

This completes the proof.
Theorem 2 A necessary and sufficient condition for f of the form (2 n namely $f(z)=z-\sum_{m=2}^{\infty}\left|a_{m}\right| z^{m}, \quad z \in \mathcal{U}$ to be in $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b],-1 \leq \alpha<1, \beta \geq 0$, $0<\delta<2, b \in \mathbb{C}-\{0\}$ and $0<q<1$ is that

$$
\begin{equation*}
\sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)} K_{q}(m, \delta)\left|a_{m}\right| \leq 1 \tag{17}
\end{equation*}
$$

Proof. In view of Theorem 1, we need to prove the necessity. If $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ and z is real then

$$
\Re\left\{1-\frac{2}{b}+\frac{2}{b} \cdot \frac{z D_{q}\left(\Omega_{q}^{\delta} f(z)\right)}{\Omega_{q}^{\delta} f(z)}\right\}-\alpha \geq \beta\left[\frac{2}{b} \cdot \frac{z D_{q}\left(\Omega_{q}^{\delta} f(z)\right)}{\Omega_{q}^{\delta} f(z)}-\frac{2}{b}\right] .
$$

That is

$$
\frac{2}{b}(\beta-1)\left[\sum_{m=2}^{\infty}\left(1-[m]_{q}\right) K_{q}(m, \delta)\left|a_{m}\right| z^{m-1}\right] \leq(1-\alpha)\left[1-\sum_{m=2}^{\infty} K_{q}(m, \delta)\left|a_{m}\right| z^{m-1}\right]
$$

Letting $z \rightarrow 1$ along the real axis, we obtain the desired inequality,

$$
\sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)} K_{q}(m, \delta)\left|a_{m}\right| \leq 1
$$

Theorem 3 Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b],-1 \leq \alpha<1, \beta \geq 0,0<\delta<2, b \in \mathbb{C}-\{0\}$ and $0<q<1$. Define $f_{1}(z)=z$ and

$$
f_{m}(z)=z-\frac{b(1-\alpha)}{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)} z^{m}, \quad m=2,3, \cdots
$$

$z \in \mathcal{U}$. Then $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ if and only if f can be expressed as

$$
\begin{equation*}
f(z)=\sum_{m=1}^{\infty} \mu_{m} f_{m}(z) \tag{18}
\end{equation*}
$$

where $\mu_{m} \geq 0$ and $\sum_{m=1}^{\infty} \mu_{m}=1$.
Proof. If $f(z)=\sum_{m=1}^{\infty} \mu_{m} f_{m}(z)$ with $\sum_{m=1}^{\infty} \mu_{m}=1, \quad \mu_{m} \geq 0$, then

$$
\begin{aligned}
& \sum_{m=2}^{\infty}\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta) \mu_{m} \cdot \frac{b(1-\alpha)}{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)} \\
& \quad=\sum_{m=2}^{\infty} \mu_{m}(b(1-\alpha))=\left(1-\mu_{1}\right)(b(1-\alpha)) \leq b(1-\alpha) .
\end{aligned}
$$

Hence $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$.
Conversely, let $f(z)=z-\sum_{m=2}^{\infty}\left|a_{m}\right| z^{m} \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$, define

$$
\mu_{m}=\frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)\left|a_{m}\right|}{b(1-\alpha)}, \quad m=2,3, \cdots
$$

and define $\mu_{1}=1-\sum_{m=2}^{\infty} \mu_{m}$. From Theorem $2, \sum_{m=2}^{\infty} \mu_{m} \leq 1$ and so $\mu_{1} \geq 0$. Therefore, we can see that $f(z)$ can be expressed in the form (18).

Corollary 1 Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ then

$$
\left|a_{m}\right|<\frac{b(1-\alpha)}{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)}, \quad m=2,3,4, \ldots
$$

Theorem 4 Let $\delta_{1}<\delta_{2}$ then $\mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha, \beta, \delta_{2}, b\right] \subset \mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha, \beta, \delta_{1}, b\right]$.
Proof. Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha, \beta, \delta_{2}, b\right]$ then we have

$$
\sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)} K_{q}\left(m, \delta_{2}\right)\left|a_{m}\right| \leq 1
$$

but hence $K_{q}(m, \delta)$ is an increasing function of δ therefore $K_{q}\left(m, \delta_{1}\right)<K_{q}\left(m, \delta_{2}\right)$, so we have

$$
\begin{aligned}
& \sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)} K_{q}\left(m, \delta_{1}\right)\left|a_{m}\right| \\
< & \sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)} K_{q}\left(m, \delta_{2}\right)\left|a_{m}\right| \leq 1
\end{aligned}
$$

then $f \in \mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha, \beta, \delta_{1}, b\right]$.
Corollary 2 Let $0 \leq \alpha_{2}<\alpha_{1}<1$ and $f \in \mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha_{1}, \beta, \delta, b\right]$ then $f \in \mathcal{T} \mathcal{S}_{p}^{q}\left[\alpha_{2}, \beta, \delta, b\right]$.

Theorem 5 The class $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ is convex set.

Proof. Let f and g be the arbitrary elements of $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ then for every $t(0<t<1)$, we show that $(1-t) f(z)+t g(z) \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$, thus we have

$$
(1-t) f(z)+\operatorname{tg}(z)=z-\sum_{m=2}^{\infty}\left[(1-t)\left|a_{m}\right|+t\left|b_{m}\right|\right] z^{m}
$$

and

$$
\begin{aligned}
\sum_{m=2}^{\infty} & \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)}\left[(1-t)\left|a_{m}\right|+t\left|b_{m}\right|\right] K_{q}(m, \delta) \\
& =(1-t) \sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)}\left|a_{m}\right| K_{q}(m, \delta) \\
& +t \sum_{m=2}^{\infty} \frac{\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]}{b(1-\alpha)}\left|b_{m}\right| K_{q}(m, \delta)<1
\end{aligned}
$$

Corollary 3 Suppose that $f(z)$ and $g(z)$ belong to $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ then the function $h(z)$ defined by $h(z)=\frac{1}{2}[f(z)+g(z)]$ also belongs to $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$.

Theorem 6 Let the function $f(z)=z-\sum_{m=2}^{\infty}\left|a_{m}\right| z^{m}$ be the class $\mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ for $-1 \leq \alpha<1, \beta \geq 0,0<\delta<2, b \in \mathbb{C}-\{0\}$ and $0<q<1$, then

$$
\begin{aligned}
& |z|+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q) \Gamma_{q}(3)}|z|^{2} \leq|f(z)| \leq|z|-\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q) \Gamma_{q}(3)}|z|^{2} \\
& 1+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q)^{2} \Gamma_{q}(3)}|z| \leq\left|D_{q} f(z)\right| \leq 1+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q)^{2} \Gamma_{q}(3)}|z|
\end{aligned}
$$

Proof. Since $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$, then in view of Theorem 2 , we first show that the function

$$
\phi(m)=\frac{\Gamma_{q}(m+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(m+1-\delta)}, m \geq 2
$$

is an increasing function of m for $0 \leq \delta<2$.
We have that

$$
\begin{aligned}
\frac{\phi(m+1)}{\phi(m)} & =\frac{\Gamma_{q}(m+2) \Gamma_{q}(m+1-\delta)}{\Gamma_{q}(m+1) \Gamma_{q}(m+2-\delta)}, \quad(m \geq 2) \\
& =\frac{1-q^{m+1}}{1-q^{m+1-\delta}}, \quad(0<q<1)
\end{aligned}
$$

The function $\phi(m)$ is a increasing function of m if $\frac{\phi(m+1)}{\phi(m)} \geq 1$ and this gives

$$
\frac{1-q^{m+1}}{1-q^{m+1-\delta}} \geq 1, \quad(0<q<1)
$$

Thus $\phi(m)(m \geq 2)$ is increasing of m for $0<\delta<2,0<q<1$.

$$
\begin{aligned}
& {[2 q(1-\beta)+(1-\alpha) b] K_{q}(2, \delta) \sum_{m=2}^{\infty}\left|a_{m}\right| } \\
\leq & \sum_{m=2}^{\infty}\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right]\left|a_{m}\right| \\
\leq & b(1-\alpha)
\end{aligned}
$$

That is,

$$
\sum_{m=2}^{\infty}\left|a_{m}\right| \leq \frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q) \Gamma_{q}(3)}
$$

and this last inequality in conjunction with the following inequality,

$$
|f(z)| \leq|z|-|z|^{2} \sum_{m=2}^{\infty}\left|a_{m}\right| \text { and }|f(z)| \geq|z|+|z|^{2} \sum_{m=2}^{\infty}\left|a_{m}\right|
$$

So,
$|z|+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q) \Gamma_{q}(3)}|z|^{2} \leq|f(z)| \leq|z|-\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q) \Gamma_{q}(3)}|z|^{2}$.
Again,

$$
\left|D_{q} f(z)\right|=\left|1-\sum_{m=2}^{\infty}[m]_{q}\right| a_{m}\left|z^{m-1}\right| \leq 1-|z| \sum_{m=2}^{\infty}[m]_{q}\left|a_{m}\right|
$$

and

$$
\left|D_{q} f(z)\right| \geq 1+|z| \sum_{m=2}^{\infty}[m]_{q}\left|a_{m}\right|
$$

We have,

$$
\sum_{m=2}^{\infty}[m]_{q}\left|a_{m}\right| \leq \frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q)}
$$

So,
$1+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q)^{2} \Gamma_{q}(3)}|z| \leq\left|D_{q} f(z)\right| \leq 1+\frac{b(1-\alpha)\left(1-q^{2-\delta}\right)}{[2 q(1-\beta)+(1-\alpha) b](1-q)^{2} \Gamma_{q}(3)}|z|$.
Bernardi Libera's integral operator is defined as

$$
L_{\gamma} f(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t
$$

which was studied by Bernardi in 4 .
Theorem 7 Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$. The q-analogous Bernardi's integral operator defined by

$$
L_{q, \gamma} f(z)=\frac{[\gamma+1]_{q}}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d_{q} t
$$

then $L_{q, \gamma} f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$.

Proof. We have

$$
\begin{aligned}
L_{q, \gamma} f(z) & =\frac{[\gamma+1]_{q}}{z^{\gamma}} z(1-q) \sum_{j=0}^{\infty} q^{j}\left(z q^{j}\right)^{\gamma-1} f\left(z q^{j}\right) \\
& =[\gamma+1]_{q}(1-q) \sum_{j=0}^{\infty} q^{j \gamma} f\left(z q^{j}\right) \\
& =[\gamma+1]_{q}(1-q) \sum_{j=0}^{\infty} q^{j \gamma} \sum_{m=1}^{\infty} q^{j m}\left|a_{m}\right| z^{m} \\
& =[\gamma+1]_{q} \sum_{j=0}^{\infty} \sum_{m=1}^{\infty}(1-q) q^{j(\gamma+m)}\left|a_{m}\right| z^{m} \\
& =z+\sum_{m=2}^{\infty} \frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}\left|a_{m}\right| z^{m} .
\end{aligned}
$$

Since $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ and since $\frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}<1$ for all $m \geq 2$, we have

$$
\sum_{m=2}^{\infty}\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)\left|a_{m}\right| \frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}<b(1-\alpha)
$$

Theorem 8 Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ then $L_{q, \gamma} f(z)$ is q-starlike of order $0 \leq \alpha_{3} \leq 1$ in $|z|<R_{1}$ where
$R_{1}=\inf \left\{\left(\frac{[\gamma+m]_{q}}{[\gamma+1]_{q}} . \frac{\left(1-\alpha_{3}\right)\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)}{\left([m]_{q}-\alpha_{3}\right) b(1-\alpha)}\right)^{\frac{1}{m-1}}: m \in \mathbb{N} /\{1\}\right\}$.
Proof. It is sufficient to prove

$$
\left|\frac{z\left(D_{q} L_{q, \gamma} f(z)\right)}{L_{q, \gamma} f(z)}-1\right|<1-\alpha_{3}, \quad z \in \mathcal{U}
$$

Now

$$
\begin{aligned}
& \left|\frac{z\left(D_{q} L_{q, \gamma} f(z)\right)}{L_{q, \gamma} f(z)}-1\right| \\
= & \left|\frac{\sum_{m=2}^{\infty}\left([m]_{q}-1\right)\left|a_{m}\right| z^{m-1} \frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}}{1+\sum_{m=2}^{\infty}\left|a_{m}\right| z^{m-1} \frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}}\right| \\
\leq & \frac{\sum_{m=2}^{\infty}\left([m]_{q}-1\right) \frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}\left|a_{m}\right||z|^{m-1}}{1-\sum_{m=2}^{\infty}\left|a_{m}\right||z|^{m-1}\left(\frac{[\gamma+1]_{q}}{[\gamma+m]_{q}}\right)} .
\end{aligned}
$$

This last expression is less than $1-\alpha_{3}$, since

$$
|z|^{m-1} \leq\left(\frac{[\gamma+m]_{q}}{[\gamma+1]_{q}}\right) \frac{\left(1-\alpha_{3}\right)\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)}{\left([m]_{q}-\alpha_{3}\right) b(1-\alpha)}
$$

Using the fact that f is convex if and only if $z D_{q} f$ is starlike, we obtain the following

Theorem 9 Let $f \in \mathcal{T} \mathcal{S}_{p}^{q}[\alpha, \beta, \delta, b]$ then $L_{q, \gamma} f(z)$ is q-convex of order $0 \leq \alpha_{3} \leq 1$ in $|z|<R_{2}$ where
$R_{2}=\inf \left\{\left(\frac{[\gamma+m]_{q}}{[\gamma+1]_{q}} \frac{\left(1-\alpha_{3}\right)\left[2(\beta-1)\left(1-[m]_{q}\right)+(1-\alpha) b\right] K_{q}(m, \delta)}{[m]_{q}\left([m]_{q}-\alpha_{3}\right) b(1-\alpha)}\right)^{\frac{1}{m-1}}: m \in \mathbb{N} /\{1\}\right\}$.

References

[1] M.H. Abu-Risha, M.H. Annaby, M.E.H. Isail and Z.S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), 481-494.
[2] O. Altintas and S. Owa, On subclasses of univalent functions with negative coefficients , Pusan Kyongnam Math.J., 4(1988), 41-56.
[3] G. Bangerzako, Variational calculus on q-nonuniform lattices, J. Math. Anal. Appl. 306, 1 (2005), 161-179.
[4] S. D. Bernardi, Convex and starlike univalent functions. Transactions of the American Mathematical Society, 135(1969),429-446.
[5] R. Bharthi, R. Paravatham and A. Swaminathan, On subclasses of uniformaly convex functions and corresponding class of starlike functions, Tamkang J.Math.,26(1)(1997), 17-32.
[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, vol. 35 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, Mass, USA, 1990.
[7] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, vol. 46, no. 2,(1909) pp.253-281.
[8] Y. C. Kim and F. Ronning, Integral transforms of certain subclasses of analytic function, J. Math. Anal. Appl., 258(2001), 466-657.
[9] Z.S.I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal. 12, 2 (2009), 159-178.
[10] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canadian Journal of Mathematics, vol. 39, no. 5, (1987), pp.1057-1077.
[11] K. S. Padmanabhan and M. Jayamala, A class of univalent functions with varying arguments Internat. J. Math. and Math. Sci., Vol.15, No. 3 (1992),517-522.
[12] S. D. Purohit, A new class of multivalently analytic functions associated with fractional q-calculus operators, Fractional Differential Calculus, Volume 2, Number 2 (2012), 129-138.
[13] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Mathematica Scandinavica., Vol. 109, No. 1, (2011) pp.55-70.
[14] C. Ramachandran, T. Soupramanien and B.A. Frasin, New subclasses of analytic function associated with q-difference operator, European journal of pure and applied mathematics, Vol. 10, No. 2, 2017, 348-362.
[15] N. Ravikumar, Certain classes of analytic functions defined by fractional q-calculus operator, Acta Univ. Sapientiae, Mathematica, 10, 1 (2018) 178-188.
[16] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007), 311-323.
[17] K.Vijay, Certain Class of Analytic Functions Based on q-difference operator, arXiv:1709.04138v1 [math.CV] 13 Sep 2017.
[18] K. Vijaya, G. Murugusundaramoorthy and S.Yalçın, Certain Class of Analytic Functions Involving Salagean Type q-Difference Operator, Konuralp Journal of Mathematics, 6 (2) (2018) 264-271.
N. Ravikumar, PG Department of Mathematics, JSS College of Arts, Commerce and Science, Mysore - 570 005, INDIA.

E-mail address: ravisn.kumar@gmail.com
S. Latha, Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore - 570 009, INDIA.

E-mail address: drlatha@gmail.com
B.A. Frasin, Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

E-mail address: bafrasin@yahoo.com

[^0]: 1991 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Univalent functions, Bernardi operator, fractional derivative, q derivative.

 Submitted Feb. 25, 2018. Revised Nov. 22, 2018.

