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DYNAMICAL BEHAVIORS OF DISCRETE PREDATOR-PREY

MODEL WITH HOLLING TYPE IV FUNCTIONAL RESPONSE

S. Z. RIDA, Y. GH. GOUDA, A. S. ZAKI

Abstract. In this paper, a discrete-time predator-prey model with Holling
type IV functional response is investigated. Firstly, we introduced the local
stability analysis of the model. Next, bifurcation theory and the center manifold
theorem are used to study the bifurcation phenomena at the fixed points of
the model. Bifurcation types (include flip and Neimark-Sacker) are addressed.
Finally, numerical simulations are carried out to check the obtained theoretical
results.

1. Introduction

It is well known that, the most popular model to investigate the dynamical behav-
iors of predator-prey model was made by Lotka [1] in (1925) and Volterra [2] in
(1926). They have suggested a system of a pair of differential equations with first
order to understand the evolution of the predator-prey. A predator-prey system
with logistic growth and functional response p(x) can be written in the following
form:

dx

dt
= rx(t)(1− x(t))− yp(x(t)),

dy

dt
= y(t)p(x(t))− by(t),

(1.1)

where x(t) and y(t) represent the prey and predator density at time t respec-
tively. The prey grows logistically with intrinsic growth rate r > 0 in the absence
of predator and b > 0 is the death rate of the predator population. The functional
response represents the specific growth rate resulting of prey consumption per
unit time. The functional response classified into three types are called Holling
type I,II and III [3]. Furthermore it, some authors have also described a Holling
type IV functional response which is humped and declines at high prey densities
[4]. In [5], Sokol and Howell proposed a simplified Holling type IV function of the
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form p(x) = mx
a+x2

, where m > 0 denotes the maximal predation rate and a > 0 is
half-saturation constant.

The model (1.1) with Holling type IV functional response becomes:

dx

dt
= rx(t)(1− x(t))− mx(t)y(t)

a+ x2(t)
,

dy

dt
=
mx(t)y(t)

a+ x2(t)
− by(t).

(1.2)

Let

t̄ = mt, r̄ =
r

m
, b̄ =

b

m
.

The system (1.2) transformed to

dx

dt
= rx(1− x)− xy

a+ x2
,

dy

dt
=

xy

a+ x2
− by.

(1.3)

In fact, the mathematical modeling for some population dynamics becomes more
convenient and realistic when it is approximated by difference equations especially
if the populations have non-overlapping generations such as an annual plant or an
insect population with one generation per year. Therefore, we apply the forward
Euler scheme of system (1.3) to get the discrete-time predator-prey system as
follow:

xn+1 = xn + δ[rxn(1− xn)− xnyn
a+ x2

n

],

yn+1 = yn + δ[
xnyn
a+ x2

n

− byn],
(1.4)

and the mapping is given by the form:

x = x+ δ[rx(1− x)− xy

a+ x2
],

y = y + δ[
xy

a+ x2
− by],

(1.5)

where δ is the step size.
In this work, our objectives are study the dynamical behaviors of system (1.5) and
the sufficient condition to occurs a flip and Neimark-sacker bifurcations by using
bifurcation theory and the center manifold theorem.
Many authors have studied the dynamical behaviors of predator-prey (see [6]-[19]).
In [20], the forward Euler scheme was applied to a simple predator-prey model by
Zhang et al.
The rest of this paper is organized as follows: in section (2), we study the local
stability analysis of the fixed points. In section (3), we investigate local bifurca-
tion analysis. In section (4), numerical simulation are carried out to confirm the
theoretical results. Finally, we show our conclusions.



JFCA-2019/10(2) DYNAMICAL BEHAVIORS OF DISCRETE PREDATOR-PREY MODEL 235

2. Existence of fixed points and their stability

In this section, we determine the existence of the fixed points of the system (1.5)
and study their stability by calculating the eigenvalues of the Jacobian matrix of
the system at each fixed point.
By simple calculations there exist three fixed points of the system (1.5):-

(1) E0(0, 0) is the trivial equilibrium point.
(2) E1(1, 0) is the axial fixed point.
(3) E2(x∗, y∗) = (x∗, r(1− x∗)(a+ (x∗)2)) is the positive equilibrium point.

Now, we study the local stability of these fixed points. In deed, the local stability
of the discrete-time system (1.5) is determine by calculating the eigenvalues of the
Jacobian matrix.
The Jacobian matrix of the system (1.5) at its fixed point (x,y) can be written in
the form:-

J(x, y) =

(
1 + δ(r − 2rx− y−x2y

(a+x2)2
) − δx

a+x2

δ y−x2y
(a+x2)2

1 + δ( x
a+x2

− b)

)
(2.1)

To study the stability of fixed points of system (1.5), we need the following lemma
to help us.
lemma 1. [16] Let F (λ) = λ2 + Pλ+Q. Suppose that F (1) > 0, λ1 and λ2 are
two roots of F (λ) = 0. Then

(1) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0, Q < 1;
(2) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F (−1) < 0;
(3) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Q > 1;
(4) λ1 = −1 and |λ2| 6= 1 if and only if F (−1) = 0 and P 6= 0, 2;
(5) λ1 and λ2 are complex and |λ1| = 1and |λ2| = 1 if and only if P 2−4Q < 0

and Q = 1.

We recall some definitions of topological types for a fixed point (x, y). A fixed point
(x, y) is called a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically
stable; it is called a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable;
it is called a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1); and (x, y)
is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.
Now state the following three Propositions:
proposition 1. The fixed point E0(0, 0) has the following topological properties

(1) E0(0, 0) is saddle if 0 < δ < 2
b .

(2) E0(0, 0) is a source if δ > 2
b .

(3) E0(0, 0) is a non-hyperbolic if δ = 2
b .

proposition 2. The fixed point E1(1, 0) has the following topological properties

(1) E1(1, 0) is sink if 0 < δ < 2
r , 1

2 < b < 1
2 + 2

δ ;

(2) E1(1, 0) is saddle if 0 < δ < 2
r , 1

2 > b > 1
2 + 2

δ also for δ > 2
r , 1

2 < b < 1
2 + 2

δ ;

(3) E1(1, 0) is source if δ > 2
r or 1

2 > b > 1
2 + 2

δ ;

(4) E1(1, 0) is a non-hyperbolic if δ = 2
r or b = 1

2 or b = 1
2 + 2

δ .
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The characteristic equation of the Jacobian matrix J of the system (1.5) evaluated
at the positive fixed point E2(x∗, y∗) can be written as

λ2 − (2 + δG)λ+ (1 + δG+ δ2H) = 0,

where

G = r(1− 2x) +
y(x2 − 1)

(1 + x2)2
, H =

xy(1− x2)

(1 + x2)3
,

let

F (λ) = λ2 − (2 + δG)λ+ (1 + δG+ δ2H),

then,

F (1) = δ2H > 0, F (−1) = 4 + 2δG+ δ2H,

Using Lemma 1 we obtain the local dynamics of the fixed point E2(x∗, y∗).
proposition 3. Let E2(x∗, y∗) be the positive fixed point of system (1.5):

• E2 is a sink if one of the following conditions holds
(1) G = −2

√
H and δ < −G

H ,

(2) G < −2
√
H and 0 < δ < −G−

√
G2−4H
H ,

so E2 local asymptotic stable.
• E2 is a source if one of the following conditions holds

(1) G = −2
√
H and δ > −G

H ,

(2) G < −2
√
H and δ > −G+

√
G2−4H
H ,

• E2 is a saddle if the following condition holds:

G < −2
√
H, and

−G−
√
G2 − 4H

H
< δ <

−G+
√
G2 − 4H

H
,

• E2 is non-hyperbolic if one of the following conditions holds:

(1) G < −2
√
H and δ = −G±

√
G2−4H
H ,

(2) −2
√
H < G < 0 and δ = −G

H .

3. Local bifurcations analysis

The main objective of this section is to investigate different types of bifurcations
at the three fixed points of the discrete system (1.5).

3.1. Bifurcation of the fixed point E0(0, 0)
. The Jacobian matrix at E0(0, 0) is given by:

J(E0) =

(
1 + δr 0

0 1− δb

)
(3.1)

has two eigenvalues λ1 = 1 + δr and λ2 = 1 − δb. If 4 + 2δr = 0, than λ1 = −1,
λ2 = 1 − δb. One can check that the condition for a flip (period doubling) bifur-
cation is satisfied when δ = 2

b as shown in the following lemma.

lemma 2. If δ = 2
b , the system (1.5) undergoes a flip bifurcation at E0. Moreover,

the stable periodic-2 point bifurcates from this fixed point.
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proof. Let δ = 2
b , the two eigenvalues at E0 become λ1 = 1 + 2r

b and λ2 = −1.

Let µ = δ− 2
b such that parameter µ is a new and dependent variable, the system

(1.5) is transformed into the following form xn+1

yn+1

µn+1

 =

 1 + 2b
r 0 0

0 −1 0
0 0 −1

 xn
yn
µn

+

 (rxn − rx2
n −

xnyn
1+x2n

)µn − 2rx2n
b −

2xnyn
b(1+x2n)

( xnyn
1+x2n

− byn)µn + 2xnyn
b(1+x2n)

0

 .(3.2)

By applying the center manifold theorem to determine the dynamics behavior of
the fixed point E0. So the center manifold for the system (3.2), can be expressed
as follow:

W c(E0) = {(x, y, µ) ∈ R3|y = f(x, µ), f(0, 0) = Df(0, 0), |x| < ε, |µ| < δ},
for ε, δ sufficiently small.
To compute the center manifold W c(E0) we assume

yn = f(xn, µn) = a1x
2
n + a2xnµn + a3µ

2
n + o((|xn|+ |µn|)3), (3.3)

where O((|x|+ |µ|)3) is the sum of all terms whose order is great than 2.
The center manifold must satisfy

f((1 +
2b

r
)xn + (rxn − rx2

n −
xnyn

1 + x2
n

)µn, µn) = (−1)(a1x
2
n + a2xnµn + a3µ

2
n).(3.4)

Substituting (3.2) and (3.3) into (3.4) and then equating coefficients of like powers
, we get

a1 = 0, a2 = 0, a3 = 0.

Thus the map restricted to the center manifold is given by

f1 : xn+1 = (−xn + rxnµn + 2x2
n +O((|u|+ |µ1|)4). (3.5)

Since

α1 =
(

2
∂2F1

∂µ1∂u
+
∂F1

∂µ1

∂2F1

∂u2

)
(0,0)

= 2r 6= 0,

α2 =
(1

2

(∂2F1

∂u2

)2
+

1

3

(∂3F1

∂u3

))
(0,0)

= 8 6= 0,

Thus, system (1.5) undergoes a subcritical flip bifurcation at E0(0, 0). This com-
pletes the proof.

3.2. Bifurcation of the fixed point E1(1, 0)
. Now we study the bifurcation of non-trivial fixed point E1(1, 0). In the following
lemma, it will be shown that the system (1.5) undergoes a flip bifurcation at E1.
The Jacobian matrix at E1(1, 0) is given by:

J(1, 0) =

(
1− δr − δ

2
0 1 + δ(1

2 − b)

)
, (3.6)

which has two eigenvalues λ1 = 1− δr and λ2 = 1 + δ(1
2 − b). One can check that

the condition for a flip bifurcation (period doubling) is satisfied when δ = 2
r and
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b 6= 1
2 , then J(E1) has two eigenvalues λ1 = −1 and λ2 = 1 + 1

r (1− 2b).

lemma 3. If δ = 2
r and b 6= 1

2 , the system (1.5) will undergo a flip (period dou-
bling) bifurcation at E1.

proof. If δ = 2
r and b 6= 1

2 the eigenvalues of Jacobian matrix at E1 are λ1 = −1

and λ2 = 1 + 1
r (1− 2b). Let u = x− 1, v = y, µ = δ − 2

r , and let parameter µ be
a new and dependent variable, then the system (1.5) becomes: un+1

vn+1

µn+1

 =

 −1 −1
r 0

0 1− 2b
r 0

0 0 −1

 un
vn
µn

+

 (−ru2
n − run)µn − 2u2

n − (µn + 2
r )( unvn

1+u2n
)

(µn + 2
r )( unvn

1+u2n
)− µnbvn

0

 .(3.7)

Can construct an invertible matrix

T =

 1 1 0
0 2r 0
0 0 2(b− r)

 ,

and use the translation  u
v
µ

 = T

 ζ
η
µ1

 ,

then the system (3.7) becomes ζ
η
µ1

→
 1 − 1

2r 0
0 1

2r 0
0 0 1

2(b−r)

 ζ
η
µ1

+

 φ(ζ, η, µ1)
ψ(ζ, η, µ1)

0

 . (3.8)

where

φ(ζ, η, µ1) = (−rζ2 − rζ)µ1 − 2ζ2 − (µ1 +
2

r
)(

ζη

1 + ζ2
),

ψ(ζ, η, µ1) = (µ1 +
2

r
)(

ζη

1 + ζ2
)− µ1bη.

Then, the center manifold for (3.7), take the form:

W c(E1) = {(ζ, η, µ1) ∈ R3|η = f(ζ, µ1), f(0, 0) = Df(0, 0), |ζ| < ε, |µ1| < δ̂1},

for ε, δ̂1 sufficiently small.
To compute the center manifold W c we assume

η = f(ζ, µ1) = a1ζ
2 + a2ζµ1 + a3µ1

2 +O((|ζ|+ |µ1|)3). (3.9)

The center manifold must satisfy
f(ζ + φ(ζ, f(ζ, µ1), µ1), µ1) = 1

2r (a1ζ
2 + a2ζµ1 + a3µ1

2) + ψ(ζ, f(ζ, µ1), µ1).
Substituting Eq. (3.9) into Eq. (3.10) and then equating coefficients of like powers
in Eq. (3.10) , we get
a1 = 0, a2 = 0, a=0.
The system (3.8)is restricted to the center manifold, which is given by

f2 : ζn+1 = ζ − (rζ2 − rζ)µ1 − 2ζ2. (3.10)
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Since

γ1 =
(

2
∂2F2

∂µ1∂ζ
+
∂F2

∂µ1

∂2F2

∂ζ2

)
(0,0)

= −2r 6= 0,

γ2 =
(1

2

(∂2F2

∂ζ2

)2
+

1

3

(∂3F2

∂ζ3

))
(0,0)

= (2r2 + 8r + 8) 6= 0.

So, system (1.5) undergoes a subcritical flip bifurcation at E1.

3.3. Bifurcation of the fixed point E2(x∗, y∗)
. In this section, we show that occur both flip and NeimarkSacker bifurcations
in system (1.5) is studied at the interior fixed point E2 where δ is taken as the
bifurcation parameter. Firstly, we discuss the flip bifurcation of system (1.5) Let

FB1 =

{
(r, b, δ) : δ =

−G+
√
G2 − 4H

H
,G < −2

√
H, r, b, δ > 0

}
,

or

FB2 =

{
(r, b, δ) : δ =

−G−
√
G2 − 4H

H
,G < −2

√
H, r, b, δ > 0

}
.

The fixed point (x∗, y∗) can undergo flip bifurcation when parameters vary in a
small neighborhood of FB1 or FB2. Let

HB =

{
(r, b, δ) : δ =

−G
H

,−2
√
H < G < 0, r, b, δ > 0

}
.

The fixed point E2(x∗, y∗) may undergo Neimark-Sacker bifurcation when param-
eters vary in a small neighborhood of HB. In the following analysis, we will study
the flip bifurcation of the positive fixed point E2(x∗, y∗) if parameters vary in
a small neighborhood of FB1 (or FB2), and the Neimark-Sacker bifurcation of
E2(x∗, y∗) if parameters vary in a small neighborhood of HB.
First, we discuss the flip bifurcation of system (1.5) at E2(x∗, y∗) when parameters
vary in a small neighborhood of FB1. By the same arguments can be applied to
the other case FB2. Taking parameters (r, b, δ1) arbitrarily from FB1, we consider
system (1.5) with (r, b, δ1), which is given by{

x→ x+ δ1[rx(1− x)− xy
1+x2

],

y → y + δ1[ xy
1+x2

− by].
(3.11)

The system (3.10) has a unique positive fixed point E2(x∗, y∗), has eigenvalues are
λ1 = −1, λ2 = 3 +Gδ1 with |λ2| 6= 1 by proposition 3.
Since (r, b, δ1) ∈ FB1, taking δ∗ as a bifurcation parameter, we consider a pertur-
bation of (3.10) as follows:{

x→ x+ (δ1 + δ∗)[rx(1− x)− xy
1+x2

],

y → y + (δ1 + δ∗)[ xy
1+x2

− by].
(3.12)

where |δ∗| � 1, which is a small perturbation parameter.
Let u = x−x∗, v = y−y∗. Then we transform the fixed point E2(x∗, y∗) of system



JFCA-2019/10(2) DYNAMICAL BEHAVIORS OF DISCRETE PREDATOR-PREY MODEL 240

(3.12) into the origin. We have
u→ a1u+ a2v + a13uδ

∗ + a23vδ
∗ + a12uv + a11u

2 + a112u
2v + a113u

2δ∗

+a111u
3 +O((|u|+ |v|+ |δ∗|)4),

v → b1u+ b2v + b13uδ
∗ + b23vδ

∗ + b12uv + a11u
2 + b112u

2v + b113u
2δ∗

+b111u
3 +O((|u|+ |v|+ |δ∗|)4),

(3.13)
where

a1 = 1 + δ[r(1− 2x∗)− y∗(1−x∗2)
(1+x∗2)2

], a2 = − δx∗

1+x∗2
, a13 = r(1− 2x∗)− y∗(1−x∗2)

(1+x∗2)2
, a23 = − x∗

1+x∗2
,

a11 = δ[−r + x∗y∗(3−x∗2)
(1+x∗2)3

, a12 = − δ(1−x∗2)
(1+x∗2)2

, a111 = δ
2 [y

∗(1−6x∗2+x∗4)
(1+x∗4

],

a112 = δ[x
∗(3−x∗2)
(1+x∗2)3

], a113 = x∗(3−x∗2)
(1+x∗2)3

,

b1 = δy∗(1−x∗2)
(1+x∗2)2

, b2 = 1 + δ[ x∗

1+x∗2
− b], b13 = y∗(1−x∗2)

(1+x∗2)2
, b23 = x∗

1+x∗2
− b,

b11 = δ[x
∗y∗(−3+x∗2)

(1+x∗2)3
], b12 = δ(1−x∗2)

(1+x∗2)2
, b123 = (1−x∗2)

(1+x∗2)2
, b111 = δ

2 [y
∗(−1+6x∗2−x∗4)

(1+x∗2)4
],

b112 = δ[x
∗(−3+x∗2)
(1+x∗2)3

], b113 = x∗y∗(−3+x∗2)
(1+x∗2)3

,

(3.14)
and δ = δ1.
Can constructing an invertible matrix

T =

(
a2 a2

−1− a1 λ2 − a1

)
,

and use the translation (
u
v

)
= T

(
x̃
ỹ

)
,

then the system (3.13) becomes(
x̃
ỹ

)
→
(
−1 0
0 λ2

)(
x̃
ỹ

)
+

(
f1(x̃, ỹ, δ∗)
f2(x̃, ỹ, δ∗)

)
, (3.15)

where

f1(x̃, ỹ, δ∗) =
a13(λ2 − a1)− a2b13

a2(1 + λ2)
uδ∗ +

a23(λ2 − a1)− a2b23

a2(1 + λ2)
vδ∗ +

a11(λ2 − a1)

a2(1 + λ2)
u2

+
a113(λ2 − a1)

a2(1 + λ2)
u2δ∗ − b12

(1 + λ2)
uv − b123

(1 + λ2)
uvδ∗ +

a111(λ2 − a1)

a2(1 + λ2)
u3

+ O((|u|+ |v|+ |δ∗|)4),

f2(x̃, ỹ, δ∗) =
a13(1 + a1) + a2b13

a2(1 + λ2)
uδ∗ +

a23(1 + a1) + a2b23

a2(1 + λ2)
vδ∗ +

a11(1 + a1)

a2(1 + λ2)
u2

+
a113(1 + a1)

a2(1 + λ2)
u2δ∗ +

b12

(1 + λ2)
uv +

b123

(1 + λ2)
uvδ∗ +

a111(1 + a1)

a2(1 + λ2)
u3

+ O((|u|+ |v|+ |δ∗|)4),
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and

u = a2(x̃+ ỹ), v = −(1 + a1)x̃+ (λ2 − a1)ỹ,

uv = a2(−(1 + a1)x̃2 + (λ2 − 2a1 − 1)x̃ỹ + a2(λ2 − a1)ỹ2),

u2 = a2
2(x̃2 + x̃ỹ + ỹ2),

u3 = a3
2(x̃3 + 3x̃2ỹ + 3x̃ỹ2 + ỹ3).

Next, we determine the center manifold W c(0, 0, 0) of system (3.15) at the fixed
point (0, 0) in a small neighborhood of δ∗. By the center manifold theorem, we
know that there exists a center manifold

W c(0, 0, 0) = {(x̃, ỹ, δ∗) ∈ R3, ỹ = f(x̃, δ∗), f(0, 0) = 0, Df(0, 0) = 0},

for x̃ and δ∗ sufficiently small. We suppose that a center manifold take the form

ỹ = f(x̃, δ∗) = c1x̃
2 + c2x̃δ

∗ + c3δ
∗2 +O((|x̃|+ |δ∗|)3). (3.16)

The center manifold must satisfy

h(−x̃+ f1(x̃, f(x̃, δ∗), δ∗), δ∗) = λ2f(x̃, δ∗) + f2(x̃, f(x̃, δ∗), δ∗). (3.17)

By substituting from (3.16) into (3.17), and equating coefficients of like powers
(3.17), we get that

c1 =
(1 + a1)a2

1− λ2
2

(a11 − b12),

c2 =
(1 + a1)[a23(1 + a1) + a2b23]

a2(1 + λ2)2
− a13(1 + a1) + a2b13

(1 + λ2)2
,

c3 = 0.

Therefore, we consider the system (3.15) which is restricted to the center manifold
Wc(0, 0, 0):

f3 : x̃→ −x̃+ g1x̃
2 + g2x̃δ

∗ + g3x̃
2δ∗ + g4x̃δ

∗2 + g5x̃
3 +O((|x̃|+ |δ∗|)4). (3.18)

where

g1 =
1

λ2 + 1
((λ2 − a1)a11a2 + (1 + a1)b12a2),

g2 =
1

a2(λ2 + 1)
(a13a2(λ2 − 1)− b13a2

2 − (1 + a1)(a23(λ2 − a1)− a2b23)),

g3 =
1

λ2 + 1
((λ2 − a1)(a113a2 + c2a2a11 +

c1

a2
a23(λ2 − a1)− c1b23 + a13c1) + b123a2(1 + a1)−

− b12a2c2(λ2 − 2a1 − 1)− b13a2c1),

g4 =
1

λ2 + 1
((λ2 − a1)(a13c2 +

c2

a23
(λ2 − a1)− c2b23)− b13a2c2),

g5 =
1

λ2 + 1
((λ2 − a1)(a11a2c1 + a111a

2
2)− b12a2c1(λ2 − 2a1 − 1)).
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In order to the system (3.17) undergo a flip bifurcation, we require that two
discriminatory quantities γ1 and γ2 are not zero, where

γ1 =
(

2
∂2f3

∂δ∗∂x̃
+
∂f3

∂δ∗
∂f3

∂x̃

)
(0,0)

= 2g2,

γ2 =
(1

2

(∂2f3

∂x̃2

)2
+

1

3

(∂3f3

∂x̃3

))
(0,0)

= 2(g5 + g2
1).

From the above analysis, we have the following result.
theorem 3. If γ2 6= 0, then the system (1.5) undergoes a flip bifurcation at the
fixed point E2(x∗, y∗) when the parameter δ varies in a small neighborhood of δ1.
Moreover, if γ2 > 0 (resp.γ2 < 0), then the period-2 orbits that bifurcate from
(x∗, y∗) are stable (resp., unstable).

Finally, we discuss the Neimark-Sacker bifurcation of E2(x∗, y∗) if parameters
(r, b, δ2) vary in a small neighborhood of HB. By taking parameters (r, b, δ2)
arbitrarily from HB, we consider the system (1.5) with (r, b, δ2), which is described
by {

x→ x+ δ2[rx(1− x)− xy
1+x2

],

y → y + δ2[ xy
1+x2

− by].
(3.19)

System (3.19) has a unique positive fixed point E2(x∗, y∗). At parameters (r, b, δ2) ∈
HB, then δ2 = −G

H . Choosing δ∗ as a bifurcation parameter, we consider a per-
turbation of the system (3.19) given as follows:{

x→ x+ (δ2 + δ̄∗)[rx(1− x)− xy
1+x2

],

y → y + (δ2 + δ̄∗)[ xy
1+x2

− by].
(3.20)

Where δ∗ � 1, which is a small perturbation parameter.
Let u = x − x∗, v = y − y∗. Then we transform the fixed point E2(x∗, y∗) of the
system (3.20) into the origin. We have{

u→ a1u+ a2v + a11u
2 + a12uv + a111u

3 + a112u
2v +O((|u|+ |v|)4),

v → b1u+ b2v + b11u
2 + b12uv + b111u

3 + b112u
2v +O((|u|+ |v|)4),

(3.21)
where a1, a2, a11, a12, a111, a112 and b1, b2, b11, b12, b111, b112 are given in (3.14) by
substituting δ1 for δ2 + δ̄∗. So, the characteristic equation of the system (3.21) at
(u, v) = (0, 0) is given by

λ2 + p(δ̄∗)λ+ q(δ̄∗) = 0,

where

p(δ̄∗) = −2−G(δ̄∗ + δ2),

q(δ̄∗) = 1 +G(δ̄∗ + δ2) +H(δ̄∗ + δ2)2.

Since parameters (r, b, δ2) ∈ HB, the eigenvalues of (0, 0) are a pair of complex
conjugate numbers λ and λ̄ with modulus 1 by proposition 3 , where

λ, λ̄ = −p(δ̄
∗)

2
± i

2

√
4q(δ̄∗)− p2(δ̄∗),
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and so

|λ|δ̄∗=0 =
√
q(0) = 1, l =

d|λ|
dδ̄∗
|δ̄∗=0 = −G

2
6= 0.

This implies that when δ̄∗ = 0, λm, λ̄m 6= 1(m = 1, 2, 3, 4), which is require to
p(0) 6= −2, 0, 1, 2. We note that (r, b, δ2) ∈ HB. Thus, p(0) 6= −2, 2. We need to
require that p(0) 6= 0, 1, which leads to

G2 6= 2H, 3H. (3.22)

Next, we study the normal form of the system (3.21) at δ̄∗ = 0.

Let δ̄∗ = 0, α = 1 + Gδ2
2 , β = δ2

2

√
4H −G2.

T =

(
a2 0

α− a1 −β

)
,

and use the translation (
u
v

)
= T

(
x̃
ỹ

)
,

then the system (3.21) becomes(
x̃
ỹ

)
→
(
α −β
β α

)(
u
v

)
+

(
f̄1(x̃, ỹ)
f̄2(x̃, ỹ)

)
, (3.23)

where

f̄1(x̃, ỹ) =
a11

a2
u2 +

a111

a2
u3 +O((|x̃|+ |ỹ|)4),

f̄2(x̃, ỹ) =
(α− a1)a11

a2β
u2 − b12

β
uv +

(α− a1)a111

a2β
u3 +O((|x̃|+ |ỹ|)4).

and

uv = a2(α− a1)x̃2 − a2βx̃ỹ,

u2 = a2
2x̃2, u3 = a3

2x̃
3.

Therefore,

f̄1x̃x̃ = 2a11a2, f̄1x̃x̃x̃ = 6a111a
2
2,

f̄1x̃ỹ = f̄1ỹỹ = f̄1x̃x̃ỹ = f̄1x̃ỹỹ = f̄1ỹỹỹ = 0,

f̄2x̃x̃ =
2a2(α− a1)

β
(a11 − b12), f̄2x̃ỹ = a2b12,

f̄2x̃x̃x̃ =
6a2

2(α− a1)a111

β
,

f̄2ỹỹ = f̄2x̃x̃ỹ = f̄2x̃ỹỹ = f̄2ỹỹỹ = 0.

at point (0, 0).
To the system (3.23) undergo Neimark-Sacker bifurcation, we implies that the
following discriminatory quantity is not zero:

θ =
[
−Re

((1− 2λ)λ̄2

1− λ
L11L12

)
− 1

2
|L11|2 − |L21|2 +Re(λ̄L22)

]
δ̄∗=0

,
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where

L11 =
1

4
((f̄1x̃x̃ + f̄1ỹỹ) + i(f̄2x̃x̃ + f̄2ỹỹ)),

L12 =
1

8
((f̄1x̃x̃ − f̄1ỹỹ + 2f̄2x̃ỹ) + i(f̄2x̃x̃ − f̄2ỹỹ − 2f̄1x̃ỹ)),

L21 =
1

8
((f̄1x̃x̃ − f̄1ỹỹ − 2f̄2x̃ỹ) + i(f̄2x̃x̃ − f̄2ỹỹ + 2f̄1x̃ỹ)),

L22 =
1

16
((f̄1x̃x̃x̃ + f̄1x̃ỹỹ + f̄2x̃x̃ỹ + f̄2ỹỹỹ) + i(f̄2x̃x̃x̃ + f̄2x̃ỹỹ − f̄1x̃x̃ỹ − f̄1ỹỹỹ)),

From the above analysis, we deduce the following theorem.
theorem 3. If the condition (3.22) holds and θ 6= 0, then system (1.5) undergoes
Neimark Sacker bifurcation at the fixed point E2(x∗, y∗) when the parameter δ
varies in a small neighborhood of δ2. Moreover, if θ < 0 (resp., θ > 0), then an
attracting (resp., repelling) invariant closed curve bifurcates from the fixed point
for δ > δ2 (resp., δ < δ2).

4. Numerical simulation

In this section, we present some numerical simulation results to confirm our analyt-
ical results and to obtain more complex dynamics of the system (1.5) by presenting
bifurcation diagram, phase plane for specific parameter values. We consider the
numerical simulation of system (1.5) is discussed in the different cases as follows:
Case1. Let b and r be fixed and δ vary from 0 to 1.5. We take the initial value
(x0, y0) = (0.9, 0.5) in all numerical simulation. The bifurcation diagram in the
(δ, x) plane is illustrated in Fig. 1.
In Fig. 2, various phase plane diagrams are showed for b = 0.28, r = 2.82, and
different δ. So the bifurcation diagram of the fixed point of E1(1, 0) is verify by
lemma 2. In Fig. 3 , various phase plane diagrams are illustrated for b = 0.28,
r = 2.82 and different δ, we get. Fig. 3 (a) shows that this fixed point is stable
while part (b) shows the dynamics of the fixed point E1 before Neimark-Sacker
bifurcation. Part (c) shows the dynamics of E1 after NeimarkSacker bifurcation
while Part (d) shows that increasing δ resulting in E1 loses stability and a closed
invariant curve is created.
Also, in Fig.3 (e), (f), and (g) the chaotic behavior occurs at δ = 1.59, 1.64, 1.68
respectively. Finally in (h) shows the strange attractor for δ = 1.7.
case 2. Let b = 0.66 and r = 3.8 be fixed and δ = 0.8. Fig. 3 the bifurcation
diagram of system (1.5) in the (δ, x) plane.
The Maximum Lyapunov exponents corresponding to Fig. 3 computed in Fig. 4.
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Figure 1. Bifurcation of system (1.5) in (δ, x) plane for b = 0.28,
r = 2.82.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Phase plane for system (1.5) with b = 0.28, r = 2.82,
and different δ.
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Figure 3. Bifurcation of system (1.5) in (δ, x) plane for b = 0.66,
r = 3.8.

Figure 4. Bifurcation of system (1.5) in (δ,MaximalLE) plane
for b = 0.66, r = 3.8.

5. Conclusion

In this paper, we have investigated the dynamical behaviors of a discrete-time
predator-prey model with Holling type IV functional response. Also, we have
introduced the sufficient conditions to occur both flip and Neimark-Sacker bifur-
cations. Finally, numerical simulations are implemented to confirm our theoretical
analysis. These results show that the predator-prey system with Holling type IV
functional response have rich dynamics.
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