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SOLUTION SETS FOR FRACTIONAL DIFFERENTIAL

INCLUSIONS

MOUSTAFA BEDDANI AND BENAOUDA HEDIA

Abstract. The aim of this paper is to study an initial value problem for a

fractional differential inclusions using the Riemann-Liouville fractional deriv-

ative. We apply appropriate fixed point theorems for multivalued maps to
obtain the existence results for the given problems covering convex as well

as non-convex cases for multivalued maps. We also obtain some topological

properties of the solution sets.

1. Introduction

In this paper, we are concerned with the solutions sets for the initial value
problems (IVP for short), for fractional order differential inclusions of the form

Dαy(t) ∈ F (t, y(t)), a.e. t ∈ J ′ = (0, T ], 0 < α ≤ 1, (1)

lim
t−→0+

t1−αy(t) = c, (2)

where Dα is the standard Riemann-Liouville fractional derivative, J = [0, T ],
F : J × R → P(R) is a Carathéodory multivalued function (P(R) is the family of
all nonempty subsets of R) and c ∈ R.

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering. In-
deed, we can find numerous applications in viscoelasticity, electrochemistry, control,
porous media, electromagnetic, etc. see ([12]). There has been a significant devel-
opment in fractional differential and partial differential equations in recent years;
see the monographs of Kilbas et al [22], Benchohra et al[1, 2], Zhou al [32, 33] and
the papers of Delbosco and Rodino [13], Diethelm et al [12], El-Sayed [15, 16],
Kilbas and Marzan [20] and the references therein.

Applied problems require definitions of fractional derivatives allowing the uti-
lization of physically interpretable initial conditions, which contain y(0), y′(0), etc.
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the same requirements of boundary conditions. Caputo’s fractional derivative sat-
isfies these demands. For more details on the geometric and physical interpretation
for fractional derivatives of both the Riemann-Liouville and Caputo types see [27].

In 1890, Peano [26] proved that the Cauchy problem for ordinary differential
equations has local solutions although the uniqueness property does not hold in
general. For the case where the uniqueness does not hold, Kneser [21] proved in
1923 that the solution set is a continuum, i.e. closed and connected. In 1942, Aron-
szajn [5] improved this result for differential inclusions in the sense that he showed
that the solution set is compact and acyclic, and he specified this continuum to be
an Rδ-set. An analogous result has been obtained for differential inclusions with
u.s.c. convex valued nonlinearities by De Blasi and Myjak in 1985 (see [20]). In
the case of differential inclusions on unbounded domains, some existence results
together with topological structures of solution sets have also been obtained in [4],
the monograph of Dragoni et al [14] are an excellent references to study the prop-
erties of structure topological of this kind of inclusions.

Let us also mention some study of fractional differential inclusions. It was started
in early 2000’s see for instance [9, 16]. Note that we improve some recent results in
this topic (see [33], for instance.)

We are focused in the continuity of the state y only on J ′ and the existence of the
above value without nullity, hence this hardness impose us a choice of a special Ba-
nach space Cα([0, T ],R) that will be specified later. We show that this constructed
space is in a natural way, in the sense that, one recover the characterization of the
relatively compact subset in the space C(J,R) when J is compact.

The paper is organized as follows, in section 2 we give some general results
and preliminaries, in section 3 we give the first result when the nonlinearity is
upper semi-continuous and takes convex values, we prove then that solution sets
is nonempty and compact, our main tool is the Leray-Schauder alternative, in
section 4 we give the second one when the nonlinearity takes non-convex values, by
usefulness of Covitz Nadler contraction we prove that (1)-(2) has one solution, the
compactness, contractibility and acyclicity of solution sets is also proved and in the
last section we give an example which illustrate our results.

2. Preliminaries

This section presents the notations and definitions used throughout this paper,
and give some preliminary facts from multivalued analysis. Let [a, b] be an interval
in R, C([a, b],R) the Banach space of all continuous functions from [a, b] into R
with the norm

‖y‖∞ = sup{|y(t)| : t ∈ [a, b]},

and L1([a, b],R) the Banach space of all functions y : [a, b]→ R which are Lebesgue
integrable with the norm

‖y‖L1 =

∫ b

a

|y(t)|dt.

Let X be a metric space. Define P(X) = {Y ⊂ X : Y 6= ∅}, Pcl(X) = {Y ∈
P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) :
Y compact} and Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}. Consider the
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Hausdorff pseudo-metric distance

Hd : P(X)→ R+ ∪ {∞},

defined by

Hd(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(a,B) = infb∈B d(a, b) and d(A, b) = infa∈A d(a, b). From this definitions,
it’s clear that (Pcl,b(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized
metric space.

Definition 2.1. A multivalued map N : X → P(X) is called
(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) ∀x, y ∈ X,

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that if N is γ-Lipschitz and X is a Banach space, then for every γ′ > γ

N(x) ⊂ N(y) + γ′d(x, y)B(0, 1),

where B(0, 1) refers to the unit ball in X.

Lemma 2.1. [10] Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

Let X, Y be two metric spaces. We denote by P (Y ) the family of all nonempty
subsets of Y and by K(X) (resp. Kv(X)) we denote the collection of all nonempty
compact (resp. nonempty compact convex) subsets of X.
A multivalued map F : X → P (Y ) is said to be

(i) upper semi-continuous (u.s.c. for short)if the set F−1(V ) = {x ∈ X, F (x) ⊂
V } is open subset of X for any open V ⊂ Y ,

(ii) closed (resp. convex) if its graph ΓF = {(x, y) ∈ X × Y : y ∈ F (x)} is a
closed (resp. convex) subset of X × Y ,

(iii) F is bounded on bounded sets if F (B) =
⋃
x∈B F (x) is bounded in X for

all B ∈ Pb(X) (i.e. supx∈B{sup{‖y‖ : y ∈ F (x)}} <∞).

For each x ∈ X, define the set of selections of F by

SF,x = {v ∈ L1(J,R) : v(t) ∈ F (t, x(t)) a.e. t ∈ J}.

A multifunction F : [0;T ]→ K(X) is said to be:

(i) strongly measurable if there exists a sequence {Fn}+∞n=1 of step multifunc-
tions such that Hd(Fn(t)− F (t))→ 0 as n→ +∞ for µ− a.e. t ∈ [0, T ],

where µ denotes a Lebesgue measure on [0, T ] and Hd is the Hausdorff metric
on K(X).

By the symbol L1([0, T ], X) we denote the space of all Bochner summable func-
tions,

(ii) integrable provided it has a Bochner summable selection f ∈ L1([0, T ], X),
i.e. f(t) ∈ F (t) for a.e. t ∈ [0, T ],

(iii) integrably bounded if there exists a summable function q(.) ∈ L1([0, T ], X)
such that ‖F (t)‖ = sup{‖y‖ : y ∈ F (t)} ≤ q(t) for a.e. t ∈ [0, T ].
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Every strongly measurable multivalued map F admits a strongly measurable
selection f : [0, T ]→ E, i.e.,

f(t) ∈ F (t) for a.e. t ∈ [0, T ].

When the nonlinearity takes convex values, Mazur’s Lemma may be useful:

Lemma 2.2. Let X be a normed space and (xk)k∈N ⊂ X a sequence weakly con-
verging to a limit x ∈ E. Then there exists a sequence of convex combinations

ym =

k=m∑
k=1

αmkxk with αmk ≥ 0 for k = 1, . . . ,m and

k=m∑
k=0

αmk = 1 which converges

strongly to x.

Lemma 2.3. [11] If F : X → Pcl(Y ) is u.s.c. then gr(F ) is a closed subset of
X × Y , i.e. for every sequence (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y , if when n −→
∞, xn −→ x∗, yn −→ y∗ and yn ∈ F (xn), then y∗ ∈ F (x∗). Conversely, if F is
completely continuous and has a closed graph, then it is u.s.c.

Finally, the following results are easily deduced from the theoretical limit set
properties.

Lemma 2.4. [7] Let (Kn)n∈N ⊂ K ⊂ X be a sequence of subsets where K is a
compact subset of a separable Banach space X. Then

co( lim
n−→∞

supKn) =
⋂
N>0

co(
⋃
n≥N

KN ),

where coA refers to the closure of the convex hull of A.

Lemma 2.5. [7] Let X, Y be two metric spaces.
If F : X → Pcp(Y ) is u.s.c. then for each x0 ∈ X,

lim
x−→x0

supF (x) = F (x0).

We end these ingredients of multivalued analysis with some definitions and a
result regarding the measurability of multivalued maps.

Lemma 2.6. [17] Let (Σ,A) be a measurable space, (X, d) a separable, complete
metric space (Polish space) and F : Σ → P(X) a multivalued map with nonempty
closed values. If F is measurable, then it has a measurable selection.

Definition 2.2. A multivalued map G : J×R→ P(R) is said to be L1-Carathéodory
if

(a) t→ G(t, u) is measurable for each u ∈ R,
(b) t→ G(t, u) is upper semi-continuous for almost all t ∈ J ,
(c) for each q > 0, there exists ϕq ∈ L1(J,R+) such that

‖G(t, u)‖ = sup{|v| : v ∈ G(t, u)} ≤ ϕq(t) for all |u| < q and for a.e. t ∈ J.

Lemma 2.7. [23] Let F : J × R → Pcp,c(R) be an L1-Carathéodory multivalued
map and let Γ be a linear continuous mapping from L1(J,R) → C(J,R), then the
operator

Γ ◦ SF : C(J,R)→ Ppc,c(C(J,R))
x 7−→ Γ ◦ SF,x

is a closed graph operator in C(J,R)× C(J,R).
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For further reading and details on multivalued analysis, we refer the reader to the
books of Andres and Górniewicz [3], Aubin and Cellina [6], Aubin and Frankowska
[7], Deimling [11], Górniewicz [17], Kamenskii et al [19], Hu and Papageorgiou
[28, 29].

We begin with some elementary notions from geometric topology. For details,
we recommend [3, 24]. Let X be a Banach space and Pcv,cl(X) = {Y ∈ P(X) :
Y convex, closed}.

Definition 2.3. Let A ∈ P(X), the set A is called a contractible space provided
there exists a continuous homotopy H : A× [0, 1]→ A and x0 ∈ A such that

(a) H(x, 0) = x, for all x ∈ A,
(b) H(x, 1) = x0, for all x ∈ A,

i.e. if the identity map is homotopic to a constant map (A is homotopically equiv-
alent to a point).

Note that if A ∈ Pcv,cl(X), then A is contractible, but the class of contractible
sets is much larger than the class of closed convex sets.

We begin with some definitions from the theory of fractional calculus.

Definition 2.4. [15, 16]. The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by:

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t)∗ϕα(t), where

ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α→ 0, where δ

is the delta function.

Definition 2.5. [16]. For a function h given on the interval [0, b], the Riemann-
Liouville fractional derivative of h of order α ∈ R+ is defined by:

Dα
0+h(t) =

1

Γ(n− α)

dn

dtn

(∫ t

0

(t− s)n−α−1h(s)ds

)
.

Lemma 2.8. Let v : [0, b]→ [0, +∞) be a real function and w(.) is a nonnegative,
locally integrable function on [0, b]. Assume that there are constants a > 0 and
0 < β < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)β
ds,

then there exists a constant K = K(β) such that

v(t) ≤ w(t) + ka

∫ t

0

w(s)

(t− s)β
ds for every t ∈ (0, b].

3. existence Results
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3.1. The upper semi-continuous case.

In this section, we present a global existence result and prove the compactness of
the solution set for problem (1)−(2) by using a nonlinear alternative for multivalued
maps combined with a compactness argument.

Consider the Banach space

Cα([0, T ],R) := {y ∈ C((0, T ],R) : lim
t−→0

t1−αy(t) exists }.

Endowed with the norm

‖y‖α := sup{t1−α|y(t)| : t ∈ [0, T ]},
Cα is a Banach space. For A a subset of the space Cα([0, T ], R), define Aα by
Aα := {yα : y ∈ A}, where

yα(t) :=

{
t1−αy(t), t ∈ (0, T ],
lim
t−→0

t1−αy(t), t = 0.

Lemma 3.1. Let A be a bounded set in Cα([0, T ],R). Assume that Aα is equicon-
tinuous on C([0, T ],R). Then A is relatively compact in Cα([0, T ],R).

Proof. Let {yn}∞n=1 ⊂ A, then {(yα)n}∞n=1 ⊂ C([0, T ], R). From Arzelá-Ascoli
theorem, the set K0 = {(yα)n : n ∈ N∗} is relatively compact in C([0, T ],R),
thus there exists a subsequence of {(yα)n}n∈N, still denoted by {(yα)n}∞n=1, which
converges to y where y ∈ (C([0, T ],R), ‖.‖∞).
Hence

‖(yα)n − y‖α = sup{|t1−αyαn(t)− y(t)|, t ∈ [0, T ]} −→ 0.

Therefore

{yn}∞n=1 −→ y on Cα([0, T ],R).

�
Let us define what we mean by a solution of problem (1)− (2).

Definition 3.1. A function y ∈ Cα is said to be a solution of problem (1) − (2)
if there exists v ∈ L1(J,R) such that v(t) ∈ F (t, y(t)) a.e. t ∈ J satisfies the
differential inclusion Dαy(t) ∈ F (t, y(t)) on J ′ and condition

lim
t−→0

t1−αy(t) = c,

is satisfied.

For the existence of solutions for the problem (1)-(2), we need the following
auxiliary lemmas.

Lemma 3.2. [31] Let α > 0, then the differential equation

RLDα
a+h(t) = 0,

has solutions h(t) = c1(t− a)α−1 + c2(t− a)α−2 + . . .+ cn(t− a)α−n

for some ci ∈ R, i = 1 . . . n, where n = [α] + 1.

Lemma 3.3. [31] Let α > 0, then

IαRLDα
a+h(t) = h(t) + c1(t− a)α−1 + c2(t− a)α−2 + . . .+ cn(t− a)α−n

for some ci ∈ R, i = 0, . . . , n, where n = [α] + 1.
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As a consequence of Lemma (3.2) and Lemma (3.3) we have the following result
which is useful in what follows.

Lemma 3.4. Let 0 < α ≤ 1 and let ρ ∈ Cα. A function y is a solution of the
fractional integral equation

y(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1ρ(s)ds, a.e. t ∈ J,

if and only if y is a solution of the fractional initial-value problem

Dαy(t) = ρ(t) for each t ∈ J ′,

lim
t−→0

t1−αy(t) = c.

Our first result is based on the nonlinear alternative of Leray-Schauder type for
multivalued maps [18]. We assume that F is a compact and convex valued multi-
valued map which satisfies following hypotheses:

(H1) F : J × R→ Pcp,c(R) is a Carathéodory multi-valued map,
(H2) there exist nonnegative constants a, b ∈ R such that

‖F (t, x)‖P ≤ a|x|+ b, for a.e. t ∈ J and each x ∈ R.

Theorem 3.1. Under Assumptions (H1)−(H2), the initial-value problem (1)−(2)
has at least one solution. Moreover, the solution set SF (c) is compact.

Consider the operator N : Cα → P(Cα) defined for y ∈ Cα by

N(y) := {h ∈ Cα : h(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds, a.e. t ∈ J},

where v ∈ SF,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.
Note that from [30, Theorem 5.10], the set SF,y is nonempty if and only if the

mapping t→ inf{‖v‖ : v ∈ F (t, y(t))} belongs to L1(J).

It is further bounded if and only if the mapping

t→ ‖F (t, y(t))‖P = sup{‖v‖ : v ∈ F (t, y(t))}

belongs to L1(J), this particularly holds true when F satisfies (H1).

Clearly, from Lemma (3.4) N fixed points are solutions to (1)−(2). We shall prove
that N satisfies the assumptions of the nonlinear alternative of Leray-Schauder type
[18]. The proof will be given in several steps.

The proof is given in several steps,

Step 1:
N(y) is convex for each y ∈ Cα.

Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for
each t ∈ J we have

hi(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1vi(s)ds, i = 1, 2.
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Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) = tα−1c

+ 1
Γ(α)

∫ t
0
(t− s)α−1[dv1(s) + (1− d)v2(s)]ds.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2:
N maps bounded sets into bounded sets in Cα(J,R).

Indeed, it is enough to show that there exists a positive constant l such that for
each y ∈ Br = {y ∈ Cα(J,R) : ‖y‖α ≤ r} one has ‖N(y)‖α ≤ l. Let y ∈ Br. Then
for each h ∈ N(y), there exists v ∈ SF,y such that

h(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds.

By (H2) we have

|t1−αh(t)| ≤ |c|+ t1−α

Γ(α)

∫ t
0
(t− s)α−1|v(s)|ds

≤ |c|+ t1−α

Γ(α)

∫ t
0
(t− s)α−1(a|y(s)|+ b)ds

≤ |c|+ at1−α

Γ(α)

∫ t
0
(t− s)α−1sα−1|s1−αy(s)|ds+ t1−α

Γ(α)

∫ t
0
(t− s)α−1bds

≤ |c|+ raTαΓ(α)
Γ(2α) + bT

Γ(1+α) = l.

Step 3: N maps bounded sets into equicontinuous sets of Cα([0, T ],R).
Let τ1, τ2 ∈ (0, T ], τ1 < τ2 and Br be a bounded set of Cα([0, T ],R) as Claim 1, let
y ∈ Br and h ∈ N(y),

then

|τ1−α
2 h(τ2)− τ1−α

1 h(τ1)|
≤ |(τ1−α

2 −τ1−α
1 |

Γ(α)

∫ τ1
0
|(τ2 − s)α−1 − (τ1 − s)α−1||v(s)|ds

+
τ1−α
2

Γ(α)

∫ τ2
τ1

(τ2 − s)α−1|v(s)|ds,
≤ (τ1−α

2 −τ1−α
1 )

Γ(α)

∫ τ1
0

(τ2 − s)α−1sα−1ar ds+
(τ1−α

2 −τ1−α
1 )

Γ(α)

∫ τ1
0

(τ2 − s)α−1b ds

+
(τ1−α

2 −τ1−α
1 )

Γ(α)

∫ τ1
0

(τ1 − s)α−1sα−1ar ds+
(τ1−α

2 −τ1−α
1 )

Γ(α)

∫ τ1
0

(τ1 − s)α−1b ds

+
τ1−α
2

Γ(α)

∫ τ2
τ1

(τ2 − s)α−1sα−1ar ds+
τ1−α
2

Γ(α)

∫ τ2
τ1

(τ2 − s)α−1b ds,

which yields

|τ1−α
2 N(y)(τ2)− τ1−α

1 N(y)(τ1)| ≤ ra(τ2α−1
2 +τ2α−1

1 )B(α,α)
Γ(α) (τ1−α

2 − τ1−α
1 )

+
b[(τα2 +τα1 )−(τ2−τ1)α]

Γ(1+α) (τ1−α
2 − τ1−α

1 )

+ [
raτ1−α

2 τα−1
1

Γ(1+α) +
bτ1−α

2

Γ(1+α) ](τ2 − τ1)α.

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero. Then
N(Br) is equicontinuous.

As a consequence of Steps 1 to 3 together with lemma (3.1), we can conclude
that N : Cα → P(Cα) is completely continuous.

Step 4: N is u.s.c.
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To this end, it is sufficient to show that N has a closed graph. Let hn ∈ N(yn)
be such that hn −→ h and yn −→ y as n −→ +∞.

Then there exists M > 0 such that ‖yn‖α ≤ M . We shall prove that h ∈ N(y).
hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for a.e. t ∈ J , we have

hn(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds,

(H2) implies that vn(t) ∈ atα−1M + bB(0, 1). Then (vn)n∈N is integrably bounded
in L1(J,R). It follows that (vn)n∈N is weakly compact . There exists a subse-
quence still denoted (vn)n∈N, which converges weakly to some limit v ∈ L1(J,R).
Furthermore, the mapping Γ : L1(J,R)→ Cα(J,R) defined by

Γ(g)(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds

is a continuous linear operator.
Then it remains continuous if these spaces are endowed with their weak topolo-

gies [25]. Moreover, for a.e. t ∈ J we have

h(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds.

It remains to prove that v ∈ F (t, y(t)), a.e. t ∈ J . Mazur’s Lemma (2.2) yields

the existence of αni ≥ 0, i = 1, . . . , k(n) such that
∑k(n)
i=1 αni = 1 and the sequence

of convex combinations gn(.) =
∑k(n)
i=1 αni vi(.) converges strongly to v in L1 Using

Lemma (2.4), we obtain that

v(t) ∈
⋂
n≥1 {gn(t)} a.e. t ∈ J

⊂
⋂
n≥1 co{vk(t), k ≥ n}

⊂
⋂
n≥1 co

{⋃
k≥n F (t, yk(t))

}
= co {lim supF (t, yk(t)))} .

(3)

However, the fact that the multivalued x→ F (., x) is u.s.c. and has compact values,
together with Lemma (2.5), implies that limn−→∞ supF (t, yn(t)) = F (t, y(t)), a.e. t ∈
J, combining with (3) yields that v(t) ∈ coF (t, y(t)), from the convexity and closed-
ness of F it follows that v(t) ∈ F (t, y(t)), a.e. t ∈ J. Thus h ∈ N(y), proving that
N has a closed graph. Finally, with Lemma (2.3) and the compactness of N , we
conclude that N is u.s.c.

Step 5 : A priori bounds on solutions.

Let y ∈ Cα(J,R) be such that y ∈ λN(y) for some λ ∈ (0, 1). Then there exists
v ∈ L1(J,R) with v ∈ SF,y such that, for each t ∈ J .

From (H2) we have

|t1−αy(t)| ≤ |c|+ t1−α

Γ(α)

∫ t
0
(t− s)α−1|v(s)|ds

≤ |c|+ t1−α

Γ(α)

∫ t
0
(t− s)α−1(a|y(s)|+ b)ds

≤ |c|+ bT
Γ(1+α) + aT 1−α

Γ(α)

∫ t
0
(t− s)α−1sα−1|s1−αy(s)|ds.
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From Lemma (2.8) there exists k(α) > 0 such that

|t1−αy(t)| ≤ L+
ak(α)T 1−α

Γ(α)

∫ t

0

(t− s)α−1Lds,

where L = |c|+ bT
Γ(1+α) . Therefore

‖y‖α ≤ L+
ak(α)T

Γ(1 + α)
= M̃.

Let

U := {y ∈ Cα([0, T ],R) : ‖y(t)‖Ωc < M̃ + 1},
and consider the operator N : U −→ Pcv,cp(Cα). From the choice of U , there is

no y ∈ ∂U such that y ∈ λN(y) for some λ ∈ (0, 1).
As a consequence of the nonlinear alternative of Leray-Schauder type [18], we

deduce that N has a fixed point y in U which is a solution of the problem (1)-(2).

3.2. Compactness of the solution set.

For each c ∈ R, let S(F, c) := {y ∈ Cα(J,R) : y is a solution of problem (1)-(2) }.
From the previous consideration, there exists M̃ such that for every y ∈ S(F, c), ‖y‖α ≤
M̃ . Since N is completely continuous, N(SF (c)) is relatively compact in Cα. Let
y ∈ S(F, c), then y ∈ N(y) and hence S(F, c) ⊂ N(S(F, c)). It remains to prove
that S(F, c) is a closed subset in Cα. Let {yn : n ∈ N} ⊂ S(F, c) be such that
the sequence (yn)n∈N converges to y. For every n ∈ N, there exists vn such that
vn(t) ∈ F (t, yn(t)), a.e. t ∈ J and

yn(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds.

Arguing as in Step 4, we can prove that there exists v such that v(t) ∈ F (t, y(t))
and

y(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds.

Therefore y ∈ S(F, c) which yields that S(F, c) is closed, and hence compact in Cα.
�

4. Second existence result

4.1. Covitz Nadler approach.

We present now a result for the problem (1)-(2) with a nonconvex valued right
hand side. Our considerations are based on the fixed point theorem for contraction
multivalued maps given by Covitz and Nadler [10].

Theorem 4.1. Assume that the following hypothesis holds :

(H3) F : J × R −→ Pcp(R) has the property that F (·, u) : J → Pcp(R) is
measurable for each u ∈ R,
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(H4) there exist a function p ∈ C([0, T ],R+) such that

Hd(F (t, z1), F (t, z2)) ≤ p(t)‖z1 − z2‖ for all z1, z2 ∈ R,

and

d(0, F (t, 0)) ≤ p(t), t ∈ J.
If

Tα‖p‖∞Γ(α)

Γ(2α)
< 1, (4)

then the problem (1)-(2) has at least one solution.

Remark 4.1. For each y ∈ Cα the set SF,y is nonempty since by (H3), F has a
measurable selection (see [8], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma (2.1). The
proof will be given in two steps.

Step 1: N(y) ∈ PclCα(J,R) for each y ∈ Cα(J,R).

Indeed, let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in Cα(J,R). Then, ỹ ∈ Cα(J,R)
and there exists vn ∈ SF,y such that, for each t ∈ J,

yn(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1vn(s)ds.

Using the fact that N has compact values and from (H4), we may pass to a
subsequence if necessary to get that vn converges weakly to v in L1

w(J,R) ( the
space endowed with the weak topology). An application of lemma (2.2) implies
that vn converges strongly to v and hence v ∈ SF,y. Then, for each t ∈ J,

yn(t) −→ ỹ(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1v(s)ds.

So, ỹ ∈ N(y).

Step 2: There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ‖y − y‖∞ for each y, y ∈ Cα.

Let y, y ∈ Cα and h1 ∈ N(y). Then there exists v1(t) ∈ F (t, y(t)) such that for
each t ∈ J

h1(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1v(s)ds.

From (H4) it follows that

Hd(F (t, y(t)), F (t, y(t))) ≤ p(t)|y(t)− y(t)|.

Hence, there exists w ∈ N(t, y(t)) such that

|v1(t)− w| ≤ p(t)|y(t)− y(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ p(t)|y(t)− y(t)|}.
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Since the multivalued operator V (t) = U(t) ∩ F (t, y(t)) is measurable (see Propo-
sition III.4 in [8]), there exists a function v2(t) which is a measurable selection for
V . So, v2(t) ∈ F (t, y(t)), and for each t ∈ J,

|v1(t)− v2(t)| ≤ p(t)|y(t)− y(t)|.
Let us define for each t ∈ J

h2(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1v2(s)ds.

Then for t ∈ J

|t1−αh1(t)− t1−αh2(t)| ≤ t1−α

Γ(α)

∫ t
0
(t− s)α−1|v2(s)− v1(s)|ds

≤ t1−α

Γ(α)

∫ t
0
(t− s)α−1sα−1p(s)s1−α|y(s)− y(s)|ds

≤ t1−α‖p‖∞
Γ(α)

∫ t
0
(t− s)α−1sα−1‖y − y‖αds.

Thus

‖h1 − h2‖α ≤
Tα‖p‖∞Γ(α)

Γ(2α)
‖y − y‖α.

By an analogous relation, obtained by interchanging the roles of y and y, it
follows that

Hd(N(y), N(y)) ≤
[
Tα‖p‖∞Γ(α)

Γ(2α)

]
‖y − y‖α.

So by (4), N is a contraction and thus, by Lemma (2.1), N has a fixed point y
which is solution to (1)-(2).

4.2. Structure of the solution set.

The following definitions and lemmas can be found in [6, 17]

Definition 4.1. A single-valued map f : [0, a] ×X → Y is said to be measurable
locally Lipschitz (mLL) if f(., x) is measurable for every x ∈ X and for every x ∈ X,
there exists a neighborhood Vx of x ∈ X and an integrable function

Lx : [0, a]→ [0,∞)

such that

d′(f(t, x1), f(t, x2)) ≤ Lx(t)d(x1, x2) for a.e. t ∈ [0, a] and x1, x2 ∈ Vx.

Definition 4.2. A mapping F : [0, a] ×X → P(Y ) is mLL-selectionable provided
there exists a measurable, locally-Lipchitzian map

f : [0, a]×X → Y and f(t) ∈ F (t, y(t)) for a.e. t ∈ [0, a].

Let us present an additional assumption :

(H5) there exist constants a and b ∈ R+ such that

‖F (t, x)‖P ≤ a|x|+ b, for a.e. t ∈ J and each x ∈ R.

Theorem 4.2. Let F : J ×R→ Pcp(R) be a Carathéodory and mLL-selectionable
multi-valued with compact convex values which satisfies condition (H5). Then for
every c ∈ R the solution set S(F, c) is compact and contractible.
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Let f ∈ F be measurable and locally Lipschitz selection. Consider the single-
valued problem

Dαy(t) = f(t, y(t)), a.e. t ∈ J = (0, T ], 0 < α ≤ 1, (5)

lim
t−→0+

t1−αy(t) = c. (6)

Arguing as in Theorem (4.1) we can prove that the (5)-(6) has exactly one local
solution x for every c ∈ R.

Bearing in the mind assumptions (H5), this solution is wholly defined over [0, T ].
Furthermore, Theorem (3.1) implies that S(F, c) is nonempty and compact.

We define the homotopy H : S(F, c)× [0, 1]→ S(F, c) by

H(y, λ)(t) =

{
y(t), 0 < t ≤ λT
x(t) λT < t ≤ T,

where x = S(f, c) is the unique solution of problem (5)− (6). In particular

H(y, λ) =

{
y, for λ = 1,
x, for λ = 0.

We prove that H is a continuous homotopy . Let (yn, λn) ∈ S(F, c) × [0, T ] be
such that (yn, λn) −→ (y, λ), as n −→ +∞.
We shall prove that H(yn, λn) −→ H(y, λ), we have

H(yn, λn)(t) =

{
yn(t), for t ∈ (0, λnT ],
x(t), for t ∈ (λnT, t].

We consider several cases,

(a) if lim
n−→+∞

λn = 0,

H(y, 0)(t) = x(t), t ∈ [0, T ].

Hence

|H(yn, λn)(t)−H(y, λ)(t)|α ≤ ‖yn − y‖α + ‖yn − x‖[0,λnT ],

which tends to 0 as n −→ +∞.

(b) If lim
n−→∞

λn = 1,

it’s treated similarly.
If λn 6= 0 and 0 < lim

n−→∞
λn < 1,

two cases must be treated,

• t ∈ (0, λn],

then H(yn, λn)(t)−H(y, λ)(t) = yn(t)− y(t),
since yn ∈ S(F, c), there exist vn ∈ SF,yn such that

yn(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1vn(s)ds, t ∈ (0, λnT ].

We must show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

y∗(t) = tα−1c+ 1
Γ(α)

∫ t
0
(t− s)α−1v∗(s)ds, t ∈ (0, λnT ].
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Since F (t, ·) is upper semicontinuous, then for every ε > 0, there exist n0(ε) ≥ 0
such that for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + εB(0, 1), a.e. t ∈ J.

Since F (·, ·) has compact values, then there exists a subsequence vnm(·) such that

vnm(·)→ v∗(·) as m→∞

and

v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ J.
Since yn converges to y, there exists M > 0 such that ‖yn‖α ≤M.

Hence, from (H4), we have

|vn(t)| ≤ atα−1M + b, a.e. t ∈ J,

which implies

vn(t) ∈ atα−1M + bB(0, 1).

From the Lebesgue dominated convergence theorem, yields

y∗(t) = tα−1c+
1

Γ(α)

∫ t

0

(t− s)α−1v∗(s)ds, t ∈ (0, λT ].

If t ∈ (λnT, T ], then

H(yn, λn)(t) = H(y, λ)(t).

Thus

‖H(yn, λn)−H(y, λ)‖α −→ 0 as n −→∞.
In the case where λ = 1, we have

H(yn, λn) = H(y, λ) = y.

Therefore H is a continuous function, proving that S(F, c) is contractible to the
point x.

5. Examples

Consider the problem

D
1
2 y(t) ∈ F1(t, y(t)), a.e. t ∈ J = (0, 1], α =

1

2
, (7)

lim
t−→0+

t
1
2 y(t) = 4. (8)

• Let F1 : (0, 1]× R→ P(R) be a multivalued map given by

F1(t, x) =

[
|x|+ 3x2

3x2 + 1
+ t3 + 2t,

|x|
|x|+ 2

+ t2 + 2

]
. (9)

For f ∈ F1, we have

|f(t)| ≤ max(|x|+ 3x2

3x2 + 1
+ t3 + 2t,

|x|
|x|+ 2

+ t2 + 2) ≤ 4 + |x|, x ∈ R.
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Thus

‖F1(t, x)‖P = sup{|y| : y ∈ F (t, x)} ≤ a|x|+ b, x ∈ R,
with a = 1 and b = 4. Hence by Theorem (3.1), the problem (7)-(8) with F given
by (9) has at least one solution on [0, 1] and the solution set SF1(4) is compact.

Consider the multivalued map F2 : (0, 1]× R→ P(R) given by

F2(t, x) =

[
0,

1

3
sinx+

|x|
t+ 9

+
1

9

]
, (10)

and the fractional differential inclusion defined by

D
1
2 y(t) ∈ F2(t, y(t)), a.e. t ∈ J = (0, 1], α =

1

2
, (11)

lim
t−→0+

t
1
2 y(t) = 4. (12)

Clearly

‖F2(t, x)‖ = sup{|v| : v ∈ F2(t, x)}

≤ 1

3
| sinx|+ |x|

t+ 9
+

1

9

≤ 1

9
|x|+ 4

9
,

and

Hd(F2(t, x), F2(t, y)) ≤
(

1

3
+

1

t+ 9

)
|x− y|.

Let p(t) = 1
3 + 1

t+9 . Then ‖p‖|∞ = 4
9 and Tα‖p‖∞Γ(α)

Γ(2α) ≈ 0.7877572 < 1. Hence

by Theorem (4.2), the problem (11)-(12) with F2 given by (10) has at least one
solution. It is clear that F2 is a Carathéodory multivalued map with compact
convex values and satisfies the growth condition (H5). Then the solution set SF2

(4)
is a contractible compact set.

6. Conclusion

We deal in this paper with the existence and topological structure of solutions set
for fractional differential inclusion. We give the first result when the nonlinearity
is upper semi-continuous and takes convex values, we prove then that solution sets
is nonempty and compact, our main tool is the Leray-Schauder alternative. The
second one is treated when the nonlinearity takes non-convex values, by usefulness of
Covitz Nadler contraction we prove that (1)-(2) has one solution, the compactness,
contractibility of solution sets is also proved. An example is given to illustrate our
results.
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